Как найти отношение площадей треугольников подобных треугольников

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Подобные треугольники
  5. Отношение площадей подобных треугольников

Теорема

Доказательство

Дано: АВСА1В1С1, – коэффициент подобия, и – площади АВС и А1В1С1.

Доказать: .

Доказательство:

1. АВСА1В1С1, следовательно, А =А1, значит, (т.к. площади треугольников, имеющих по равному углу, относятся как произведения сторон, заключающих равные углы).  При этом, из подобия треугольников АВС и А1В1С1 следует то, что , значит, и , тогда, .

Теорема доказана.

Советуем посмотреть:

Пропорциональные отрезки

Определение подобных треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Средняя линия треугольника

Пропорциональные отрезки в прямоугольном треугольнике

Практические приложения подобия треугольников

О подобии произвольных фигур

Синус, косинус и тангенс острого угла прямоугольного треугольника

Значение синуса, косинуса и тангенса для углов 30, 45 и 60

Подобные треугольники


Правило встречается в следующих упражнениях:

7 класс

Задание 543,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 544,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 545,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 546,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 622,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 627,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1077,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1143,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1209*,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1308,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Подобные треугольники

3 октября 2022

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.

План такой:

  1. Основное определение
  2. Лемма о подобных треугольниках
  3. Свойства подобных треугольников
  4. Разбор задач

1. Основное определение

Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Рассмотрим треугольники $ABC$ и $MNK$:

Подобные треугольники коэффициент подобия

У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:

[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]

Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:

[Delta ABCsim Delta MNK]

Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.

Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».

Дальше идёт очень важное замечание.

1.1. Обозначение подобных треугольников

В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.

Но в подобных треугольниках есть негласное правило:

При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.

Вернёмся к нашим треугольникам $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.

Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.

Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:

[Delta ABCsim Delta MNK]

Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.

Приравниваем полученные три дроби:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.

В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.

2. Лемма о подобных треугольниках

Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.

Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.

Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:

Параллельная прямая отсекает подобный треугольник

Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.

Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.

Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.

Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AC}{MC}=frac{BC}{NC}]

Это равенство — второе в искомом:

[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]

Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:

Параллельные прямые дополнительное построение

Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.

Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AB}{AK}=frac{BC}{NC}]

Учитывая, что $AK=MN$, получаем

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников

[Delta ABCsim Delta MNC]

Что и требовалось доказать.

Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.

Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».

Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:

Средняя линия отсекает подобный треугольник

Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда

[Delta ABCsim Delta MNC]

3. Свойства подобных треугольников

Два важнейших свойства: связь периметров и связь площадей.

3.1. Периметры подобных треугольников

Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.

Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]

Периметр треугольника $MNK$:

[{{P}_{Delta MNK}}=MN+NK+MK]

Периметр треугольника $ABC$:

[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]

Итого получаем равенство

[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]

Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:

[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]

В любом случае, мы получили отношение, которое и требовалось доказать.

3.2. Площади подобных треугольников

Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:

[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]

Кроме того, стороны подобных треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

В частности, из этого равенства следует, что

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]

Площадь треугольника $MNK$:

[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]

Площадь треугольника $ABC$:

[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]

Получаем равенство

[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]

Перепишем в виде отношения:

[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]

Что и требовалось доказать.

Для доказательства теоремы мы использовали формулу площади треугольника:

[{{S}_{Delta }}=frac{1}{2}absin alpha ]

Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.

Впрочем, ничто не мешает взять уже известную формулу:

[{{S}_{Delta }}=frac{1}{2}ah]

Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)

3.3. Элементы подобных треугольников

Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.

Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:

Подобные треугольники и высоты

В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как

[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]

Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.

4. Задачи на подобие

Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)

Задача 1. Готовые треугольники

Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.

Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:

Подобные треугольники — задание 1

Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Подставим в это равенство всё, что нам известно:

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]

Опустим последнюю дробь и получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]

Найдём сторону $NK$:

[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]

Аналогично, убирая среднюю дробь, получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]

Найдём сторону $MK$:

[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]

Ответ: $NK=10,5$, $MK=15$.

Задача 2. Прямая, параллельная стороне

Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:

а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.

б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.

Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.

Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:

Прямая параллельна стороне треугольника

Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:

[Delta ABCsim Delta DBE]

Из подобия треугольников $ABC$ и $DBE$ следует равенство

[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]

Решаем пункт а). Подставляем в это равенство всё, что нам известно:

[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]

Вычёркиваем среднюю дробь и получаем пропорцию

[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]

Отсюда легко найти $DB$ (или, что то же самое, $BD$):

[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]

Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:

[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]

Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]

Осталось найти $AD$:

[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]

Ответ: а) $BD=12$; б) $AD=16$.

Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.

Напротив: нужно разложить их на множители и сократить!

Взгляните:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]

Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.

Задача 3. Доказательство подобия

Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.

Решение. Сделаем первоначальный рисунок по условию задачи:

Квадрат содержит два подобных треугольника

Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.

Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.

Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:

[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]

Дополнительное построение: диагональ квадрата $color{red}{AC}$:

Квадрат — дополнительное построение диагонали

Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство

[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]

Но тогда выполняется следующее равенство:

[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]

А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:

[Delta MDKsim Delta BCD]

Доказательство завершено.

Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.

Задача 4. Вписанный ромб

В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.

Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:

Ромб вписан в треугольник

Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:

[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]

Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:

[Delta ABCsim Delta AKE]

В подобных треугольниках подобные стороны пропорциональны, поэтому

[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]

Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]

Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]

Применяем основное свойство пропорции и уравнение:

[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]

Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.

Ответ: $BD=6$.

Задача 5. Свойства биссектрисы

В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.

