Относительное удлинение — показывает на сколько процентов изменилось тело
Единица измерения процент – [%]
Относительное удлинение показывает какую часть от первоначальной длины составляет абсолютное удлинение. Часто измеряется в процентах, для этого просто надо умножить на 100%.
Относительное удлинению необходимо. С помощью него определяется, сможет ли материал при изменении своей длины разрушиться. Например: если взять металлическую трубку 10 метров и растянуть ее на 1метр, то она может разрушиться, но растянуть резиновую 100 метровую нить на 1 метр такого же сечения как и труба , то с ней ничего не произойдет. Относительное удлинение в первом случае будет 1/10*100%=10%, а во втором 1/10000*100%=0,01%
Обозначения:
ε — относительное удлинение тела
Δl — абсолютное удлинение тела
l0 — первоначальная длина тела
-
Относительное удлинение
Относительное
удлинение
– величина, показывающая на сколько
процентов удлиняется материал, прежде
чем разорвется. Измеряется в процентах.
Некоторые
металлы можно довольно сильно вытягивать,
причем одни больше, а другие меньше.
Например, при значении показателя 100%,
материал выдерживает двукратное
удлинение до разрыва.
Относительное
удлинение после разрыва характеризует
пластичность материала. В зависимости
от величины этого удлинения материалы
делят на пластичные и хрупкие. Для первых
можно условно принять
,
а для вторых —
К пластичным материалам относятся
малоуглеродистая сталь, медь, свинец и
др., а к хрупким — закаленная сталь,
чугун, стекло, камень, бетон и др. Например,
для углеродистой стали марки Ст.2
относительное удлинение после разрыва
.
или
,
где
ε
– относительное удлинение тела (%);
Δl
– абсолютное удлинение тела (м);
l0
–начальная длина тела (м).
-
Oтносительное сужение
Относительным
сужением называется отношение абсолютного
уменьшения площади поперечного сечения
в шейке на первоначальную площадь и
выражается в процентах от начальной
площади поперечного сечения:
|
Чем
больше относительное сужение после
разрыва, тем пластичнее материал.
-
Ударная вязкость
Ударная
вязкость — способность материала
поглощать механическую
энергию
в процессе деформации
и разрушения под действием ударной
нагрузки.
Основным
отличием ударных нагрузок от испытаний
на растяжение-сжатие
или изгиб
является гораздо более высокая скорость
выделения энергии. Таким образом, ударная
вязкость характеризует способность
материала к быстрому поглощению энергии.
Обычно
оценивается работа
до разрушения или разрыва испытываемого
образца при ударной нагрузке, отнесённой
к площади
его сечения в месте приложения нагрузки.
Выражается в Дж/м2 или в кДж/м2
-
Область компромисса
Область
компромиссов – это область, в которой
улучшение качества решения по одним
локальным критериям приводит к ухудшению
качества решения по другим.
Выделение области компромисса сужает
область возможных решений. Этот выбор
осуществляется субъективно.
Вывод
После
изучения литературы и построения
соответствующих графиков, можно сделать
следующие выводы по влиянию элементов
на определенные характеристики
материалов:
Углерод
является основным химическим элементом,
определяющим свойства стали. С увеличением
в стали содержания углерода возрастают
твердость, временное сопротивление
разрыву, предел текучести, но вместе с
тем, снижается пластичность стали
(уменьшается показатель относительного
удлинения), понижается ударная вязкость
и ухудшается свариваемость.
Марганец,
являющийся неизбежной примесью в стали,
широко применяется в качестве легирующего
элемента. Марганец ослабляет вредное
влияние серы, повышает прочность,
твердость и режущие свойства стали.
Кремний,
так же как и марганец, увеличивает
твердость стали и повышает предел
текучести при растяжении. Кремний
ухудшает свариваемость стали.
Хром
применяется как легирующий элемент.
Введение его в сталь увеличивает ее
прочность и твердость, повышает стойкость
на истирание. Сталь, содержащая
значительное количество хрома, становится
нержавеющей и жаростойкой.
Никель
применяется при выплавке низколегированной
и легированной стали, в которой содержание
его достигает 5%. Каждый процент никеля
до 5%, добавленный в углеродистую сталь,
увеличивает предел текучести и временное
сопротивление разрыву при растяжении
на 3—4 кг/мм2. Сталь, содержащая никель,
сохраняет высокие значения ударной
вязкости при отрицательной температуре.
Из
никелевой стали изготовляют шестерни,
диски и лопатки турбин, паровозные
детали, коленчатые валы, оси, шатуны и
др.
Сера
и фосфор являются вредными примесями
в стали. Сера понижает пластичность,
прочность и сопротивление истиранию.
Сталь с повышенным содержанием серы
обладает свойством красноломкости, т.
е. способностью при температуре красного
каления проявлять пониженную прочность
и вязкость. Поэтому во время ковки она
дает трещины. При сварке стали со
значительным содержанием серы в сварных
швах и в прилегающих к ним участках
металла могут образоваться так называемые
горячие трещины, что снижает прочность
конструкции. Поэтому содержание серы
в стали, применяемой для изготовления
сварных конструкций, не должно превышать
0,055%.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Относительное удлинение — показывает на сколько процентов изменилось тело
[Метр]
Относительное удлинение показывает какую часть от первоначальной длины составляет абсолютное удлинение. Часто измеряется в процентах, для этого просто надо умножить на 100%.
