Как найти отношение проекций катетов на гипотенузу

Так как высота, проведенная к гипотенузе, представляет собой проведенный к ней перпендикуляр, то катеты — это наклонные, а отрезки гипотенузы, на которые делит ее высота — проекции катетов на гипотенузу прямоугольного треугольника.

proektsii katetov na gipotenuzuВ треугольнике ABC, изображенном на рисунке, AD — проекция катета AC на гипотенузу AB, BD — проекция катета BC на гипотенузу.

Катеты, их проекции на гипотенузу, гипотенуза и высота прямоугольного треугольника связаны между собой формулами.

1) Свойство высоты, проведенной к гипотенузе.

Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.

    [CD = sqrt {AD cdot BD} ,]

или

    [C{D^2} = AD cdot BD.]

2) Свойства катетов прямоугольного треугольника.

Катет прямоугольного треугольника есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.

    [AC = sqrt {AB cdot AD} ]

    [BC = sqrt {AB cdot BD} ]

или

    [A{C^2} = AB cdot AD]

    [B{C^2} = AB cdot BD.]

§1. Прямоугольный треугольник. Метрические соотношения.

Основные метрические сооьтношения в прямоугольном треугольнике

Пусть `ABC` прямоугольный треугольник с прямым углом `C` и острым углом при вершине `A`, равным `alpha` (рис. 1).

Используем обычные обозначения:

`c` – гипотенуза `AB`;

`a`  и `b` – катеты `BC` и `AC` (по-гречески “kathetos – катет” означает отвес, поэтому такое изображение прямоугольного треугольника нам представляется естественным);

`a_c` и `b_c` – проекции `BD`  и `AD`  катетов на гипотенузу;

`h` – высота `CD`, опущенная на гипотенузу;

`m_c` – медиана `CM`, проведённая к гипотенузе;

`R` – радиус описанной окружности;

`r` – радиус вписанной окружности.

Напомним, что если `alpha` – величина острого угла `A` прямоугольного треугольника `ABC` (см. рис. 1), то

`sin alpha = a/c`,  `cos alpha = b/c`   и    `”tg”alpha = a/b`.

Значения синуса, косинуса и тангенса острого угла прямоугольного треугольника зависят только от меры угла и не зависят от размеров и расположения треугольника.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

`c^2 = a^2 + b^2`

Доказательство теоремы повторите по учебнику.

Выведем ряд соотношений между элементами прямоугольного треугольника.

Квадрат катета равен произведению гипотенузы и его проекции на гипотенузу

`a^2 = c * a_c`

`b^2 = c * b_c` 

Если `/_ A = alpha`   (см. рис. 1), то `/_ CBD = 90^@ – alpha`   и `/_ BCD = alpha`.  Из треугольника `ABC` `sin alpha = (BC)/(AB)`,  а из треугольника `BCD` `sin alpha = (BD)/(BC)`.

Значит, `(BC)/(AB) = (BD)/(BC)`, откуда  `BC^2 = AB * BD`, т. е. `a^2 = c * a_c` Аналогично доказывается второе равенство. 

Квадрат высоты, опущенной на гипотенузу, равен произведению проекции катетов на гипотенузу

`h^2 = a_c * b_c`

Из треугольника `ACD`  (рис. 1) имеем `”tg”alpha = (CD)/(AD)`, а из треугольника `BCD` `”tg”alpha = (BD)/(CD)`.

Значит `(BD)/(CD) = (CD)/(AD)`,  откуда `CD^2 = AD * BD`,  т.  е.  `h^2 = a_c * b_c`.

Произведение катетов равно произведению гипотенузы и высоты, опущенной на гипотенузу

`a * b = c * h`

Из треугольника `ABC` имеем `sin alpha = (BC)/(AB)`, а из треуольника `ACD`  `sin alpha = (CD)/(AC)`.

Таким образом, `(BC)/(AB) = (CD)/(AC)`,  откуда `BC * AC = AB * CD`, т. е.  `a * b = c * h`.

Медиана, проведённая к гипотенузе, равна половине гипотенузы, т. е.

`m_c = 1/2 c`

Пусть `AM = BM`. Проведём $$ MKVert BC$$ (рис. 2), тогда по теореме Фалеса  `AK = CK`

.

Кроме того, из того, что `BC _|_ AC`  и  $$ MKVert BC$$  следует `MK _|_ AC`. В прямоугольных треугольниках `CMK` и `AMK` катет `MK` общий, катеты `CK` и `AK` равны.  Эти треугольники равны и `CM = AM`,  т. е.  `CM = 1/2 AB`.

Полезно также запомнить, что медиана к гипотенузе разбивает треугольник на два равнобедренных треугольника.

Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы

`R = m_c = 1/2 c` 

Это следует из Свойства 4, действительно, `MA = MB = MC`,  следовательно, окружность с центром в точке  `M` и  радиуса `c/2` проходит через три вершины.

Сумма катетов равна удвоенной сумме радиусов описанной и вписанной окружностей

`a + b = 2(R + r)`    или    `a + b = c + 2r`

Пусть `O` – центр вписанной окружности и `F`, `N`  и `S` – точки касания сторон треугольника `ABC` (рис. 3), тогда `OF_|_ BC`, `ON _|_ AC`, `OS _|_ AB`   и   `OF = ON = OS = r`. Далее, `OFCN` – квадрат со стороной `r`, поэтому `BF = BC – FC`,  `AN = AC – CN`,  т. е.  `BF = a – r`  и `AN = b – r`.

Прямоугольные треугольники `AON` и `AOS` равны (гипотенуза `AO` – общая, катеты `ON` и `OS`  равны), следовательно,  `AS = AN`,  т.  е.  `AS = b – r`.