Решение. Из условия задачи можно сделать вот такой рисунок:

Биссектриса в треугольнике

Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:

[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]

Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.

Дополнительное построение: прямая $DMparallel AB$:

Дополнительное построение параллельная прямая

Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что

[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]

Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда

[BC=BM+MC=color{blue}{5y}=color{red}{12}]

Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:

[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]

Далее заметим, что если угол $ABC$ равен 120°, то

[angle ABD=angle CBD={60}^circ ]

С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.

Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому

[angle BDM=angle ABD={60}^circ ]

Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:

[BD=BM=color{red}{4,8}]

Мы нашли длину отрезка $BD$. Задача решена.

Ответ: $BD=4,8$.

Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)

Смотрите также:

  1. Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
  2. Теорема менелая
  3. Комбинаторика в задаче B6: легкий тест
  4. Введение системы координат
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Нестандартная задача B5 на площадь круга

Тема: Подобные треугольники

Урок: Отношение площадей подобных треугольников

1. Понятие подобия треугольников

Начнем с того, что введем определение подобных треугольников.

Определение. Два треугольника называются подобными, еслиих углы попарно равны, а стороны, лежащие напротив соответственных углов, пропорциональны (см. Рис. 1).

. Отношение длин сторон треугольников называют коэффициентом подобия ().

Рис. 1

Замечание. Пропорциональные стороны подобных треугольников называют еще сходственными сторонами.

Важно понимать, что в подобных треугольниках пропорциональны не только стороны, но и другие соответственные линейные элементы: высоты, медианы, биссектрисы, проведенные к соответственным сторонам, периметры и т.п. Т.е. все эти величины относятся, как коэффициент подобия. Вопрос заключается в том, верно ли аналогичное утверждение и для площадей треугольников. Для того чтобы ответить на этот вопрос, сформулируем теорему.

Теорема 1. Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.

Доказательство. Изобразим подобные треугольники  на Рис. 2.

Рис. 2

2. Теорема об отношении площадей подобных треугольников

Из подобия треугольников по определению следует, что .Воспользуемся следующей теоремой, которую мы сформулировали в предыдущей теме «Площадь»: если у двух треугольников равны углы (), то их площади относятся, как произведение сторон, заключающих данные углы. Запишем этот факт в виде формулы:

, что и требовалось доказать.

Доказано.

Замечание. Возможно доказательство этой теоремы не единственным указанным способом, а и с использованием различных формул для вычисления площади треугольника, но мы их указывать не будем.

3. Задачи на применение теоремы об отношении площадей подобных треугольников

Рассмотрим ряд примеров, в которых применяется рассмотренная теорема.

Пример 1. Если два треугольника подобны с коэффициентом подобия , то чему равно отношение площадей этих треугольников.

Решение. Задача устная и не требует выполнения чертежа. Воспользуемся изученной теоремой: .

Ответ. 2.

Пример 2. Треугольники  подобны. Площадь  равна , площадь  равна . Сторона  равна 18 см, найти сходственную ей сторону .

Решение. Воспользуемся для удобства готовым Рис. 2. Поскольку отношение площадей треугольников: , то по теореме .

Тогда из подобия треугольников: .

Ответ. 9 см.

Пример 3. Дан треугольник , площадь которого равна  и в нем проведена средняя линия  параллельно . Необходимо найти площадь треугольника, который отсекает средняя линия от треугольника .

Решение. Изобразим Рис. 3.

Рис. 3

Из рисунка видно, что в условии требуется найти площадь треугольника . Треугольники  и  подобны, т.к. равны их углы ( общий, ,  как соответственные углы при параллельных прямых и секущей) и сходственные стороны пропорциональны с коэффициентом пропорциональности  ( и  – середины соответствующих сторон, а  по теореме о средней линии).

Тогда по теореме об отношении площадей подобных треугольников .

Ответ. .

На сегодняшнем уроке была рассмотрена теорема об отношении площадей подобных треугольников и приведен ряд примеров на ее применение.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Antonmart.narod.ru (Источник).
  2. Oldskola1.narod.ru (Источник).

Домашнее задание

  1. Вычислите коэффициент подобия треугольников, площади которых равны: а) , б) , в) .
  2. В треугольнике  через точку , лежащую на стороне , проведены прямые, параллельные сторонам  и . Площадь образованного при этом параллелограмма составляет  площади треугольника . Найдите отношение .
  3. В треугольнике  через основание  высоты  проведена прямая параллельно стороне до пересечения со стороной  в точке. Найдите отношение , если площадь треугольника  составляет  площади треугольника .
  4. На боковых сторонах  и  трапеции  взяты точки  и  так, что отрезок  параллелен основаниям и делит площадь трапеции пополам. Найдите длину , если  и .

План урока:

Пропорциональные отрезки

Определение подобных треугольников

Первый признак подобия треугольников

Второй и третий признаки подобия треугольников

Отношение площадей подобных треугольников

Пропорциональные отрезки

Если известна длина двух отрезков, то можно узнать, во сколько раз один из них больше другого. Например, если некоторый отрезок NM = 24 см, а другой отрезок KP = 4 см, то можно утверждать, что NM в 6 раз длиннее, так как

1 podobnye treugolniki

Величину NM/KP именуют отношением отрезков NM и KP. Надо заметить, что в ряде случаев отношение отрезков можно найти, не зная их длины. Пусть в ∆МКР проведена медиана МН. Очевидно, что отрезок КР будет вдвое длиннее КН, ведь Н – середина КР:

2 podobnye treugolniki

Другой пример – это отношение между диагональю квадрата и его стороной.

