Как найти отношение площадей правильных многоугольников

1096 Стороны правильного треугольника, квадрата и правильного шестиугольника равны друг другу. Найдите отношения площадей этих многоугольников.

Дано: правильные треугольник, квадрат, шестиугольник,

Найти:

Правильный многоугольник

Формулы, признаки и свойства правильного многоугольника

Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.

Многоугольники отличаются между собой количеством сторон и углов.

Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.

Признаки правильного многоугольника

Многоугольник будет правильным, если выполняется следующее условие: все стороны и углы одинаковы.

a 1 = a 2 = a 3 = … = a n-1 = a n ,

α 1 = α 2 = α 3 = … = α n-1 = α n

где a1 … an — длины сторон правильного многоугольника,
α 1 … α n — внутренние углы между стронами правильного многоугольника.

Основные свойства правильного многоугольника

  1. Все стороны равны: a 1 = a 2 = a 3 = … = a n-1 = a n
  2. Все углы равны: α 1 = α 2 = α 3 = … = α n-1 = α n
  3. Центр вписанной окружности Oв совпадает с центром описанной окружности Oо, что и образуют центр многоугольникаO.
  4. Сумма всех углов n-угольника равна: 180° · n – 2
  5. Сумма всех внешних углов n-угольника равна 360°: β 1 + β 2 + β 3 + … + β n-1 + β n = 360°
  6. Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины: D n = n · n – 3 2
  7. В любой многоугольник можно вписать окружность и описать круг; при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника: S = π 4 · a 2
  8. Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O .

Формулы правильного n-угольника

Формулы длины стороны правильного n-угольника

Формула стороны правильного n-угольника через радиус вписанной окружности

a = 2 · r · tg 180° n (через градусы),

a = 2 · r · tg π n (через радианы)

Формула стороны правильного n-угольника через радиус описанной окружности

a = 2 · R · sin 180° n (через градусы),

a = 2 · R · sin π n (через радианы)

Формулы радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны

r = a : 2 · tg 180° n (через градусы),

r = a : 2 · tg π n (через радианы)

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны

R = a : 2 · sin 180° n (через градусы),

R = a : 2 · sin π n (через радианы)

Формулы площади правильного n-угольника

Формула площади n-угольника через длину стороны

Формула площади n-угольника через радиус вписанной окружности

Формула площади n-угольника через радиус описанной окружности

Формула периметра правильного многоугольника

Формула периметра правильного n-угольника

Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.

Формула определения угла между сторонами правильного многоугольника

Формула угла между сторонами правильного n-угольника

Правильный треугольник

Правильный треугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°.

Формулы правильного треугольника

Формула стороны правильного треугольника через радиус вписанной окружности

Сторона правильного треугольника равна удвоенному произведению радиуса вписанной окружности на корень из трёх.

Формула стороны правильного треугольника через радиус описанной окружности

Сторона правильного треугольника равна произведению радиуса описанной окружности на корень из трёх.

Формула площади правильного треугольника через длину стороны

Формула площади правильного треугольника через радиус вписанной окружности

Формула площади правильного треугольника через радиус описанной окружности

Углы между сторонами правильного треугольника

Правильный четырехугольник

Правильный четырехугольник — это квадрат.

Формулы правильного четырехугольника

Формула стороны правильного четырехугольника через радиус вписанной окружности

Сторона правильного четырехугольника равна двум радиусам вписанной окружности.

Формула стороны правильного четырехугольника через радиус описанной окружности

Сторона правильного четырехугольника равна произведению радиуса описанной окружности на корень из двух.

Формула радиуса вписанной окружности правильного четырехугольника через длину стороны

Радиус вписанной окружности правильного четырехугольника равен половине стороны четырехугольника.

Формула радиуса описанной окружности правильного четырехугольника через длину стороны

Радиус описанной окружности правильного четырехугольника равен половине произведения стороны четырехугольника на корень из двух.

Формула площади правильного четырехугольника через длину стороны

Площадь правильного четырехугольника равна квадрату стороны четырехугольника.