Аналогично доказывается, что  `BS = a – r`, поэтому из `AB = AS + BS`  следует   `c = (b – r) + (a – r)`,  т. е. `a + b = c + 2r`. Зная, что  `c = 2R`, окончательно получаем  `a + b = 2(R + r)`.

Равенства, доказанные в Свойствах 1 и 2, записываются также как:

`a = sqrt(c * a_c)`

`b = sqrt(c * b_c)`

`h = sqrt(a_c * b_c)`

и, соответственно, формулируются утверждения

Катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.

Высота, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу.

Приведём примеры применения доказанных метрических соотношений в прямоугольном треугольнике. 

Проекции катетов прямоугольного треугольника на гипотенузу равны `9` и `16` . Найти радиус вписанной окружности.

1. Пусть  `a_c = 9`, `b_c = 16` (рис. 4),  тогда  `c = a_c + b_c = 25`.

2. По Свойству 1:  `a = sqrt(c * a_c) = 15`,   `b = sqrt(c * b_c) = 20`.

3. По Свойству 6:  находим радиус   `r = 1/2 (a + b – c) = 5`.

В прямоугольном треугольнике из вершины прямого угла проведены медиана и высота (рис. 5), расстояние между их основаниями равно `1`. Найти катеты, если известно, что один из них в два раза больше другого.

1. Заметим, что `a_c = c/2 – 1`, a `b_c = c/2 + 1`  (рис. 5), откуда  `a^2 = c * a_c = c(c/2 – 1)`  и  `b^2 = c * b_c = c(c/2 + 1)`.

2. По условию  `b = 2a`,  значит  `b^2 = 4a^2`,  т. е.  `c(c/2 + 1) = 4c(c/2 – 1)`.
   Находим  `c = (10)/3`,  и  `a = sqrt(c(c/2 – 1)) = 2/3 sqrt5`  и  `b = 2a = 4/3 sqrt5`.

Как найти проекцию катета на гипотенузу

Две короткие стороны прямоугольного треугольника называют катетами, а длинную – гипотенузой. Проекции коротких сторон на длинную делят гипотенузу на два отрезка разной длины. Если возникает необходимость в вычислении величины одного из этих отрезков, то способы решения задачи целиком зависят от предлагаемого в условиях набора исходных данных.

Как найти проекцию катета на гипотенузу

Инструкция

Если в исходных условиях задачи приведены длины гипотенузы (С) и того катета (А), проекцию которого (Ас) требуется вычислить, то используйте одно из свойств треугольника. Воспользуйтесь тем, что среднее геометрическое длин гипотенузы и искомой проекции равно длине катета: А = √(С*Ас). Так как понятие «среднее геометрическое» эквивалентно «корню из произведения», то для нахождения проекции катета возводите в квадрат длину катета и делите полученное значение на длину гипотенузы: Ас = (А/√С)² = А²/С.

Если длина гипотенузы неизвестна, а даны лишь длины обоих катетов (А и В), то в вычислении длины нужной проекции (Ас) можно задействовать теорему Пифагора. Выразите в соответствии с ней длину гипотенузы через длины катетов √(А²+В²) и подставьте полученное выражение в формулу из предыдущего шага: Ас = А²/√(А²+В²).

Если известна длина проекции одного из катетов (Вс) и длина гипотенузы (С), то способ нахождения длины проекции другого катета (Ас) очевиден – просто отнимите от второй известной величины первую: Ас = С-Вс.

Если длины катетов неизвестны, но дано их соотношение (x/y), а также длина гипотенузы (C), то воспользуйтесь парой формул из первого и третьего шагов. Согласно выражению из первого шага, соотношение проекций катетов (Ас и Вс) будет равно соотношению квадратов их длин: Ас/Вс = x²/y². С другой стороны, согласно формуле из предыдущего шага, Ас+Вс = С. В первом равенстве выразите длину ненужной проекции через нужную и подставьте полученное значение во вторую формулу: Ас + Ас*x²/y² = Ас*(1 + x²/y²) = С. Из этого равенства выведите формулу нахождения нужной проекции катета: Ас = С/(1 + x²/y²).

Если известна длина проекции на гипотенузу одного катета (Вс), а длина самой гипотенузы не приведена в условиях, но дана высота (Н), проведенная из прямого угла треугольника, то этого тоже будет достаточно для вычисления длины проекции другого катета (Ас). Возведите высоту в квадрат и разделите на длину известной проекции: Ас = Н²/Вс.

Источники:

  • формула катета

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Содержание:

Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определения синуса, косинуса, тангенса и котангенса острого угла

Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример:

Угол К в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияравен 90° (рис. 7).
Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равны, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Так же Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
А теперь выполните Тест 1 и Тест 2.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 8) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°

Рассмотрим прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 9), то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 10). По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение значений тригонометрических функций

Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.

Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тригонометрические функции острого угла

Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливо: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.

Пример №1

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).

Решение:

По теореме Пифагора найдем катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №2

Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 13). Найти площадь треугольника.

Решение:

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения ВС = 4 • 4 = 16(см), Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 96 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №3

При помощи циркуля и линейки построить угол, синус которого равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и ги­потенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения отмечаем на ней точку С и строим прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проходящую через точку С перпендикулярно прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (вспомните по рисунку алгоритм построения). 2) На прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от точки С откладываем последова­тельно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получаем точку А.
Угол ВАС — искомый.

Доказательство:

Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгоритм решения прямоугольного треугольника

Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:

  1. нахождение катета по гипотенузе и острому углу;
  2. нахождение катета по другому катету и острому углу;
  3. нахождение гипотенузы по катету и острому углу.