3 podobnye treugolniki

Используя теорему Пифагора, несложно показать, что в любом квадрате АВСD

4 podobnye treugolniki

Наконец, в прямоугольном треуг-ке, один из углов которого равен 30°, гипотенуза всегда вдвое длиннее меньшего из катетов:

5 podobnye treugolniki

Если отношение отрезка AB к А1Вравно отношению отрезка СD к С1D1, то говорят, что отрезки AB и CD пропорциональны отрезкам А1В1 и С1D1. Например, пусть

6 podobnye treugolniki

Получается, AВ и CD пропорциональны А1В1 и С1D1. Важно отметить, что пропорциональны могут быть также сразу три и более отрезка.

Определение подобных треугольников

В жизни нередко можно наблюдать объекты, у которых совпадает форма, но отличаются размеры. В качестве примера можно привести мяч для настольного тенниса и баскетбольный мяч. Оба этих предмета имеют форму шара, на баскетбольный мяч значительно больше. Другой пример – настоящий танк и игрушка, изображающая его. Часто подобны друг другу матрешки, которые вкладываются друг в друга – все они выглядят одинаково, а отличаются только общим размером. Наконец, подобны и знаменитые египетские пирамиды:

7 podobnye treugolniki

Такие объекты в геометрии именуют подобными. Подобны друг другу любые две окружности и любые два квадрата. Но особо важную роль в геометрии играют подобные треугольники. Рассмотрим это понятие подробнее.

Пусть есть два треуг-ка, ∆AВС и ∆А1В1С1, у которых соответственно равны углы:

8 podobnye treugolniki

Стороны, которые лежат против одинаковых углов в таких треуг-ках, именуют сходственными. Ими являются стороны AВ и А1В1, ВС и В1С1, АС и А1С1.

9 podobnye treugolniki

Можно дать такое определение подобных треугольников:

10 podobnye treugolniki

Таким образом, подобие треугольников (оно обозначается символом ∾) обозначает выполнение сразу нескольких равенств:

11 podobnye treugolniki

Отношение между сходственными сторонами подобных треуг-ков именуется коэффициентом подобия и обозначается буквой k:

12 podobnye treugolniki

Грубо говоря, подобие треуг-ков означает, что их форма одинакова, но один из них в несколько раз больше или меньше другого. Чтобы получить, из одного треуг-ка другой, равный ему по размерам, его надо просто «масштабировать». Например, на этом рисунке все стороны исходного треуг-ка просто увеличили в три раза:

13 podobnye treugolniki

Это значит, что коэффициент подобия в данном случае равен 3. Однако важно понимать, что в различных геометрических задачах подобные треуг-ки также могут быть повернуты друг относительно друга:

14 podobnye treugolniki

Задание. ∆AВС подобен DEF. Известно, что

15 podobnye treugolniki

Найдите длину ЕF.

16 podobnye treugolniki

Решение. Как только в задаче появляются подобные треуг-ки, стоит сразу же определить их коэффициент подобия, а для этого надо разобраться, какие стороны будут сходственными. Так как∠А = ∠Е, то лежащие против них стороны DF и ВС– сходственные. Их отношение и будет равно коэффициенту подобия:

17 podobnye treugolniki

Получили, что стороны ∆DEF вдвое длиннее сходственных им сторон ∆AВС. У подобных треуг-ков углы одинаковы, поэтому∠С = ∠D. Отсюда следует, что стороны AВ и ЕF сходственны, а потому ЕF вдвое больше:

18 podobnye treugolniki

Задание. ∆AВС иDEF – подобные. Известно, что

19 podobnye treugolniki

Найдите длину ЕF.

20 podobnye treugolniki

Решение. По сравнению с предыдущей задачей изменилось только одно условие, теперь∠А = ∠D. Однако это меняет сходственные стороны. Из подобия треуг-ков следует, что∠С = ∠Е. Тогда сходственными оказываются уже стороны AВ и DF. Найдем коэффициент подобия треугольников:

21 podobnye treugolniki

Сходственными являются также стороны ВС и ЕF (ведь∠А = ∠D), поэтому ЕF в 1,25 раза длиннее:

22 podobnye treugolniki

Эти две задачи показывают, как важно правильно определять сходственные стороны подобных треугольников.

Естественно, что все равные друг другу треуг-ки являются одновременно и подобными, причем их коэффициент подобия равен единице.

Задание. Докажите, что у подобных треуг-ков отношение их периметров равно коэффициенту подобия.

Решение. Пусть подобны ∆ AВС и ∆А1В1С1, причем

23 podobnye treugolniki

Периметр ∆AВС можно вычислить так:

24 podobnye treugolniki

Мы доказали утверждение, сформулированное в условии.

Первый признак подобия треугольников

Оказывается, для того, чтобы доказать подобие треуг-ков, не требуется сравнивать все их углы и находить соотношение всех сторон. Существуют три простых признака подобия треугольников.

Однако прежде, чем сформулировать их, нам придется доказать отдельное утверждение, которое известно как обобщенная теорема Фалеса («обычную», не обобщенную теорему мы уже изучали ранее).

