Виды измерений
Вид измерений
Определение
Пример
Прямые
Значение искомой величины непосредственно измеряют
Измерение длины отрезка линейкой
Косвенные
Значение искомой величины вычисляют на основании прямых измерений других величин, входящих в формулы для вычислений
Вычисление площади прямоугольника по измеренным длине и ширине
Совокупные
Значение искомой величины вычисляют на основании известных значений одноименных величин, решая линейные уравнения
Взвешивание тела с помощью гирь
Совместные
Измерения двух или нескольких неодноименных величин проводятся одновременно для нахождения зависимости между ними
Измерение зависимости напряжения от силы тока (закон Ома)
Если в формулы для расчётов входят несколько измеряемых величин, каждая со своими погрешностями, возникает вопрос, а как оценить погрешность результата?
Погрешность суммы величин
Пусть в результате измерений получено:
$$ x = x_0 pm Delta x, y = y_0 pm Delta y $$
Найдём границы для суммы этих величин: z = x+y
$$ {left{ begin{array}{c} x_0- Delta x le x le x_0 + Delta x \ y_0 – Delta y le y le y_0 + Delta y end{array} right.} Rightarrow (x_0+y_0 )-( Delta x+ Delta y) le x + y le (x_0+y_0 )+( Delta x + Delta y) $$
(О правилах сложения двух неравенств, см. §36 данного справочника).
Получаем:
$$ z = z _0 pm Delta z: z_0 = x_0+y_0, Delta z = Delta x + Delta y $$
При сложении приближенных величин их абсолютные погрешности складываются.
Погрешность разности величин
Пусть в результате измерений получено:
$$x = x_0 pm Delta x, y = y_0 pm Delta y $$
Найдём границы для разности этих величин: z = x-y
$$ {left{ begin{array}{c} x_0 – Delta x le x le x_0 + Delta x \ y_0 – Delta y le y le y_0+ Delta y end{array} right.} Rightarrow {left{ begin{array}{c} x_0- Delta x le x le x_0+ Delta x \ -(y_0- Delta y) ge – y ge -(y_0+ Delta y)end{array} right.} Rightarrow $$
$$ Rightarrow {left{ begin{array}{c} x_0 – Delta x le x le x_0 + Delta x \ y_0 – Delta y le y le y_0+ Delta y end{array} right.} Rightarrow $$
$$ (x_0-y_0 )-( Delta x+ Delta y) le x-y le (x_0+y_0 )+( Delta x+ Delta y) $$
Получаем:
$$ z = z_0 pm Delta z: z_0 = x_0-y_0, Delta z = Delta x + Delta y $$
При вычитании приближенных величин их абсолютные погрешности складываются.
Внимание!
Как при сложении, так и при вычитании приближённых величин, их абсолютные погрешности складываются.
Поэтому относительная погрешность разности может оказаться значительно большей, чем погрешности уменьшаемого и вычитаемого. Разности в расчётных формулах ведут к уменьшению точности эксперимента.
Примеры
Пример 1. Найдите сумму и разность чисел x и y, а также относительные погрешности исходных величин и результатов:
$а) x = 8,7 pm 0,2; y = 5,3 pm 0,1$
$$ x_0 = 8,7, Delta x = 0,2 $$
$$ y_0 = 5,3, Delta y = 0,1 $$
Сумма:
$$ z = x+y = (8,7+5,3) pm (0,2+0,1) = 14,0 pm 0,3 $$
Разность:
$$ w = x-y = (8,7-5,3) pm (0,2+0,1) = 3,4 pm 0,3 $$
Относительные погрешности (округление с избытком):
$$ δ_x = frac{0,2}{8,7} cdot 100 text{%} approx 2,3 text{%}, δ_y = frac{0,1}{5,3} cdot 100 text{%} approx 1,9 text{%} $$
$$ δ_{x+y} = frac{0,3}{14,0} cdot 100 text{%} approx 2,2 text{%}, δ_{x-y} = frac{0,3}{3,4} cdot 100 text{%} approx 8,9 text{%} $$
$б) x = 1,47 pm 0,005; y = 1,338 pm 0,0005$
$$ x_0 = 1,47, Delta x = 0,005 $$
$$ y_0 = 1,338, Delta y = 0,0005 $$
Сумма:
$$ z = x+y = (1,47+1,338) pm (0,005+0,0005) = 2,808 pm 0,006 $$
Разность:
$$ w = x-y = (1,47-1,338) pm (0,005+0,0005) = 0,132 pm 0,006 $$
Относительные погрешности (округление с избытком):
$$ δ_x = frac{0,005}{1,47} cdot 100 text{%} approx 0,35 text{%}, δ_y = frac{0,0005}{1,338} cdot 100 text{%} approx 0,04 text{%} $$
$$ δ_{x+y} = frac{0,006}{2,808} cdot 100 text{%} approx 0,22 text{%}, δ_{x-y} = frac{0,006}{0,132} cdot 100 text{%} approx 4,6 text{%} $$
Пример 2. Найдите периметр прямоугольной площадки, если известны длины сторон (в м): a = 5, $12 pm 0,02$; b = 3, $17 pm 0,03$
Чему равна относительная погрешность периметра?