Пример №4

Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Примем длину искомого катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 5,1.

Пример №5

Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
 

Решение:

Примем длину неизвестного катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 6,2.

Пример №6

Катет прямоугольного треугольника равен 4,2, противолежа­щий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.

Решение:

Примем длину гипотенузы за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 8,7.

Правила решения прямоугольного треугольника

Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Удобно пользоваться следующими правилами:

  • Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
  • Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
  • Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №7

В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 28).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
 (рис. 29, а). А если дан больший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то меньший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,

то гипотенуза Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 30, а), а если дана гипотенуза с, то ка­тет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 30, б).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №8

В прямоугольном треугольнике АВС известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Заметим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №9

В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.

Решение:

Площадь трапеции находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияНайдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 104.

Тригонометрические формулы

Используя формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениягде Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — катеты, с — гипотенуза прямоугольного треугольника, можно по­лучить формулы, связывающие значения тригонометрических функций острого угла.

1. Основное тригонометрическое тождество

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

По теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

Так как синус и косинус острого угла а положительны, то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Выражение тангенса и котангенса через синус и косинус

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

a)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения б)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Да, это верно, так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Основная задача

ДаноСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый угол.

Найти: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. Используем основное тригонометрическое тождество: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как косинус острого угла больше нуля, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поэтому этот угол равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора другой катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 3. Пусть катет, противолежащий углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен 5х, тогда гипотенуза равна Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора прилежащий катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияОтсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №10

В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Найти периметр параллелограмма.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Из треугольника АВК находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз основного тригонометрического тождества следует: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (так как угол А — острый, то sinA > 0). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(см ) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Ответ: 168 см.

Пример №11

Доказать, что при увеличении угла от 0° до 90°:

а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;

б) тангенс угла увеличивается от О до бесконечности.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — ду­гу МК (рис. 43). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Опустим из точки А перпендикуляр АВ на ОМ. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д.). Величина катета АВ, противолежащего углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0. 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения 

б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых при­лежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отре­зок ОМ = 1, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 44). По определению Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д. При этом угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и его тангенс начнут возрастать. Таким образом, когда угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При увеличении угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бес­конечности.

Пример №12

В основании прямоугольного параллелепипеда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения лежит квадрат, диагональ которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см. Диагональ Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения боковой грани составляет с ребром основания Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 46). Найдите объем параллелепипеда.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Объем прямоугольного параллелепипеда находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, где а, b и с — его измерения. Так как ABCD — квадрат, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Искомый объем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения.
Ответ: 576 см3.

Синус, косинус, тангенс и котангенс тупого угла

1. Определение значений Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а от 0° до 180°

Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.

Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения против часовой стрелки отложим острый угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения сторона которого пересекает полуокружность в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то есть синус, косинус,

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

тангенс и котангенс острого угла а выражаются через координаты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Точно так же определяются значения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а из промежутка Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, синусом угла а называется ордината Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения косинусом — абсцисса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тангенсом — отношение ординаты к абсциссе Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения  а котангенсом — отношение абсциссы к ординате Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки М единичной полуокружности.

Например, для тупого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 48), где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для любого положения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения на единичной полуокружности верно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (докажите самостоятельно). Поэтому для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно основное тригонометрическое тождество Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Также верны тождества: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение синуса, косинуса, тангенса и котангенса тупых углов

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 49). Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по гипотенузе и острому углу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТочки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения имеют координаты: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято есть для углов от 0° до 180° справедливы равенства: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
 

Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».

 

Пример 1. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Разделив почленно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияна равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения а затем наоборот, получим равенства:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».

Пример 2. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Указанные формулы и правила позволяют находить значения триго­нометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла по­ложительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.

Значения тригонометрических функций для углов 0°, 90°, 180°

Если луч ОМ совпадет с лучом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 50), то будем считать, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

а) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияне определено, так как деление на нуль невозможно; 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениязначение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно; в) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значе­ние Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливы неравенства: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №13

Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения – тупой угол.

Решение:

Способ 1. Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поскольку угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой, то его косинус отрицательный. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТогдаСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Синус острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения смежного с данным тупым углом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен также Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТак как косинусы смежных углов противоположны, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Аналогично, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ:Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Формулы площади треугольника и площади параллелограмма

Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.

Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть в треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота (рис. 56, а).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Из  прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тупой (рис. 56, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый. Из прямоугольно­го треугольника АКС следует, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — прямоугольный с катетами Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Учитывая, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Теорема доказана.

Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Используя рисунок 57, докажите эту теорему самостоятельно.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Замечание. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то параллелограмм является прямоугольником. Его площадь Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, формула площади прямоугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — частный случай формулы площади параллелограмма Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:

а) какое из значений подходит к математическому понятию «синуса»;

б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.

Пример №14

Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Полупериметр параллелограмма ра­вен 18 см. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениясм, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Тогда

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
По условию Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Составим и решим уравнение: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.

Пример №15

Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть диагонали Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения четырехугольника ABCD (рис. 59) пересекаются в точке О, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Докажем, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Заме­тим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениякак вертикальные, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по свойству смежных углов. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По фор­муле площади треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения у получим:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Утверждение доказано

Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике

Если для положительных чисел Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения выполняется пропорция Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется средним пропорциональным чисел а и с (между чис­лами а и с). Из указанной пропорции Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения В такой форме записи число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения еще называют средним геометрическим чисел а и с.
 

Пример №16

Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения или Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.

Теорема (о среднем пропорциональном в прямоугольном треугольнике).