25 podobnye treugolniki

Если прямые ВВ1 и СС1 (показаны красным цветом)параллельны, то отрезки AВ и АС пропорциональны отрезкам AВ1 и АС1, то есть справедливо соотношение:

26 podobnye treugolniki

Доказывать будем от противного. Пусть отрезки AВ и АС непропорциональны AВ1 и АС1. Тогда отметим наАС такую точку Н, которая разобьет АС на пропорциональные отрезки, то есть

27 podobnye treugolniki

Естественно, эта точка не будет совпадать с С1. Рассмотрим случай, когда она окажется правее, чем С1:

28 podobnye treugolniki

Теперь поступим следующим образом. Проведем через стороны угла большое число прямых, параллельных ВС, которые будут разбивать АС на одинаковые отрезки. По теореме Фалеса эти же прямые отсекут одинаковые отрезки и на AВ. При этом мы проведем настолько много параллельных прямых, что хотя бы одна из них пересечет отрезок С1Н:

29 podobnye treugolniki

Пусть эта прямая пересечет отрезок С1Н в некоторой точке С2, а сторону AВ в точке В2. Ясно, что отрезки AВ и АВ2 пропорциональны отрезкам АС и АС2, так как они состоят из одинакового количества одинаковых отрезков. Например, на построенном рисунке отношение AB2 к AB равно 5/8, так как AB2 состоит из 5 отрезков, отсеченных зелеными параллельными прямыми, а AB состоит из 8 таких отрезков. Аналогично и отношение АС2 к АС также равно 5 к 8. Таким образом, можно записать:

30 podobnye treugolniki

Здесь мы рассмотрели случай, когда точка Н лежит правее С1, то есть АН >C1. Случай, когда АН <АС1, рассматривается аналогично, и также получается противоречие. Эти противоречия означают, что на самом деле точка Н должна совпадать с С1, то есть справедливо равенство

31 podobnye treugolniki

ч.т. д.

Теперь, доказав обобщенную теорему Фалеса, мы можем перейти к первому признаку подобия треугольников.

32 podobnye treugolniki

Действительно, пусть есть ∆AВС и ∆А1В1С1, у которых

33 podobnye treugolniki

Так как сумма углов у любого треуг-ка постоянна и составляет 180°, то должны быть одинаковы и третьи углы:

34 podobnye treugolniki

При таком наложении прямые ВС и В1С1 окажутся параллельными, так как соответственные углы ∠В1С1А и ∠ВСА одинаковы. Но параллельные прямые должны отсекать на сторонах угла пропорциональные отрезки, то есть

35 podobnye treugolniki

У ∆AВС и ∆А1В1С1 углы одинаковы, а лежащие напротив них стороны пропорциональны, следовательно, это подобные треуг-ки.

Задание. Прямая, параллельная стороне AВ ∆AВС, пересекает стороны ВС и АС в точках Е и Р. Известно, что ЕС = 2, ВЕ = 3, ЕР = 3,2. Какова длина AВ?

36 podobnye treugolniki

Решение. В данной задаче есть только два треуг-ка, ∆AВС и ∆РЕС. Докажем их подобие. У них есть общий∠С, а ∠СЕР = ∠СВА, ведь это односторонние углы при параллельных прямых ЕР и AВ. Отсюда следует, что ∆AВС∾∆РЕС. Значит, ∠А = ∠СРЕ.

Далее надо найти коэффициент подобия. Стороны СЕ и ВС лежат против равных углов∠А и ∠СРЕ, поэтому они сходственные.

37 podobnye treugolniki

Задание. По данным рисунка найдите длину КЕ:

38 podobnye treugolniki

Решение. На рисунке показано, что ∠ВСА = ∠СКЕ, а∠А = ∠Е = 90°. То есть у ∆AВС и ∆СКЕ есть два одинаковых угла, и, следовательно, они подобны. Сходственными будут являться стороны AВ и ЕС, с их помощью найдем коэффициент подобия:

39 podobnye treugolniki

Задание. Основания трапеции имеют длины 5 и 8 см. Длины ее боковых сторон составляют 3,6 и 3,9 см. Продолжения боковых сторон пересекаются в точке М. Определите расстояние от М до вершин меньшего основания.

Решение. Для начала выполним построение:

40 podobnye treugolniki

Отрезки ВС и АD параллельны, так как они являются основаниями трапеции. Отсюда получаем равенство соответственных углов:

41 podobnye treugolniki

Теперь посмотрим на ∆АМD и ∆ВМС. МЫ только что выяснили, что у них есть одинаковые углы (∠МВС и ∠МАD), а ∠М является общим для них. Тогда получаем, что эти треуг-ки подобны. Стороны ВС и AD будут сходственными, так как лежат против одного и того же ∠М, поэтому по их длине можно найти коэффициент подобия:

42 podobnye treugolniki

Для нахождения МВ обозначим его длину как х. Тогда отрезок АМ будет иметь длину х + 3,9. Но из подобия треуг-ков следует такое соотношение:

43 podobnye treugolniki

Подставив сюда значение k и выраженные через х длины АМ и МВ, получим уравнение:

44 podobnye treugolniki

МС можно найти таким же путем, обозначив его длину как у. Тогда отрезок МD будет равен у + 3,6, и можно составить уравнение:

45 podobnye treugolniki

Второй и третий признаки подобия треугольников

Существует ещё два признака подобия треуг-ков, которые в решении задач используются значительно реже. Они выводятся непосредственно из первого признака.

46 podobnye treugolniki

Докажем второй признак подобия. Пусть есть ∆AВС и ∆А1В1С1, для которых выполняются соотношения:

47 podobnye treugolniki

Необходимо доказать, что они подобны. Для этого построим ещё один ∆AВС2, который будет иметь общую сторону с ∆AВС, причем точку С2 мы выберем так, что будут выполняться условия:

48 podobnye treugolniki

∆А1В1С1 и ∆AВС2 будут подобными, ведь у них одинаковы два угла. Значит, будет выполняться соотношение

49 podobnye treugolniki

Но тогда ∆AВС и ∆AВС2 будут равными, ведь у них одинаковы две стороны и угол, образованный этими сторонами:

50 podobnye treugolniki

В итоге у ∆AВС и ∆А1В1С1 оказываются два одинаковых угла, то есть они подобны друг другу

ч. т. д.