Формула площади правильного четырехугольника через радиус вписанной окружности

Площадь правильного четырехугольника равна четырем радиусам вписанной окружности четырехугольника.

Формула площади правильного четырехугольника через радиус описанной окружности

Площадь правильного четырехугольника равна двум квадратам радиуса описанной окружности.

Углы между сторонами правильного четырехугольника

Правильный шестиугольник

Правильный шестиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного шестиугольника равны между собой, все углы также равны и составляют 120°.

Формулы правильного шестиугольник

Формула стороны правильного шестиугольника через радиус вписанной окружности

Формула стороны правильного шестиугольника через радиус описанной окружности

Длина стороны правильного шестиугольника равна радиусу описанной окружности.

Формула радиуса вписанной окружности правильного шестиугольника через длину стороны

Формула радиуса описанной окружности правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через радиус вписанной окружности

Формула площади правильного шестиугольника через радиус описанной окружности

Углы между сторонами правильного шестиугольника

Правильный восьмиугольник

Правильный восьмиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного восьмиугольник равны между собой, все углы также равны и составляют 135°.

Отношение площадей вписанного и описанного кругов правильного многоугольника равно 0, 75, а периметр многоугольника равен 12 см Нужно найти количество углов, r и R Помогите, пожалуйста?

Математика | 5 – 9 классы

Отношение площадей вписанного и описанного кругов правильного многоугольника равно 0, 75, а периметр многоугольника равен 12 см Нужно найти количество углов, r и R Помогите, пожалуйста!

Пусть количество углов к.

Если центр окружности соединить с концами стороны вписанного тр – ка, то половина угла при вершине равна 180 / к

радиусов вписанной и описанной оружности : равно cos( 180 / k)

Отношение площадей равно отношению квадратов радиусов сторон, cos( 180 / k) = sqrt(3) / 2

Значит 180 / k = 30 градусов.

Следовательно k = 6

Периметр многоугольника равен 12.

Но в правильном шестиугольнике радиус описанной окружности равен стороне и равен 2.

Радиус вписанной окружности равен sqrt(3)

sqrt – квадратный корень.

Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой :

$r=Rcos frac<180^0>$, где n – число сторон многоугольника.

Отсюда их соотношение равно :

Отношение площадей кругов равно отношению квадратов их радиусов :

По условию задачи оно равно 0, 75 или 3 / 4.

Значение√3 / 2 соответствует углу 30°.

Значит, 180° / n = 30°, отсюда n = 180 / 30 = 6.

Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12 / 6 = 2 см.

Радиус описанного круга для шестиугольникаR = a = 2см.

Радиус вписанного круга r = a * (√3 / 2) = 2 * (√3 / 2) = √3 см.

Как найти количество сторон в многоугольнике, если угол между двумя радиусами вписанной окружности равен 20?

Как найти количество сторон в многоугольнике, если угол между двумя радиусами вписанной окружности равен 20.

Около окружности описан радиус который равен 4, описан многоугольник периметр которого равен 51 ?

Около окружности описан радиус который равен 4, описан многоугольник периметр которого равен 51 .

Найти его площадь.

Периметр правильного треугольника равен 36 см?

Периметр правильного треугольника равен 36 см.

Найдите площадь описанного круга и длину вписанной окружности.

Нужно найти периметр многоугольника?

Нужно найти периметр многоугольника.

Найти периметр многоугольника.

Стороны многоугольника : AB – 10 дм, BC – 7 дм, CD – 8 дм, DE – 8 дм, EA – 4 дм.

Чему равен периметр этого многоугольника в сантиметрах?

Угол между двумя соседними сторонами правильного многоугольника, вписанного в окружность, равен 168°?

Угол между двумя соседними сторонами правильного многоугольника, вписанного в окружность, равен 168°.

Найдите число вершин многоугольника.

Около окружности радиус которой равен 4 описан многоугольник площадь которого равна 106 найдите его периметр?

Около окружности радиус которой равен 4 описан многоугольник площадь которого равна 106 найдите его периметр.