Периметр $P = 2(a+b) = 2(a_0+b_0 ) pm 2( Delta a+ Delta b)$
$$ a_0 = 5,12, b_0 = 3,17, Delta a = 0,02, Delta b = 0,03 $$
С учётом правил округления (см. §42 данного справочника):
$$ P = 2(5,12+3,17) pm 2(0,02+0,03) = 16,58 pm 0,1 approx 16,6 pm 0,1 (м) $$
Относительная погрешность:
$$ δ_P = frac{0,1}{16,6} cdot 100 text{%} approx ↑0,61 text{%} $$
Пример 3. Объём древесины с корой, поступившей в обработку, равен $0,78 pm 0,005 м^3$. Объём снятой коры $0,081 pm 0,001 м^3$. Чему равен объём полезной древесины?
$$ V_1 = 0,78 pm 0,005, V_2 = 0,081 pm 0,001 $$
$$ V = V_1-V_2 $$
$$ V_{10} = 0,78, V_{20} = 0,081, Delta V_1 = 0,005, Delta V_2 = 0,001 $$
$$V = (V_{10} – V_{20} ) pm (Delta V_1+ Delta V_2 ) $$
$$ V = (0,78-0,081) pm (0,005+0,001) = 0,699 pm 0,006 (м^3) $$
-
Действия над приближенными числами
При
сложении или вычитании чисел их абсолютные
погрешности складываются. Относительная
погрешность суммы заключена между
наибольшим и наименьшим значениями
относительных погрешностей слагаемых;
на практике принимается наибольшее
значение.
(a
b) = a
+ b
.
При
умножении или делении чисел друг на
друга их относительные погрешности
складываются.
;
При
возведении в степень приближенного
числа его относительная погрешность
умножается на показатель степени.
Погрешность
суммы:
на
практике при сложении приближенных
чисел поступают следующим образом:
– выделяют числа,
десятичная запись которых обрывается
ранее других и оставляют их без изменения;
– остальные
числа округляют по образцу выделенных,
сохраняя один или два запасных десятичных
знака;
– производят
сложение данных чисел, учитывая все
сохраненные знаки;
– полученный
результат округляют на один знак.
Пример.
найти
сумму приближенных чисел 0.348
0.1834 345.4 235.2 11.75 9.27 0.0849 0.0214 0.000354
.
Решение.
0.35 + 0.18 + 345.4 + 235.2 +
11.75 + 9.27 + 0.08 + 0.02 + 0.00 = 602.25 . После
округления получаем 602.2 .
Полная
погрешность результата
складывается
из трех слагаемых:
– суммы предельных
погрешностей исходных данных:
1=10-3+10-4+10-1+10-1+10-2
+10-2+10-4+10-4+10-6
= 0.221301 <
0.222
.-
абсолютной величины суммы ошибок (с
учетом их знаков) округления слагаемых:
2
=-0.002+0.0034+0.0049+0.0014+0.000354=
0.008054
0.009
– заключительной
погрешности округления результатов:
3 =
0.050 .
Следовательно,
= 1
+ 2
+ 3
0.222+0.009+0.050 = 0.281 <
0.3 и,
таким образом, искомая сумма равна 602.2
0.3 .
Погрешность
разности:
предельная
абсолютная погрешность разности (u
= x1
– x2)
равна
сумме предельных абсолютных погрешностей
уменьшаемого и вычитаемого:
u =
x1
+ x2
Отсюда предельная
относительная погрешность разности
где А
–
точное значение абсолютной величины
разности чисел х1
и
х2
.