Задание. На стороне угла отмечены точки A и В так, что AВ = 5 см и АС = 16 см. На другой стороне этого же угла отмечены точки С и D так, что AD = 8 cм и AF = 10 см. Подобны ли ∆АСD и AFB? 

Решение.

51 podobnye treugolniki

У рассматриваемых треуг-ков есть общий угол ∠А. Найдем отношение сторон, прилегающих к этому углу.

52 podobnye treugolniki

Отношения одинаковы, значит, треуг-ки подобны.

Примечание. В данном случае важно понимать, какие стороны надо делить друг на друга. У ∆АСD известны стороны АС и АD, равные 16 и 8 см. У ∆AFB известны AF и AB, которые составляют 10 и 5 см. Делить надо большую сторону одного треуг-ка на большую сторону другого треуг-ка, то есть 16 на 10. Потом же делим меньшие стороны, то есть 8 на 5.Если получили одно и тоже число, то это значит, что рассмотренные треуг-ки подобны, причем полученное число как раз и является коэффициентом подобия.

Рассмотрим третий признак подобия треуг-ков.

53 podobnye treugolniki

Докажем его. Пусть у ∆AВС и ∆А1В1С1 пропорциональны их стороны:

54 podobnye treugolniki

55 podobnye treugolniki

Можно заметить, что ∆AВС2 и ∆А1В1С1 подобны, ведь у них совпадают два угла. Тогда верны соотношения:

56 podobnye treugolniki

Самая левая дробь в обоих случаях одинакова, а в других отличны лишь числители. Значит, эти числители одинаковы:

57 podobnye treugolniki

Но тогда у ∆AВС и ∆AВСсовпадают все стороны, то есть эти треуг-ки равные. Следовательно. Так как ∆AВС2 подобен ∆А1В1С1, то и равный ему ∆AВС также подобен ∆А1В1С1

ч. т. д.

Задание. Подобны ли ∆AВС и DEF, если их стороны имеют длины:

58 podobnye treugolniki

Решение.

Для проверки достаточно просто поделить длины сторон друг на друга. При этом большую сторону одного треуг-ка будем делить на большую сторону другого, а меньшую – на меньшую. Если в результате отношение всех трех сторон будет одинаково, то можно утверждать, что треуг-ки подобны:

59 podobnye treugolniki

Все три раза мы получали число 2, именно оно и является коэффициентом подобия треуг-ков.

Отношение площадей подобных треугольников

Если треуг-ки подобны, то их стороны отличаются в k раз, где k– коэффициент подобия. А как соотносятся друг с другом длины их высот, медиан и других характерных отрезков. Несложно догадаться, что они также отличаются в k раз.

Докажем это на примере высот. Пусть есть подобные ∆AВС и ∆А1В1С1, причем их коэффициент подобия равен k:

60 podobnye treugolniki

Проведем в них высоты СН и С1Н1:

61 podobnye treugolniki

Теперь сравним ∆АСН и ∆А1С1Н1. Из подобия ∆AВС и ∆А1В1С1 следует, что

62 podobnye treugolniki

Аналогично можно доказать, что в k раз будут отличаться длины медиан и биссектрис.

63 podobnye treugolniki

А каким будет отношение площадей подобных треугольников?Оказывается, что они отличаются уже в kраз. Докажем это.

Пусть ∆AВС и ∆А1В1С1 подобны с коэффициентом подобия k. Снова проведем в них высоты СН и СН1:

64 podobnye treugolniki

Запишем очевидные равенства:

65 podobnye treugolniki

В итоге получили, что площади подобных треугольников отличаются в kраз.

66 podobnye treugolniki

Задание. Известно, у ∆AВС площадь составляет 10, а отрезок AВ имеет длину 5. DEF подобен ∆AВС, причем сторона DE, сходственная AВ, равна 15. Вычислите площадь DEF.

Решение. По условию задачи легко найти коэффициент подобия ∆AВС и ∆DEF, надо лишь поделить одну сходственную сторону на другую:

67 podobnye treugolniki

Задание. Площади двух подобных треуг-ков составляют 75 м2 и 300 м2. Одна из сторон второго треуг-ка равна 9 м. Вычислите сходственную ей сторону первого треуг-ка.

Решение. Зная площади треуг-ков, легко найдем коэффициент их подобия:

68 podobnye treugolniki

Если коэффициент равен 2, то стороны первого многоугольника вдвое меньше сторон второго, поэтому интересующая нас сторона равна

9:2 = 4,5 м

Ответ: 4,5 м.

Если стороны одного треугольника равны 8 см, 10 см и 6 см, а стороны другого треугольника равны 12 см, 15 см и 9 см, найдите отношение площадей этих двух треугольников.

Подобные треугольники

Подобные треугольники — это треугольники, углы которых равны между собой, а одна сторона пропорциональна другой.

8

Коэффициентом подобия является k, который равен отношению сходных сторон подобных треугольников.

Стороны (или сопряженные стороны) подобных треугольников являются противоположными сторонами равных углов.

Коэффициент треугольника

Признаки подобия треугольников

I Принцип подобия треугольников

Если два угла треугольника равны двум углам другого треугольника, то эти треугольники одинаковы.

3ed

II Принцип подобия треугольников

Если две стороны треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные в этих сторонах, равны, то эти треугольники одинаковы.

12

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники одинаковы.

4e

Свойства подобных треугольников

r

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

1. линия, параллельная одной стороне треугольника, пересекает подобный ей треугольник.