а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 61).

б) Катет есть среднее пропорциональное между гипотенузой и проек­цией этого катета на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

а)3аметим, что если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения до 90°) (рис. 62). Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Аналогично доказывается, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Теорема доказана.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Обозначив катеты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения гипотенузу с, высо­ту Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проекции катетов на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 63), получим следующие формулы: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №17

Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.

Решение:

Пусть СН — высота прямоугольного треугольника АВС  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —

проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 20 см2.

Пример №18

В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, АК = 12 см (рис. 65). Найти гипотенузу АВ.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо смыслу задачи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.

Пример №19

При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .

Решение:

Пусть даны отрезки т и п . Необходимо построить отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение.
1) На произвольной прямой откладываем данные отрезки: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.

3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— среднее пропорциональное отрезков Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Повторение*
В 8-м классе мы доказали следующую теорему:

Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се­ кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 70).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Как видим, отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения является средним пропорциональным между отрезками Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.

Теорема о площадях треугольников с общим (равным) углом

Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие: Верно:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №20

Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2.  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 4.

Теорема Менелая

Если дан треугольник АВС и прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает стороны ВС, АВ и продолжение стороны АС в точках Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответственно (рис. 79), тоСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Проведем отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(по двум углам), то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Перемножив почленно указанные пропорции, получим

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.

Пример №21

В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1 (теорема Менелая). Рассмотрим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 80). Прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение тре­тьей стороны АК в точке С. По теореме Менелая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2 (теорема Фалеса обобщенная). Проведем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 81). По теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Для Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
по теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №22

Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

1) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (ВН — высота и медиана треугольника АВС).

2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 22.

Неравенство Коши

Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Действительно, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияпри всех допустимых Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Следовательно, неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно.
Неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из точки К вос­становим перпендикуляр КС, где точка С принад­лежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Но радиус ОС равен половине диаметра АВ, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения катет меньше гипотенузы, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как катет меньше гипотенузы. Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Равенство левой и правой частей неравенства достигается, когда точ­ка К совпадает с точкой О и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения становится равнобедренным и прямоугольным. Поэтому справедливо неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решеният. е Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

ЗАПОМИНАЕМ

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Значения тригонометрических функций углов 30 45°, 60°: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Тригонометрические формулы (тождества): 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Примеры:  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4. Формулы площади треугольника и параллелограмма: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

5. Среднее пропорциональное в прямоугольном треугольнике: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Угол – определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
Помогите из публицистического текста переписать в научный

Роман  Тургенева  «Накануне»: идейно-художественное своеобразие

Из каких слоев общества появятся «новые люди»? Что будет отличать их от поколения Рудиных и Лаврецких? Какую про­грамму обновления России они примут и как приступят к осво­бождению народа от крепостного права? Эти вопросы волновали Тургенева давно. Еще в 1855 году, в момент работы над «Руди­ным», задача, которую он поставил в «Накануне», уже начинала возникать перед ним: «Фигура главной героини, Елены, тогда еще нового типа в русской жизни, довольно ясно обрисовывалась в моем воображении,— вспоминал Тургенев,— но недоставало ге­роя, такого лица, которому Елена, при ее еще смутном, хотя сильном стремлении к свободе, могла предаться» (XII, 306), Тогда же сосед Тургенева, отправляясь в Крым в качестве офи­цера дворянского ополчения, оставил писателю рукопись автобио­графической повести, одним из главных героев которой был моло­дой болгарский революционер, студент Московского университе­та. Теперь мы знаем, что прототипом тургеневского Инсарова явился Николай Димитров Катранов, родившийся в 1829 году в болгарском городе Свиштов в небогатой купеческой семье. В 1848 году в составе большой группы болгарских юношей он приехал в Россию и поступил на историко-филологический фа­культет Московского университета.

Начавшаяся в 1853 году русско-турецкая война всколыхнула революционные настроения балканских славян, боровшихся за избавление от многовекового турецкого ига. В начале 1853 года Николай Катранов с русской женой Ларисой уехал на родину. Но внезапная вспышка туберкулеза спутала все планы. При­шлось вернуться в Россию, а затем ехать на лечение в Венецию, где Катранов простудился и скоропостижно скончался 5 мая 1853 года. Это был талантливый человек: он писал стихи, зани­мался переводами, горячо пропагандировал среди русских друзей идею освобождения родины.  

Вплоть до 1859 года тетрадь с рукописью Каратеева — так звали тургеневского соседа — лежала без движения, хотя, позна­комившись с ней, писатель воскликнул: «Вот герой, которого я искал! Между тогдашними русскими такого еще не было». Поче­му же Тургенев обратился к этой тетради в 1859 году, когда и в России подобного типа герои уже появились? Почему в качестве образца для русских «сознательно-героических натур» Тургенев предлагает болгарина Дмитрия Инсарова? Что не устроило, на­конец, Тургенева в добролюбовской интерпретации романа «На­кануне», опубликованного в январском номере журнала «Русский вестник» в 1860 году?

Н. А. Добролюбов, посвятивший разбору этого романа специ­альную статью «Когда же придет настоящий день?», дал класси­ческое определение художественному дарованию Тургенева, уви­дев в нем писателя, чуткого к общественным проблемам. Очередной его роман «Накануне» еще раз блестяще оправдал эту репу­тацию. Добролюбов отметил четкую расстановку в нем главных действующих лиц. Центральная героиня Елена Стахова стоит перед выбором, на место ее избранника претендуют молодой уче­ный, историк Берсенев, будущий художник, человек искусства Шубин, успешно начинающий служебную деятельность чиновник Курнатовский и, наконец, человек гражданского подвига, болгар­ский революционер Инсаров. Социально-бытовой сюжет романа имеет символический подтекст: Елена Стахова олицетворяет мо­лодую Россию «накануне» предстоящих перемен, Кто всего нуж­нее ей сейчас: люди науки или искусства, государственные чинов­ники или героические натуры, люди гражданского подвига? Выбор Еленой Инсарова дает недвусмысленный ответ на этот вопрос.