ПОМОГИТЕ радиус круга, описанного вокруг правильного многоугольника?

ПОМОГИТЕ радиус круга, описанного вокруг правильного многоугольника.

, а радиус круга, вписаного в него – 3см.

Найдите сторону многоугольника и количество сторон многоугольника.

Около окружности , радиус которой равен 4, описан многоугольник , площадь которого равна 34?

Около окружности , радиус которой равен 4, описан многоугольник , площадь которого равна 34.

Найдите его периметр.

Отношения площадей двух подобных многоугольников равно 25 : 49?

Отношения площадей двух подобных многоугольников равно 25 : 49.

Площадь первого многоугольника равна 450 см2, а периметр второго 168см.

Найди периметр первого многоугольника и площадь второго.

Около окружности площадью 25пи описан многоугольник площадь которого равна 75 Найдите периметр этого многоугольника?

Около окружности площадью 25пи описан многоугольник площадь которого равна 75 Найдите периметр этого многоугольника.

На этой странице находится ответ на вопрос Отношение площадей вписанного и описанного кругов правильного многоугольника равно 0, 75, а периметр многоугольника равен 12 см Нужно найти количество углов, r и R Помогите, пожалуйста?, из категории Математика, соответствующий программе для 5 – 9 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Математика. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.

Геометрия

План урока:

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

[spoiler title=”источники:”]

http://matematika.my-dict.ru/q/4549385_otnosenie-plosadej-vpisannogo-i-opisannogo-krugov/

http://100urokov.ru/predmety/pravilnye-mnogougolniki

[/spoiler]

Соотношения в правильных многоугольниках

240. В п. 148 мы узнали, как разделить окружность на 4 равных части: для этого надо в круге O построить 2 перпендикулярных диаметра. Соединив точки деления, получим правильный вписанный в круг 4-угольник ABCD (чер. 236).

Вписанный квадрат

Из ∆AOB, в котором O прямой, имеем:

AB2 = AC2 + OB2

Назовем сторону AB чрез a4 (чтобы показать, что это — сторона 4-угольника) и радиус круга через R. Тогда

a42 = R2 + R2 = 2R2,

откуда

Вычисление стороны квадрата

241. В том же п. 148 мы узнали, что хорда, стягивающая дугу, равную 6-й части окружности, равна радиусу; другими совами: сторона правильного вписанного в круг шестиугольника равна радиусу, т. е.

a6 = R,

где a6 обозначает сторону правильного вписанного шестиугольника.

242. Разделив окружность на шесть равных частей и соединив точки деления чрез одну, получим правильный треугольник, вписанный в круг, – обозначим его сторону чрез a3. Пусть ABC (чер. 237) есть правильный треугольник, вписанный в круг O. Выразим его сторону чрез радиус R круга.

Вписанный треугольник

Мы предварительно делили окружность на 6 равных частей, и одна из этих точек деления, точка D, лежит на ◡CB. Легко сообразить, что ◡ACD = ◡ABD, так как каждая состоит из 3 шестых частей окружности. Поэтому точка D лежит на одном диаметре с точкою A. Построив этот диаметр AD и хорду DB, получим ∆ABD, у которого угол при B прямой, так как он вписанный и опирается на диаметр. Следовательно,

AB2 = AD2 – DB2

или, зная, что AB = a3, AD = 2R и DB = R (ибо a6 = R), получим a32 = 4R2 – R2 = 3R2,

откуда

Вычисление длины стороны треугольника

243. Мы можем также, пользуясь п. 240, найти a6 (т. е. сторону правильного вписанного восьмиугольника), a16 и т. д., а пользуясь п. 241, найти a12, затем a24 и т. д. Найдем, например, выражение a12 чрез R. Для этого чрез O (чер. 237) построим OE ⊥ DB и затем хорду DE; тогда DE = a12. Сторона правильного шестиугольника DB разделится прямою OE в точке K пополам; DB = R, следовательно, DK = R/2. Из ∆ODK имеем:

Вычисление длин сторон

244. Мы можем еще научиться делить окружность на 5, на 10, на 20 и т. д. Равных частей и вместе с тем научиться строить правильные многоугольники об 5, об 10, об 20 и т. д. Сторонах, а также найти выражения сторон этих многоугольников чрез радиус круга. Удобнее начать с правильного десятиугольника.