Подобные треугольники

2. треугольники, образованные отрезком диагонали и основанием трапеции, подобны. Степень сходства

 Подобие в Трапеции

3. в прямоугольном треугольнике высота, проведенная из вершины прямого угла, делит треугольник на два треугольника, подобных исходному треугольнику.

Аналогично прямоугольному треугольнику

Здесь вы найдете подборку задач, похожих на «Подобные треугольники».

Работа. Прямая, параллельная AB в BCABC, пересекает BC и AC в точках E и P. Найдем, что EC = 2, BE = 3 и EP = 3,2. Какова длина отрезка AB?

Подобие

Идентичные треугольники — это треугольники, у которых длины всех сторон пропорциональны друг другу, а углы равны. Отношение соответствующих сторон подобных треугольников всегда равно одному и тому же числу, которое называется коэффициентом подобия.

Рисунок 1. Подобные треугольники

Коэффициенты подобия часто используются для решения задач на подобие треугольников, так как коэффициенты можно найти из оснований после того, как неизвестные стороны представлены известными сторонами. Сходство представлено буквой k.

Не обязательно концентрироваться на треугольниках. Все фигуры в геометрии имеют сходство, хотя символ сходства появляется только на них. То же самое справедливо и для эквивалентности формы. Все фигуры в геометрии эквивалентны, так как эквивалентность является частным случаем сходства с коэффициентом k=1.

Рисунок 2.Похожие элементы

Признаки подобия

В настоящее время для любого треугольника существует три варианта подобия.

  • По двум углам. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
  • По сторонам и углу между ними. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то такие треугольники подобны.
  • По трем сторонам. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Чтобы доказать пропорциональность сторон, необходимо вычислить отношение длин каждой стороны. Тот же результат применим и к аналоговой стороне.

Аналоговые треугольники также имеют аналоговые треугольники и все характерные части, такие как высоты, медианы и биссектрисы. Коэффициенты сходства одинаковы для всех сегментов треугольника. Этот факт необходимо помнить. Это важно для решения многих задач и извлечения формул, поскольку существуют площади подобных треугольников.

Площади подобных треугольников

Рассмотрим два одинаковых треугольника ABC и $A_1B_1C_1$. Площадь треугольника равна половине произведения его основания и высоты.

$ S =.<1over<2>> h * AB $, тогда площадь второго треугольника:.

Деление одной поверхности на вторую поверхность дает следующее соотношение.

$> = over> $ Вспоминая, что отношение сторон подобных треугольников равно коэффициенту подобия, получаем.

$> = k * k = k ^ 2 $- т.е. области подобных треугольников взаимосвязаны в соотношении, равном коэффициенту подобия квадратов.

Проведите перпендикуляр к вертикальному прямоугольному треугольнику (рис. 166, а). Сделайте из него квадрат со сторонами квадрата. Итак: ^

Работа по теме урока

(Учитель делит класс на группы для решения творческой работы. По завершении задаются и обсуждаются решения).

Работа. Треугольники ABC и A1B1C1 подобны коэффициенту K. Найдите причину в их районе.

Заключение Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Закрепление изученного материала

  1. Работа в рабочих тетрадях. Решить задачу № 54. (Учащиеся самостоятельно решают задачу, по окончании работы один ученик вслух читает задачу и ее решение. Учащиеся его слушают, а затем исправляют ошибки.)
  2. Решить задачу № 545 (работа в парах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Вопрос нет. 545

  • Чему равно отношение площадей подобных треугольников, если их сходственные стороны относятся как 6 : 5?
  • Верно ли составлено уравнение исходя из условий задачи?
  1. Решить задачи № 547, 548 (работа в группах). (После завершения работы заслушиваются и обсуждаются варианты решений.)

Самостоятельная работа

I уровень сложности

II уровень сложности

III уровень сложности

Научитесь правильно писать задачи, делайте записи короткими и не тратьте время на то, чтобы написать все идеи и названия теорий.

Самый главный «секрет» подобия треугольников

Плита научила вас находить подобные треугольники, но как теперь использовать те, которые вы нашли?

А что бы вы хотели с ним сделать? Что же тогда …

Все элементы одного треугольника ровно в ዄ (⌘ displaystyle 2 ) (или во столько раз, во сколько получится) больше элементов других треугольников.

Не только стороны, но и высоты, дихотомии, интерстиции, зарегистрированные, граничные лучи цикла и т.д.

Есть важное исключение: площадь.

Открыть ответы…

Чтобы открыть все выпуски всех учебников, охваченных синим баннером (например, этот), зарегистрируйтесь следующим образом.

Чтобы управлять им, просто разделите длину сторон между ними. Разделите наибольшую сторону одного треугольника на другую и наименьшую сторону на наименьшую. Если результат одинаков для всех трех сторон, то треугольники подобны.

Второй и третий признаки подобия треугольников

Существуют еще два подобия треугольника, которые реже используются при решении задач. Идите прямо от первого участка.

46 Подъемные Треугольники

Докажите второе сходство. Пусть DABC и DA1В1Больше.1, мы удовлетворяем соотношению:.

47 Удобные Треугольники

Докажите, что они похожи. Для этого мы построим еще один DABC2которая имеет общие аспекты с DABC.2 Выберите точку C так, чтобы условие было выполнено.

48 Удобные Треугольники

DM1В1Больше.1 Затем слегка постучите.2 Поскольку два угла одинаковы, они подобны. Поэтому необходимо применить следующие уравнения

49 Удобные Треугольники

Но потом ДАБК и ДАБК2 равны, так как углы, образованные двумя сторонами и двумя сторонами, одинаковы.