Добролюбов заметил, что в Елене Стаховой «сказалась та смутная тоска по чем-то, та почти бессознательная, но неотрази­мая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называе­мое образованное» (VI, 120).

В описании детских лет Елены Тургенев обращает внимание на глубокую близость ее к народу. С тайным уважением и стра­хом слушает она рассказы нищей девочки Кати о жизни «на всей божьей воле» и воображает себя странницей, покинувшей отчий дом и скитающейся по дорогам. Из народного источника пришла к Елене русская мечта о правде, которую надо искать далеко-далеко, со странническим посохом в руках. Из того же источни­ка— готовность пожертвовать собой ради других, ради высокой цели спасения людей, попавших в беду, страдающих и несчаст­ных. Не случайно в разговорах с Инсаровым Елена вспоминает буфетчика Василия, «который вытащил из горевшей избы безно­гого старика и сам чуть не погиб».

Даже внешний облик Елены напоминает птицу, готовую взле­теть, и ходит героиня «быстро, почти стремительно, немного на­клонясь вперед». Смутная тоска и неудовлетворенность Елены тоже связаны с темой полета: «Отчего я с завистью гляжу на пролетающих птиц? Кажется, полетела бы с ними, полетела — куда, не знаю, только далеко, далеко отсюда» (VIII, 79). Устрем­ленность к полету проявляется и в безотчетных поступках герои­ни: «Долго глядела она на темное, низко нависшее небо; потом она встала, движением головы откинула от лица волосы и, сама не зная зачем, протянула к нему, к этому небу, свои обнаженные, похолодевшие руки…» (VIII, 35—36). Проходит тревога — «опу­скаются невзлетевшие крылья». И в роковую минуту, у постели больного Инсарова, Елена видит высоко над водой белую чайку: «Вот если она полетит сюда,— подумала Елена,— это будет хоро­ший знак…» Чайка закружилась на месте, сложила крылья — и, как подстреленная, с жалобным криком пала куда-то далеко за темный корабль» (VIII, 157).

Таким же окрыленным героем, достойным Елены, оказывается Дмитрий Инсаров. Что отличает   его   от русских   Берсеневых   и  Шубиных? Прежде всего — цельность характера, полное отсутст­вие противоречий между словом и делом. Он занят не собой, все помыслы его сосредоточены на одной цели — освобождении роди­ны, Болгарии. Тургенев верно уловил в характере Инсарова типи­ческие черты лучших людей эпохи болгарского Возрождения: широту и разносторонность умственных интересов, сфокусирован­ных в одну точку, подчиненных одному делу — освобождению на­рода от векового рабства. Силы Инсарова питает и укрепляет живая связь с родной землей, чего так не хватает русским геро­ям романа — Берсеневу, который пишет труд «О некоторых осо­бенностях древнегерманского права в деле судебных наказаний», талантливому Шубину, который лепит вакханок и мечтает об Италии. И Берсенев, и Шубин — тоже деятельные люди, но их деятельность слишком далека от насущных потребностей народ­ной жизни. Это люди без крепкого корня, отсутствие которого придает их характерам или внутреннюю вялость, как у Берсене­ва, или мотыльковое непостоянство, как у Шубина.

В то же время в характере Инсарова сказывается родовая ограниченность, типичная для Дон-Кихота. В поведении героя подчеркиваются упрямство и прямолинейность, некоторый педан­тизм. Художественную завершенность эта двойственная характе­ристика получает в ключевом эпизоде с двумя статуэтками ге­роя, которые вылепил Шубин. В первой Инсаров представлен героем, а во второй — бараном, поднявшимся на задние ноги и склоняющим рога для удара. Не обходит Тургенев в своем ро­мане и размышлений о трагичности судьбы людей донкихотского склада.

Рядом с сюжетом социальным, отчасти вырастая из него, от­части возвышаясь над ним, развертывается в романе сюжет фи­лософский. «Накануне» открывается спором между Шубиным и Берсеневым о счастье и долге. «…Каждый из нас желает для се­бя счастья… Но такое ли это слово «счастье», которое соединило, воспламенило бы нас обоих, заставило бы нас подать друг другу руки? Не эгоистическое ли, я хочу сказать, не разъединяющее ли это слово?» (VIII, 14). Соединяют людей слова: «родина», «нау­ка», «справедливость». И «любовь», но только если она — не «лю­бовь-наслаждение», а «любовь-жертва».

Инсарову и Елене кажется, что их любовь соединяет личное с общественным, что она одухотворяется высшей целью. Но вот оказывается, что жизнь вступает в некоторое противоречие с же­ланиями и надеждами героев. На протяжении всего романа Ин­саров и Елена не могут избавиться от ощущения непростительно­сти своего счастья, от чувства виновности перед кем-то, от страха расплаты за свою любовь. Почему?

Жизнь ставит перед влюбленной Еленой роковой вопрос: со­вместимо ли великое дело, которому она отдалась, с горем бед­ной, одинокой матери, которое попутно этим делом вызывается? Елена смущается и не находит на этот вопрос возражения. Ведь любовь Елены к Инсарову приносит страдание не только матери: она оборачивается невольной нетерпимостью и по отношению к отцу, к русским друзьям — Берсеневу и Шубину, она ведет Елену к разрыву с Россией. «Ведь все-таки это мой дом,—думала она,— моя семья, моя родина…»

Елена безотчетно ощущает, что и в ее чувствах к Инсарову счастье близости с любимым человеком временами преобладает над любовью к тому делу, которому весь, без остатка, хочет от­даться герой. Отсюда — чувство вины перед Инсаровым: «Кто знает, может быть, я его убила».