Чтобы исследовать эту задачу, допустим, что ◡AB (чер. 238) есть десятая часть окружности и хорда AB = a10. Тогда ◡AB = 36° и, следовательно, ∠AOB = 36°; ∆AOB равнобедренный (AO = OB, как радиусы). Так как угол при его вершине = 36°, то на долю углов при основании остается 180° – 36° = 144°, но эти углы равны, следовательно, ∠A = ∠B = 72°.

Градусы углов

Построим биссектор BC угла B; тогда ∠ABC = 36° и ∠CBO = 36°. Далее видим, что ∠ACB (внешний для ∆OCB) = ∠O + ∠CBO = 36° + 36° = 72°. Отсюда заключаем: 1) ∆ABC равнобедренный (углы при A и C равны), – следовательно, CB = OC или OC = AB.

Так как далее биссектор внутреннего угла треугольника делит противоположную сторону на части, пропорциональные двум его другим сторонам (п. 215), то

AC/CO = AB/BO

Но AB = CO и OB = OA, следовательно,

AC/CO = CO/OA (1)

Отсюда видим, что для получения отрезка OC, равного стороне AB правильного десятиугольника, надо радиус круга OA разделить на такие два отрезка AC и CO, чтобы один из них был средним пропорциональным между всем радиусом OA и другими отрезком AC.

Такое деление отрезка называется иногда золотым делением, но обычно называют его делением отрезка в крайнем и среднем отношении. Как выполнять такое деление, будет указано в следующем п., а здесь мы найдем выражение стороны правильного вписанного десятиугольника (a10) чрез радиус круга.

Из (1) имеем (AO = R, CO = a10, следовательно, AC = R – a10):

Вычисление сторон

245. Деление отрезка в крайнем и среднем отношении. Пусть требуется данный отрезок AB (чер. 239) разделить на такие две части, чтобы одна из них была среднею пропорциональною между всем отрезком AB и его остальною частью.

Деление отрезка на пропорциональные части

Для этого построим BC ⊥ AB и отложим BC = AB; затем, принимая BC за диаметр, построим круг, – его центр O расположен в середине отрезка BC. Построим далее прямую AO, которая пересекает круг в точках D и E и наконец отложим на AB отрезок AM = AD. Тогда в точке M отрезок AB разделится так, как это требовалось.
В самом деле AE есть секущая и AB касательная к кругу O. Поэтому (п. 221) имеем:

AE/AB = AB/AD.

Вычтем из каждого отношения этой пропорции по 1; получим:

AE/AB – 1 = AB/AD – 1,

или:

(AE – AB)/AB = (AB – AD)/AD,

или, так как AE – AB = AE – BC = AE – DE = AD = AM и AB – AD = AB – AM = MB,

AM/AB = MB/AM или MB/AM = AM/AB,

что и доказывает, что мы достигли требуемого результата.

Заметим, что AM/AB < 1, ибо AM < AB, следовательно, и MB/AM < 1 или MB < AM, т. е. средним пропорциональным является большая из двух частей, на которые мы делим отрезок AB.

246. Теперь мы можем построить правильный вписанный в круг десятиугольник: надо разделить радиус круга в крайнем и среднем отношении и строить хорды, равные большей из полученных частей.

Если разделить окружность на 10 равных частей и соединять точки деления чрез одну, то получим правильный пятиугольник, вписанный в этот круг.

Так как Вычисление, то легко получить пятнадцатую часть окружности: надо разделить ее на 6 и на 10 равных частей и вычесть из шестой доли окружности ее десятую долю, – этим решается вопрос построения правильного пятнадцатиугольника.