50 Удобные Треугольники

В результате, DB и DA1В1Больше.1 имеют два одинаковых угла, т.е. похожи друг на друга

Выпуск. На стороне угла отмечены точки a и b, так что ab = 5 см и ag = 16 см. На другой стороне того же угла отмечены точки c и d, такие, что AD = 8 см и AF = 10 см. Похожи ли ΔACD и D AFB?

51 Подъемные Треугольники

Рассмотренные треугольники имеют общий угол.

52 Подъемные Треугольники

Отношения одинаковы, поэтому треугольники симметричны.

ПРИМЕЧАНИЯ. В этом случае важно понять, какую сторону нужно разделить. У DGD стороны AC и AD равны 16 и 8 см. У DAFB стороны AF и AB равны 10 и 5 см. Наибольшая сторона одного треугольника делится на наибольшую сторону другого треугольника, т.е. 16 x 10, или 8 на 8. Сходство и взятое число — это просто коэффициент сходства.

Рассмотрим третье свойство подобия треугольников.

53 Удобные Треугольники

Давайте докажем это. Пусть DABC и DA1В1Больше.1 Это соизмеримо с их сторонами:.

54 Удобные Треугольники

55 Удобные Треугольники

Мы видим, что DABC2 И да1В1Больше.1 Они похожи, потому что два угла одинаковы. Тогда пропорции верны:.

Отношение площадей подобных треугольников

Если треугольники подобны, то их стороны зависят от коэффициента K. Здесь K — коэффициент. И как соотносятся между собой их высоты, промежуточные и другие характерные длины? Легко предположить, что они также зависят от коэффициента K.

Докажем это на примере высоты. Предположим, что у нас есть аналогичные DABC и DA1В1Больше.1и их коэффициент сходства равен k.

60 Удобные Треугольники

ch и c, которые построены на этих высотах1н1:.

61 Подъемные Треугольники

62 Подъемные Треугольники

Аналогично, мы можем доказать, что длины и расщепления промежуточных продуктов отличаются по времени k.

63 Удобные Треугольники

В чем причина одинаковой площади треугольника? Получается, что дважды по k. Докажите это.

Пусть DABC и DA1В1Больше.1 аналогично коэффициенту сходства k. Снова постройте высоты Ch и Ch1:.

64 Удобные Треугольники

Запишите очевидное уравнение: .

65 Подъемные Треугольники

В результате площади одного и того же треугольника могут отличаться на коэффициент k 2.

66 Подъемные Треугольники

Задание. Площадь DABC равна 10, и мы знаем, что отрезок AB равен 5. Сторона DE, которая подобна AB, равна 15. чтобы вычислить площадь DEF, DEF DB подобна DAB.

Решение. Согласно описанию проблемы, мы находим сходство между DABC и DDEF следующим образом

67 Подъемные Треугольники

Задание. Два подобных треугольника имеют площади 75 м 2 и 300 м 2. Одна сторона второго треугольника равна 9 м. Вычислите одинаковую сторону первого треугольника.

Решение. Если известны площади треугольников, то коэффициент подобия легко найти.

68 Подъемные Треугольники

Если коэффициент подобия равен 2, то сторона первого треугольника меньше стороны второго.

Коэффициенты подобия часто используются для решения задач на подобие треугольников, так как коэффициенты можно найти из оснований после того, как неизвестные стороны представлены известными сторонами. Сходство представлено буквой k.

Как найти отношение площадей двух треугольников, если стороны одного равны 5 см, 8 см, 12 см, а стороны другого 15 см, 24 см, 36 см?

Как найти отношение двух треугольников, если одна сторона равна 5 см, 8 см или 12 см, а другая сторона равна 15 см, 24 см или 36 см.

Треугольники, приведенные в задаче, подобны. Это объясняется тем, что их стороны соизмеримы.

Два треугольника подобны, если три стороны одного треугольника подобны другой стороне.

Площадь подобных треугольников равна квадрату их подобия.

Площадь этих треугольников объясняется следующими причинами.

Найдите отношение двух треугольников, если одна сторона равна 5 см, 8 см или 12 см, а другая сторона равна 15 см, 24 см или 36 см.

Если стороны одного треугольника равны 8 см, 10 см и 6 см, а стороны другого треугольника равны 12 см, 15 см и 9 см, найдите отношение площадей этих двух треугольников.

Если стороны одного треугольника равны 12 см и 21 см 27 см, а другого треугольника — 4 см 7 см и 9 см, найдите причину возникновения двух треугольников.

На этой странице вы найдете ответ на вопрос, как найти отношение двух треугольников, если одна сторона равна 5 см, 8 см и 12 см, а другая 15 см, 24 см, 36 см и 36 см. Он относится к категории геометрии. Сложность вопроса соответствует базовым знаниям учащихся в классе5-9.Для получения дополнительной информации воспользуйтесь поисковой системой, чтобы найти другие вопросы, связанные с этим. Кроме того, нажмите на кнопку в верхней части страницы и задайте новый вопрос, используя ключевые слова, соответствующие критериям. Поговорите с посетителями вашей страницы и обсудите эту тему. Возможно, их ответы помогут вам найти информацию, которую вы ищете.

ДОКАЗАТЕЛЬСТВО: Предположим, что отрезки AC и BD пересекаются в точке o треугольника. Первое начало согласно треугольнику aob = sod (угол aob, угол SOD перпендикулярны, bo = od, ao = os, где o — середина ac и ua) треугольник abc = треугольник SOD (ac) является общим …

AC = 16 + 2 = 18 (см) BC = 18-8 = 10 (см) P = 16 + 18 + 10 = 44 (см) Ответ: 44 см.