В свою очередь, Инсаров задает Елене аналогичный вопрос: «Скажи мне, не приходило ли тебе в голову, что эта болезнь по­слана нам в наказание?» (VIII, 128). Любовь и общее дело ока­зываются не вполне совместимыми. В бреду, в период первой болезни, а потом в предсмертные мгновения коснеющим языком Инсаров произносит два роковых для него слова: «резеда» и «Рендич». Резеда — это тонкий запах духов, оставленный Еленой в комнате больного Инсарова; Рендич — соотечественник героя, один из организаторов готовящегося восстания балканских сла­вян против турецких поработителей. Бред выдает глубокое внут­реннее раздвоение цельного Инсарова, источником этого раздво­ения является любовь.

В отличие от Чернышевского и Добролюбова с их оптимисти­ческой теорией «разумного эгоизма», утверждавшей единство личного и общего, счастья и долга, любви и революции в приро­де человека, Тургенев обращает внимание на скрытый драматизм человеческих чувств, на вечную борьбу центростремительных (эгоистических) и центробежных (альтруистических) начал в ду­ше каждого человека. Человек, по Тургеневу, драматичен не толь­ко в своем внутреннем существе, но и в отношениях с окружаю­щей его природой. Природа не считается с неповторимой цен­ностью человеческой личности: с равнодушным спокойствием она поглощает и простого смертного, и героя; все равны перед ее не­различающим взором. Этот мотив универсального трагизма жиз­ни вторгается в роман неожиданной смертью Инсарова, исчезно­вением Елены на этой земле —«навсегда, безвозвратно». «Смерть, как рыбак,—с горечью говорит Тургенев,—который поймал ры­бу в свою сеть и оставляет ее на время в воде: рыба еще плава­ет, но сеть на ней, и рыбак выхватит ее —когда захочет» (VIII, 166). С точки зрения «равнодушной природы» каждый из нас «виноват уже тем, что живет».

Однако мысль о трагизме человеческого существования не умаляет, а, напротив, укрупняет в романе Тургенева красоту и величие дерзновенных, освободительных порывов человеческого духа, оттеняет поэзию любви Елены к Инсарову, придает широ­кий общечеловеческий смысл социальному содержанию романа. Неудовлетворенность Елены современным состоянием жизни в России, ее тоска по иному, более совершенному социальному по­рядку в философском плане романа приобретает «продолжаю­щийся» смысл, актуальный во все эпохи и все времена. «Накануне» — это роман о порыве России к новым общественным отно­шениям, пронизанный нетерпеливым ожиданием «сознательно-героических натур», которые двинут вперед дело освобождения крестьян.

И в то же время это роман о бесконечных исканиях чело­вечества, о постоянном стремлении его к социальному совер­шенству, о вечном вызове, который бросает человеческая лич­ность «равнодушной природе»:

«О, как тиха и ласкова была ночь, какою голубиною кротостию дышал лазурный воздух, как всякое страдание, всякое горе должно было замолкнуть и заснуть под этим ясным небом, под этими святыми, невинными лучами! «О боже! — думала Елена,— зачем смерть, зачем разлука, болезнь и слезы? или зачем эта красота, это сладостное чувство надежды, зачем успокоительное сознание прочного убежища, неизменной защиты, бессмертного покровительства? Что же значит это улыбающееся, благословля­ющее небо, эта счастливая, отдыхающая земля? Ужели это все только в нас, а вне нас вечный холод и безмолвие? Ужели мы одни… одни… а там, повсюду, во всех этих недосягаемых безднах и глубинах, — все, все нам чуждо? К чему же тогда эта жажда и радость молитвы?.. Неужели же нельзя умолить, отвратить, спасти… О боже! неужели нельзя верить чуду?»  (VIII,  156).

Современников Тургенева из лагеря революционной демокра­тии, для которых главнее был социальный смысл романа, не мог не смущать его финал: неопределенный ответ Увара Ивановича на вопрос Шубина, будут ли у нас,. в России, люди, подобные Инсарову. Какие могли быть загадки на этот счет в конце 1859 года, когда дело реформы стремительно подвигалось вперед, когда «новые люди» заняли ключевые посты в журнале «Совре­менник»? Чтобы правильно ответить на этот вопрос, нужно выяс­нить, какую программу действий предлагал Тургенев «русским Инсаровым».

Автор «Записок охотника» вынашивал мысль о братском сою­зе всех антикрепостнических сил и надеялся на гармонический исход социальных конфликтов. Инсаров говорит: «Заметьте: по­следний мужик, последний нищий в Болгарии и я — мы желаем одного и того же. У всех у нас одна цель. Поймите, какую это дает уверенность и крепость!» (VIII, 68). Тургеневу хотелось, чтобы все прогрессивно настроенные люди России, без различия социальных положений и оттенков в политических убеждениях, протянули друг другу руки.

В жизни случилось другое. Добролюбов в статье «Когда же придет настоящий день?» решительно противопоставил задачи «русских Инсаровых» той программе общенационального едине­ния, которую провозгласил в романе Тургенева болгарский рево­люционер. «Русским Инсаровым» предстояла борьба с «внутрен­ними турками», в число которых у Добролюбова попадали не только консерваторы, противники реформ, но и либеральные пар­тии русского общества. Статья била в святая святых убеждений и верований Тургенева. Поэтому он буквально умолял Некрасова не печатать ее, а когда она была опубликована – покинул журнал «Современник» навсегда.