Мы можем затем удваивать число сторон построенных правильных многоугольников. Тогда получим правильные многоугольники о 20 сторонах, о 40 и т. д. сторонах, о 30 сторонах, о 60 сторонах и т. д.

248. Пусть имеем какой-либо правильный многоугольник об n сторонах. Легко вычислить каждый внутренний угол такого многоугольника. В самом деле, мы знаем (п. 81), что сумма внутренних углов n-угольника вычисляется по формуле 2d(n – 2) или в градусах 180°(n – 2).

Так как в правильном многоугольнике все углы между собою равны и всех их n, то каждый угол равен 180°(n – 2)/n.
Так, например, угол правильного шестиугольника = 180° · 4 / 6 = 120°, угол правильного десятиугольника = 180° · 8 / 10 = 144°, угол правильного десятиугольника = 180° · 14 / 16 = 157°30′ и т. д.

Мы можем увидеть из этой же формулы, что с увеличением числа сторон угол многоугольника все увеличивается и приближается к 180°. В самом деле, этот угол равен

Вычисление угла

С увеличением числа n дробь 360°/n все уменьшается и может быть сделана, как угодно мала.

Правильный многоугольник

Затем из этой же формулы видим, что внутренний угол правильного многоугольника зависит только от числа сторон, не не зависит от самой стороны: если мы построим 2 правильных многоугольника ABC… и A’B’C’… (чер. 242) с одинаковым числом сторон, то, несмотря на то, что у одного каждая сторона больше каждой стороны другого, их внутренние углы должны быть равны между собою. Соединим еще центры этих многоугольников O с вершинами A и B, O’ с вершинами A’ и B’. Тогда ∆OAB ~ ∆O’A’B’, так как углы в этих треугольниках при вершинах A, B, A’ и B’ равны между собою, ибо каждый из них есть половина одного из равных внутренних углов многоугольников; построим еще апофемы OK и O’K’ многоугольников. Тогда имеем:

AB/A’B’ = OA/O’A’ = OK/O’K’ (последнее на основании п. 211),

т. е. отношение сторон правильных одноименных многоугольников равно отношению их радиусов и равно отношению их апофем.

Называя число сторон каждого многоугольника чрез n и умножая оба члена первого отношения на n, отчего это отношение не изменится, получим:

(AB · n) / (A’B’ · n) = OA/O’A’ = OK/O’K’.

По AB · n есть периметр первого многоугольника; также A’B’ · n — периметр второго. Следовательно,
отношение периметров правильных одноименных многоугольников равно отношению их радиусов или их апофем.

249. Теперь мы можем найти зависимость между стороною какого-либо правильного многоугольника, вписанного в круг (ее обозначим an), стороною одноименно описанного около того же круга правильного многоугольника (ее обозначим bn) и радиусом R этого круга. Пусть ABCD… есть правильный многоугольник, вписанный в круг O (чер. 243); следовательно, в точках A, B, C, D и т. д. Круг разделен на равные части. Поэтому, построив в этих точках касательные к кругу, получим правильный описанный многоугольник MNP с тем же числом сторон. Построим апофему OK вписанного многоугольника, а апофемою описанного служит радиус нашего круга (например, OB). Тогда к нашим двум многоугольникам применим предыдущий п., и мы имеем:

AB/MN = OK/OB (1)

Вычисление

250. В п. 243 мы указали возможность находить формулы для a8, a16 и т. д. для a12, a24 и т. д. Здесь дадим общую формулу, выражающую сторону правильного многоугольника, описанного в круг, с двойным числом сторон чрез сторону данного и через радиус круга. Пусть сторона данного вписанного правильного многоугольника есть AB (чер. 244), обозначим ее an. Построим OKC ⊥ AB; тогда OK есть апофема нашего правильного многоугольника и она равна, как найдено в предыдущем п.,

Вычисление

251. Упражнения.

  1. Найти формулы для a8 и затем для b8.
  2. Найти формулу для a20.
  3. Радиус круга = R. Найти площадь описанного около него 12-угольника.
  4. Найти формулы для a16 и b16.

Добавить комментарий