Да, потому что это проекция и поэтому может иметь отображение.

AC = AD + DC = 6 + 8 = 14.Построим график CH, который является высотой ABC. Это также высота треугольника ABD. Sabc = 1/2 AC-BHBH = 2Sabc / AC = 2-42/14 = 6Sabd = 1/2 AB-BH = 1/2-6-6 = 18Sq.

Решение. Эта диаграмма показывает, что ∠BCA = CESCE и ∠A = ∠E = 90°. Это означает, что BCABC и CESCE похожи, потому что у них два одинаковых угла. Стороны AB и EC похожи, используйте их для нахождения коэффициентов подобия.

Применение площадей

Теорема (Соотношение площадей подобных треугольников).

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Решение задач на вычисление региона с примерами расчета и определения

Предположим, мы докажем, что с этим коэффициентом.

Решение задач на вычисление региона с примерами расчета и определения

Проведем в данных треугольниках высоты

Решение задач на вычисление региона с примерами расчета и определения

Решение задач на вычисление региона с примерами расчета и определения

Прямоугольные треугольники Это означает, что

Решение задач на вычисление региона с примерами расчета и определения

Средняя линия отсекает от данного треугольника треугольник с площадью 8

Давайте сделаем сторону, параллельную

Решение задач на вычисление региона с примерами расчета и определения

Треугольники подобны по двум сторонам и углу между ними, причем Тогда по доказанной теореме откуда Ответ:

Метод площадей

Понятие площади и формула для ее вычисления также могут быть применены к задачам, в которых условия не относятся к площадям. Рассмотрим такой пример.

Стороны прямоугольника равны 16 см и 12 см. Высота прямоугольника, начерченного по самой длинной стороне, равна 3 см. Найдите высоту меньшего из них.

Предположим, что вам дан прямоугольник со сторонами, высоты которых нарисованы, а длины нужно найти (рис. 163).

Решение задач на вычисление региона с примерами расчета и определения

Используйте формулу для площади прямоугольника

Решение задач на вычисление региона с примерами расчета и определения

Итак.

Для решения этой задачи площадь прямоугольника вычислялась двумя разными способами. Поскольку площадь полигона определялась однозначно, независимо от метода расчета, полученное уравнение было уравнено, чтобы соотнести известные значения с требуемыми. Этот метод, использующий площадь в качестве вспомогательного размера, называется методом вспомогательной площади или просто методом площади.

Отметим, что для прямоугольного типа площади следует сделать важный вывод: в прямоугольниках высота, нарисованная на малой стороне, больше, а высота, нарисованная на большой стороне, меньше.

Метод сайта используется как для вычислительных задач, так и для доказательств утверждений.

Сумма расстояний от внутренних точек равностороннего треугольника до его сторон равна высоте треугольника, независимо от выбора точек. Доказательство.

Пусть точка находится на расстоянии одной стороны от этой точки до стороны треугольника (рис. 164).

Решение задач на вычисление региона с примерами расчета и определения

Решение задач на вычисление региона с примерами расчета и определения

Точка соединения равна сумме площадей треугольника и возвышения. У нас есть:.

Решение задач на вычисление региона с примерами расчета и определения

Решение задач на вычисление региона с примерами расчета и определения

Отсюда т.е. сумма рассматриваемых расстояний равна высоте треугольника и не зависит от выбора точки

Другие доказательства теоремы Пифагора

Исторически появление и доказательство теоремы Пифагора связано с вычислением площадей. Таким образом, классическая формулировка этой теоремы относится не к квадратам сторон прямоугольного треугольника, а к площади соответствующей фигуры.

  • площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Рисунок 165, на котором наглядно представлена эта формулировка, стал отличительным символом геометрии и был назван школьниками прошлого века «пифагорейскими брюками».

Решение задач на вычисление региона с примерами расчета и определения

Ученики на всю жизнь запомнили забавные стихи о пифагорейских брюках.

Используйте площадь для доказательства теоремы Пифагора.

Решение задач на вычисление региона с примерами расчета и определения

Проведите перпендикуляр к вертикальному прямоугольному треугольнику (рис. 166, а). Сделайте из него квадрат со сторонами квадрата. Итак: ^

Решение задач на вычисление региона с примерами расчета и определения

т.е.

На рисунках 166, C и D показаны другие способы доказательства теоремы Пифагора с помощью площадей. В работе индийского математика XII века Бхаскари, один из них: «Смотрите!». сопровождается только словом «Смотри!». В целом, в настоящее время существует более 150 различных способов доказательства этой знаменитой теоремы. Однако каждый из вас может изобрести свой собственный метод.

Решение задач на вычисление региона с примерами расчета и определения

Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, содержащей стороны

Решение задач на вычисление региона с примерами расчета и определения

Сумма углов многоугольника Сумма углов выпуклости

Решение задач на вычисление региона с примерами расчета и определения

Сумма внешних углов выпуклой фигуры

Решение задач на вычисление региона с примерами расчета и определения

Внешние углы выпуклого многоугольника

Если все вершины лежат на окружности, многоугольник регистрируется как окружность.

Решение задач на вычисление региона с примерами расчета и определения

Полигон описан как зарегистрированный.

Если все стороны принадлежат этому циклу, то многоугольник называется циклом периметра многоугольника.

Решение задач на вычисление региона с примерами расчета и определения

Аксиомы площади

  1. Равные многоугольники имеют равные площади.
  2. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.
  3. Площадь квадрата со стороной, равной единице длины, равна единице площади

Добавить комментарий