В романе «Накануне» (1860) смутные светлые предчувствия и надежды, которые пронизывали меланхоличное повествование «Дворянского гнезда», превращаются в определенные решения. Основной для Тургенева вопрос о соотношении мысли и деятельности, человека дела и теоретика в этом романе решается в пользу практически осуществляющего идею героя.

Само название романа «Накануне» — название «временное», в отличие от «локального» названия «Дворянское гнездо», — отра­жает то обстоятельство, что замкнутости, неподвижности пат­риархальной русской жизни приходит конец. Русский дворянский дом с вековым укладом его быта, с приживалками, соседями, кар­точными проигрышами оказывается на распутье мировых дорог. Русская девушка находит применение своим силам и самоотвер­женным стремлениям, участвуя в борьбе за независимость бол­гарского народа. Сразу после выхода в свет романа читатели и критики обратили внимание на то, что личностью, которую рус­ское молодое поколение готово признать за образец, здесь пред­ставлен болгарин.

Название романа «Накануне» не только отражает прямое, сюжетное его содержание (Инсаров гибнет накануне войны за независимость его родины, в которой он страстно хочет принять участие), но и содержит оценку состояния русского общества накануне реформы и мысль о значении народно-освободительной борьбы в одной стране (Болгарии) как кануна общеевропейских политических перемен (в романе косвенно затрагивается и во­прос о значении сопротивления итальянского народа австрийскому владычеству).

Добролюбов считал образ Елены средоточием романа — вопло­щением молодой России. В этой героине, по мнению критика, воплощена «неотразимая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называемое «образованное» <.. .> «Желание деятель­ного добра» есть в нас, и силы есть; но боязнь, неуверенность в своих силах и, наконец, незнание: что делать? — постоянно нас останавливают <…и мы всё ищем, жаждем, ждем… ждем, чтобы нам хоть кто-нибудь объяснил, что делать».

Таким образом, Елена, представлявшая, по его мнению, моло­дое поколение страны, ее свежие силы, характеризуется стихий­ностью протеста, она ищет «учителя» — черта, присущая деятель­ным героиням Тургенева.

Идея романа и структурное ее выражение, столь сложные и многозначные в «Дворянском гнезде», в «Накануне» предельно ясны, однозначны. Героиня, ищущая учителя-наставника, до­стойного любви, в «Накануне» выбирает из четырех претендентов на ее руку, из четырех идеальных вариантов, ибо каждый из героев — высшее выражение своего этико-идейного типа. Шубин и Берсенев представляют художественно-мыслительный тип (тип людей отвлеченно-теоретического или образно-художественного творчества), Инсаров и Курнатовский относятся к «деятельному» типу, т. е. к людям, призвание которых состоит в  практическом «жизнетворчестве».                                                  

Говоря о значении в романе выбора своего пути и своего «героя», который делает Елена, Добролюбов рассматривает этот поиск-выбор как некий процесс, эволюцию, аналогичную разви­тию русского общества за последнее десятилетие. Шубин, а затем и Берсенев соответствуют по своим принципам и характерам бо­лее архаичным, отдаленным стадиям этого процесса. Вместе с тем оба они не настолько архаичны, чтобы быть «несовместимыми» с Курнатовским (деятелем эпохи реформ) и Инсаровым (особое значение которому придает складывающаяся революционная си­туация), Берсенев и Шубин — люди 50-х гг. Ни один из них не является чистым представителем гамлетовского типа. Таким образом, Тургенев в «Накануне» как бы распростился со своим излюбленным типом. И Берсенев, и Шубин генетически связаны с «лишними людьми», но в них нет многих главных черт героев этого рода. Оба они прежде всего не погружены в чистую мысль, анализ действительности не является их основным занятием. От рефлексии, самоанализа и бесконечного ухода в теорию их «спасает» профессионализация, призвание, живой интерес к опре­деленной сфере деятельности и постоянный труд.

«Одарив» своего героя-художника Шубина фамилией вели­кого русского скульптора, Тургенев придал его портрету привле­кательные черты, напоминающие внешность Карла Брюллова, — он сильный, ловкий блондин.

Из первого же разговора героев — друзей и антиподов (наруж­ность Берсенева рисуется как прямая противоположность внеш­ности Шубина: он худой, черный, неловкий), разговора, который является как бы прологом романа, выясняется, что один из них «умница, философ, третий кандидат московского университета», начинающий ученый, другой — художник, «артист», скульптор. Но характерные черты «артиста» — черты человека 50-х гг. и идеала людей 50-х гг. — сильно рознятся от романтического пред­ставления о художнике. Тургенев нарочито дает это понять: в самом начале романа Берсенев указывает Шубину, каковы должны быть его — «артиста» — вкусы и склонности, и Шубин, шутливо «отбиваясь» от этой обязательной и неприемлемой для него позиции художника-романтика, защищает свою любовь к чувственной жизни и ее реальной красоте.

В самом подходе Шубина к своей профессии проявляется его связь с эпохой. Сознавая ограниченность возможностей скульп­туры как художественного рода, он стремится передать в скульп­турном портрете не только и не столько внешние формы, сколько духовную суть, психологию оригинала, не «линии лица», а взгляд глаз. Вместе с тем ему присуща особенная, заостренная способ­ность оценивать людей и умение возводить их в типы. Меткость характеристик, которые он дает другим героям романа, превра­щает его выражения в крылатые слова; Эти характеристики в большинстве случаев и являются ключом к типам, изображен­ным в романе.