Если
приближенные числа х1
и
х2
достаточно
близки друг к другу и имеют малые
абсолютные погрешности, то число А
–
мало. В этом случае из этой же формулы
следует, что предельная относительная
погрешность может быть весьма большой,
т.е. происходит потеря точности.
Пример.
Найти
разность двух чисел х1
= 47.132 и х2
= 47.111 .
Решение.
Разность
u = 47.132 –
47.111 = 0.021 . Предельная
абсолютная погрешность разности равна
u
=
0.0005+0.0005=0.001 .
Предельные
абсолютные погрешности вычитаемого,
уменьшаемого и разности равны:
x1
= 0.0005/47.132 = 0.00001
x2
= 0.0005/47.111 = 0.00001
u
= 0.001/0.021 = 0.05
Поэтому при
приближенных вычислениях полезно
преобразовывать выражения, вычисления
числовых значений которых приводит к
вычитанию близких чисел.
Погрешность
произведения:
относительная погрешность произведения
нескольких приближенных чисел, отличных
от нуля, не превышает суммы относительных
погрешностей этих чисел:
1
+
2
+ … + n
.
Поэтому
при вычислении произведения нескольких
приближенных чисел применяют следующие
правила:
– округляют
эти числа так, чтобы каждое из них
содержало на одну (или две) значащие
цифры больше, чем число верных значащих
цифр в наименее точном из сомножителей;
– в результате
умножения сохраняют столько значащих
цифр, сколько верных цифр имеется в
наименее точном из сомножителей.
Пример.
Найти
произведение х1
= 2.5 и х2
= 72.397 .
Решение.
После
округления имеем х1=2.5
и х2=72.4
.Т.е. u=x1x2=
2.572.4
= 181 .
Погрешность
частного:
относительная погрешность частного не
превышает суммы относительных погрешностей
делимого и делителя.
Пример.
Найти частное u
= 25.7 / 3.6,
если все написанные знаки делимого и
делителя верны.
Решение.
u = 25.7 /
3.6 = 7.14 . u
= x1
+ x2
= 0.05/25.7 + 0.05/3.6 = 0.002 + 0.014 = 0.016 . Так
как u = 7.14,
то
u
= 0.016
7.14 = 0.11 . Поэтому
u = 7.14
0.11 .
Пример.
Найти
относительную погрешность функции:
Решение.
Используя
формулы оценки погрешностей получаем
Из этой
формулы следует, что при х
1 может получиться очень большая
погрешность.
Соседние файлы в папке 2
- #
- #
- #
- #
- #
- #
- #
- #
ВИДЕО УРОК
Абсолютная погрешность.
Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.
Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.
Существует формула
абсолютной погрешности. Обозначим точное число буквой А, а буквой а –
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:
∆а = А – а.
ПРИМЕР:
В школе учится 374 ученика. Если округлить это число до 400,
то абсолютная погрешность измерения равна:
400 – 374 = 26.
ПРИМЕР:
На предприятии 1284 рабочих и
служащих. При округлении этого числа до 1300 абсолютная
погрешность составляет
1300 – 1284 = 16.
При округлении до 1280 абсолютная
погрешность составляет
1284 – 1280 = 4.
Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.
ПРИМЕР:
Торговые весы могут дать абсолютную погрешность, не
превышающую 5 г, а аптекарские – не превышающую одной сотой грамма.
Записывают
абсолютную погрешность числа, используя знак
±.
ПРИМЕР:
Длина рулона обоев составляет.
30 м ± 3
см.
Границу абсолютной
погрешности называют предельной абсолютной погрешностью.
Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.
ПРИМЕР:
Допустим, что при измерении коридора длиной в 20
м мы допустили абсолютную погрешность
всего только в 1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 18
см длины, мы тоже допустили абсолютную
погрешность в 1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 20
м ошибка в 1
см вполне допустима и неизбежна, но
на 18
см такая ошибка является очень грубой.
Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 20 м погрешность в 1 см
составляет
долю
измеряемой величины, а при измерении корешка книги погрешность в 1 см составляет
долю
измеряемой величины.
Делаем вывод, что измеряя корешок книги, имеющий 18
см длины и допустив погрешность в 1
см, можно считать измерение с большой ошибкой. Но если погрешность в 1
см была допущена при измерении коридора
длиной в 20
м, то это измерение можно считать максимально точным.
Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.
Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 0,5 мм.