Относительного удлинению необходимо. С помощью него определяется, сможет ли материал при изменении своей длины разрушиться. Например: если взять металлическую трубку 10 метров и растянуть ее на 1метр, то она может разрушиться, но растянуть резиновую 100 метровую нить на 1 метр такого же сечения как и труба , то с ней ничего не произойдет. Относительное значение в первом случае будет 1/10*100%=10%, а во втором 1/10000*100%=0,01%
В Формуле мы использовали :
— Относительное удлинение тела
— Абсолютное удлинение тела
— Длина тела, после приложения на него силы
Модуль Юнга
Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.
Это свойство любого материала, и оно зависит от температуры и оказываемого давления.
В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.
Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.
Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.
Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.
Примеры значений модуля Юнга (упругости) для:
- (т.е. для резины он в 5 раз меньше стали)
Таблица
Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи “гигапаскалей” ([ГПа]; ).
Материал | Модуль Юнга E, [ГПа] |
---|---|
Алмаз | 1220 |
Алюминий | 69 |
Дерево | 10 |
Кадмий | 50 |
Латунь | 97 |
Медь | 110 |
Никель | 207 |
Резина | 0,9 (≈ 1 МПа, мегапаскаль) |
Сталь | 200 |
Титан | 107 |
Единица измерения и формулы
Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).
Формулы
Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.
Закон Гука
Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.
Закон Гука (этот описывает явления в теле, в дифференциальной форме):
Где:
- σ — механическое напряжение
- E — модуль Юнга (модуль упругости)
- ε — относительное удлинение
Закон Гука (этот описывает явления в теле)
Где:
- Fупр — сила упругости
- k × Δl — удлинение тела
Где:
- Fупр — сила упругости
- E — модуль Юнга (модуль упругости)
- S — площадь поперечного сечения
- l — первоначальная длина тела
- Δl — удлинение тела
Где:
- Fупр/S — механическое напряжение, обозначается как σ
- Δl/l — относительное удлинение, обозначается как ε
Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.
Другие формулы вычисления модуля Юнга (модуля упругости)
Где:
- E — модуль Юнга (модуль упругости)
- k — жёсткость тела
- l — первоначальная длина стержня
- S — площадь поперечного сечения
Либо можно выразить k (жёсткость тела):
Где:
- k — жёсткость тела
- E — модуль Юнга (модуль упругости)
- S — площадь поперечного сечения
- l — первоначальная длина стержня/тела
Пример решения задачи (через закон Гука):
Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.
Дано:
Будем искать через закон Гука (σ = E × ε).
Помним из закона Гука:
σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)
ε = Δl/l (а это относительное удлинение, обозначается как ε)
Подставляем в формулу (σ = E × ε):
Например, в нашей таблице такой модуль Юнга имеет кадмий.
Узнайте также про:
- Напряжённость электрического поля
- Законы Ньютона
- Закон сохранения энергии
Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.
Виды деформации
Деформация – это изменение формы, или размеров тела.
Есть несколько видов деформации:
- сдвиг;
- кручение;
- изгиб;
- сжатие/растяжение;
Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.
Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.
Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.
Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)
В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.
Растяжение пружины
Рассмотрим подробнее деформацию растяжения на примере пружины.
Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.
Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение
Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.
Сравним длину нагруженной пружины с длиной свободно висящей пружины.
[ large L_{0} + Delta L = L ]
Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).
[ large boxed{ Delta L = L — L_{0} }]
( L_{0} left(text{м} right) ) – начальная длина пружины;
( L left(text{м} right) ) – конечная длина растянутой пружины;
( Delta L left(text{м} right) ) – кусочек длины, на который растянули пружину;
Величину ( Delta L ) называют удлинением пружины.
Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.
Примечание: Отношение – это дробь. Относительное – значит, дробное.
[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]
( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.
Расчет силы упругости
Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.
Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.
Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.
Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо
Закон Гука
Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.
[ large boxed{ F_{text{упр}} = k cdot Delta L }]
Эту формулу назвали законом упругости Гука.
( F_{text{упр}} left( H right) ) – сила упругости;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости).
Какие деформации называют малыми
Закон Гука применяют для малых удлинений (деформаций).
Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.
Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.
Как рассчитать коэффициент жесткости
Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.
Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости
Так как силы взаимно компенсируются, в правой части уравнения находится ноль.
[ large F_{text{упр}} — m cdot g = 0 ]
Подставим в это уравнение выражение для силы упругости
[ large k cdot Delta L — m cdot g = 0 ]
Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:
[ large boxed{ k = frac{ m cdot g }{Delta L} }]
(g) – ускорение свободного падения, оно связано с силой тяжести.
Соединяем две одинаковые пружины
В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.
Параллельное соединение пружин
На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.
Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины
Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две параллельные пружины:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]
Умножим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{параллел}} = 2k_{1} } ]
Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной
Последовательное соединение пружин
Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.
Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.
На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).
Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений
Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины
Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).
Одна пружина:
[ large k_{1} cdot Delta L = m cdot g ]
Две последовательные пружины:
[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]
Так как правые части уравнений совпадают, левые части тоже будут равны:
[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]
Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:
[ large k_{text{послед}} cdot 2 = k_{1} ]
Разделим обе части полученного уравнения на число 2:
[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]
Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной
Потенциальная энергия сжатой или растянутой пружины
Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.
Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией
Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).
Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:
[ large boxed{ E_{p} = frac{k}{2} cdot left( Delta L right)^{2} }]
( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;
( Delta L left(text{м} right) ) – удлинение пружины;
( displaystyle k left(frac{H}{text{м}} right) ) – коэффициент жесткости (упругости) пружины.
Выводы
- Упругие тела – такие, которые сопротивляются деформации;
- Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
- Деформация – изменение формы, или размеров тела;
- Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
- Удлинение пружины – это разность ее конечной и начальной длин;
- Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
- Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
- Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
- А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.