Если в уста Шубина автор романа вложил все социально-исторические приговоры, вплоть до приговора о правомерности «выбора Елены», Берсеневу он передал ряд этических деклара­ций. Берсенев — носитель высокого этического принципа самоот­вержения и служения идее («идее науки»), как Шубин — вопло­щение идеального «высокого» эгоизма, эгоизма здоровой и цель­ной натуры.

Берсеневу придана нравственная черта, которой Тургенев отводил особенно высокое место на шкале душевных достоинств: доброта. Приписывая эту черту Дон-Кихоту, Тургенев на ней основывался в своем утверждении исключительного этического значения образа Дон-Кихота для человечества. «Все пройдет, все исчезнет, высочайший сан, власть, всеобъемлющий гений, всё рас­сыплется прахом <…> Но добрые дела не разлетятся дымом: они долговечнее самой сияющей красоты» (VIII, 191). У Берсенева эта доброта происходит от глубоко, органически усвоенной им гуманистической культуры и присущей ему «справедливости», объективности историка, способного встать выше личных, эгои­стических интересов и пристрастий и оценить значение явлений действительности безотносительно к своей личности.

Отсюда и проистекает истолкованная Добролюбовым как при­знак нравственной слабости «скромность», понимание им второ­степенного значения своих интересов в духовной жизни совре­менного общества и своего «второго номера» в строго определен­ной иерархии типов современных деятелей.

Тип ученого как идеал оказывается исторически дезавуиро­ванным. Это «низведение» закреплено и сюжетной ситуацией (отношение Елены к Берсеневу), и прямыми оценками, данными герою в тексте романа, и самооценкой, вложенной в его уста. Такое отношение к профессиональной деятельности ученого могло родиться лишь в момент, когда жажда непосредственного жизне­строительства, исторического общественного творчества охватила лучших людей молодого поколения. Этот практицизм, это деятель­ное отношение к жизни не у всех молодых людей 60-х гг. носили характер революционного или даже просто бескорыстного служе­ния. В «Накануне» Берсенев выступает как антипод не столько Инсарова (мы уже отмечали, что он более чем кто-либо другой способен оценить значение личности Инсарова), сколько обер-­секретаря Сената — карьериста Курнатовского.

В характеристике Курнатовского, «приписанной» автором Елене,   раскрывается  мысль  о  принадлежности  Курнатовского,  как и Инсарова, к «действенному типу» и о взаимовраждебных позициях, занимаемых ими внутри этого — очень широкого — психологического типа. Вместе с тем в этой характеристике ска­зывается и то, как исторические задачи, необходимость решения которых ясна всему обществу (по словам Ленина, во время рево­люционной ситуации обнаруживается невозможность «для гос­подствующих классов сохранить в неизменном виде свое гос­подство» и вместе с тем наблюдается «значительное повышение <…> активности масс», не желающих жить по-старому), застав­ляют людей самой разной политической ориентации надевать маску прогрессивного человека и культивировать в себе черты, которые приписываются обществом таким людям.

«Вера» Курнатовского — это вера в государство в приложении к реальной русской жизни эпохи, вера в сословно-бюрократиче­ское, монархическое государство. Понимая, что реформы неиз­бежны, деятели типа Курнатовского связывали все возможные в жизни страны изменения с функционированием сильного госу­дарства, а себя считали носителями идеи государства и исполни­телями его исторической миссии, отсюда — самоуверенность, вера в себя, по словам Елены.

В центре романа — болгарский патриот-демократ и револю­ционер по духу — Инсаров. Он стремится опрокинуть деспотиче­ское правление в родной стране, рабство, утвержденное веками, и систему попрания национального чувства, охраняемую крова­вым, террористическим режимом. Душевный подъем, который он испытывает и сообщает Елене, связан с верой в дело, которому он служит, с чувством своего единства со всем страдающим наро­дом Болгарии. Любовь в романе «Накануне» именно такова, ка­кой ее рисует Тургенев в выше цитированных словах о любви как революции («Вешние воды»). Воодушевленные герои ра­достно летят на свет борьбы, готовые к жертве, гибели и победе.

В «Накануне» впервые любовь предстала как единство в убе­ждениях и участие в общем деле. Здесь была опоэтизирована ситуация, характерная для большого периода последующей жизни русского общества и имевшая огромное значение как выражение нового этического идеала. Прежде чем соединить свою жизнь с ее жизнью, Инсаров подвергает Елену своеобраз­ному «экзамену», предвосхищающему символический «допрос», которому подвергает таинственный голос судьбы смелую де­вушку-революционерку в стихотворении в прозе Тургенева «По­рог». При этом герой «Накануне» вводит любимую девушку в свои планы, свои интересы и заключает с ней своеобразный договор, предполагающий с ее стороны сознательную оценку их возможной будущности, — черта отношений, характерная для демократов-шестидесятников.

 Любовь Елены и ее благородная решимость разрушают аске­тическую замкнутость Инсарова, делают его счастливым. Добро­любов особенно ценил страницы романа, где изображалась светлая и счастливая любовь молодых людей. В уста Шубина Тур­генев вложил лирическую апологию идеала героической моло­дости: «Да, молодое, славное, смелое дело. Смерть, жизнь, борьба, падение, торжество, любовь, свобода, родина… Хорошо, хорошо. Дай бог всякому! Это не то, что сидеть по горло в болоте да стараться показывать вид, что тебе всё равно, когда тебе действи­тельно в сущности всё равно. А там — натянуты струны, звени на весь мир или порвись!» (VIII, 141).

Добавить комментарий