ПРИМЕР:
Для измерения длины болта использованы метровая линейка с
делениями 0,5 см и линейка с
делениями 1 мм. В обоих случаях получен результат 3,5
см. Ясно, что в первом случае отклонение найденной длины 3,5
см от истинной, не
должно по модулю превышать 0,5 см, во втором случае
0,1 см.
Если этот же результат получится при измерении
штангенциркулем, то
p(l; 3,5) = |l – 3,5 ≤ 0,01|.
Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае ∆l = 0,5 и, следовательно,
3
≤ l ≤ 4,
в другом – ∆l = 0,1 и
3,4
≤ l ≤ 3,6.
ПРИМЕР:
Длина листа бумаги формата А4 равна (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно (650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.
РЕШЕНИЕ:
Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной погрешности не
превышает 1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.
При измерении длины листа абсолютная погрешность не
превышает 0,1 см на 29,7 см, то есть в процентном отношении это составляет
0,1
: 29,7 ∙ 100% ≈ 0,33%
измеряемой величины.
Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает
1 км
на 650 км, что в процентном соотношении составляет
1
: 650 ∙ 100% ≈ 0,15%
измеряемой величины.
Видим, что расстояние между городами измерено точнее, чем
длинна листа формата А4.
Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.
Относительная погрешность.
Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.
Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах.
Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.
ПРИМЕР:
Округлим дробь 14,7 до целых и найдём относительную погрешность приближённого
значения:
14,7 ≈ 15,
Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.
ПРИМЕР:
При измерении в (сантиметрах) толщины
b
стекла и длины l книжной полки
получили следующие результаты:
b ≈ 0,4 с
точностью до 0,1,
l ≈ 100 с
точностью до 0,1.
Абсолютная погрешность каждого из этих измерений не
превосходит 0,1. Однако 0,1 составляет
существенную часть числа 0,4 и
ничтожную часть числа 100. Это показывает, что качество второго
измерения намного выше, чем первого.
В результате измерения нашли,
что b ≈ 0,4 с точностью до 0,1, то
есть абсолютная погрешность измерения не превосходит 0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно
то есть относительная погрешность приближения не превосходит 25%.
Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит
Говорят, что в первом случае измерение выполнено с
относительной точностью до 25%,
а во втором – с относительной точностью до 0,1%.
ПРИМЕР:
Если взять абсолютную погрешность в 1
см, при измерении длины отрезков 10
см и 10
м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для
отрезка длиной в 10 см погрешность
в 1
см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, эта ошибка всего в 0,1%.
Чем меньше относительная погрешность
измерения, тем оно точнее.
Различают
систематические и случайные погрешности.
Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.
Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.
В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.
ПРИМЕР:
Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря – 50
г. Взвешивание показало 3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 50
г. Относительная погрешность не превосходит
50/3600 ≈
1,4%.
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.
В предыдущем примере
за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность 1,4%.
Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность
100 г, 150 г и вообще всякое
число, большее чем 50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 4,78 без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.
Предельная
абсолютная погрешность обозначается греческой буквой ∆ (<<дельта>>),
предельная относительная погрешность – греческой буквой δ
(<<дельта малая>>). Если приближённое число обозначить буквой а,
Правила округления.
На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.
ПРИМЕР:
Для х = 1,7 ± 0,2 относительная погрешность измерений равна:
ПРИМЕР:
Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 17,9 см. Какова предельная относительная погрешность этого
измерения ?
РЕШЕНИЕ:
Здесь а =
17,9 см. Можно принять ∆ = 0,1 см, так как с точностью
до 1 мм
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину). Относительная погрешность равна
Округляя, находим
ПРИМЕР:
Цилиндрический поршень имеет около 35
мм в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла 0,05% ?
РЕШЕНИЕ:
По условию, предельная относительная
погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная абсолютная
погрешность равна
или, усиливая, 0,02
мм.
Можно воспользоваться
формулой
Подставляя в формулу
а = 35,
𝛿 = 0,0005,
имеем
Значит,
∆
= 35 × 0,0005 = 0,0175 мм.
Действия над приближёнными числами.
Сложение и вычитание приближённых чисел.
Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.
ПРИМЕР:
Складываются приближённые числа
265 и 32.
РЕШЕНИЕ:
Пусть предельная погрешность первого есть 5,
а второго 1. Тогда предельная погрешность суммы равна
5
+ 1 = 6.
Так, если истинное значение первого есть 270,
а второго 33, то приближённая сумма
265
+ 32 = 297
на 6 меньше истинной
270
+ 33 = 303.
ПРИМЕР:
Найти сумму приближённых чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Предельная погрешность каждого слагаемого
0,00005.
Предельная погрешность суммы:
0,00005
∙ 9 = 0,00045.
Значит, в последнем (четвёртом) знаке суммы возможна ошибка до 5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 0,619,
здесь все знаки верные.
При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 1, 2, 3, 4 или даже на 5 единиц в ту и в другую сторону.
Например, первое
слагаемое может быть больше своего истинного значения на 4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.
Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 0,00045,
это произойдёт:
– когда истинная величина каждого слагаемого больше
приближённой величины на 0,00005;
– когда истинная величина каждого слагаемого меньше
приближённой величины на 0,00005.
Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 0,0000002% всех возможных случаев.
Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 0,07%
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 2% всех возможных случаев, а одну единицу –
примерно в 25%.
В остальных 75% случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.
ПРИМЕР:
Найти сумму точных чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Округлим их до тысячных и сложим:
0,091
+ 0,083 + 0,077 + 0,071 + 0,067
+ 0,062 + 0,059 + 0,056 + 0,053 = 0,619.
Предельная погрешность суммы:
0,0005
∙ 9 = 0,0045.
Приближённая сумма отличается от истинной на 0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.
Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет:
0,005
∙ 9 = 0,045.
Между тем получим:
0,09
+ 0,08 + 0,08 + 0,07 + 0,07
+ 0,06 + 0,06 + 0,06 + 0,05 = 0,62.
Истинная погрешность составляет только 0,0013.
Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.
ПРИМЕР:
Пусть предельная погрешность приближённого
уменьшаемого 85 равна 2,
а предельная погрешность вычитаемого 32 равна 3.
Предельная погрешность разности
85
– 32 = 53
есть
2
+ 3 = 5.
В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться
85
+ 2 = 87 и
32
– 3 = 29.
Тогда истинная разность есть
87
– 29 = 58.
Она на 5 отличается от
приближённой разности 53.
Относительная погрешность суммы и разности.
Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.
Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.
ПРИМЕР:
Найти предельную абсолютную и предельную относительную
погрешность суммы чисел:
24,4
+ 25,2 + 24,7.
РЕШЕНИЕ:
В каждом слагаемом суммы
24,4
+ 25,2 + 24,7 = 74,3
предельная относительная погрешность примерно одна и та
же, а именно:
0,05
: 25 = 0,2%.
Такова же она и для суммы.
Здесь предельная абсолютная погрешность равна 0,15,
а относительная
0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.
В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.
Относительные погрешности при сложении и вычитании
складывать нельзя.
Умножение и деление приближённых чисел.
При делении и умножении чисел требуется сложить
относительные погрешности.
ПРИМЕР:
Пусть перемножаются приближённые числа 50 и 20, и пусть предельная относительная погрешность первого
сомножителя есть 0,4%, а второго
0,5%.
Тогда предельная относительная погрешность произведения
50
× 20 = 1000
приближённо равна 0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть
50
× 0,004 = 0,2,
а второго
20
× 0,005 = 0,1.
Поэтому истинная величина произведения не больше чем
(50
+ 0,2)(20 + 0,1) = 1009,02,
и не меньше, чем
(50
– 0,2)(20 – 0,1) = 991,022.
Если истинная величина произведения есть 1009,2,
то погрешность произведения равна
1009,2
– 1000 = 9,02,
а если 991,02, то погрешность произведения равна
1000
– 991,02 = 8,98.
Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 9,02.
Предельная относительная погрешность равна
9,02
: 1000 = 0,902%,
то есть приближённо 0,9%.
Задания к уроку 16
- Задание 1
- Задание 2
- Задание 3
- Урок 1. Числовые неравенства
- Урок 2. Свойства числовых неравенств
- Урок 3. Сложение и умножение числовых неравенств
- Урок 4. Числовые промежутки
- Урок 5. Линейные неравенства
- Урок 6. Системы линейных неравенств
- Урок 7. Нелинейные неравенства
- Урок 8. Системы нелинейных неравенств
- Урок 9. Дробно-рациональные неравенства
- Урок 10. Решение неравенств с помощью графиков
- Урок 11. Неравенства с модулем
- Урок 12. Иррациональные неравенства
- Урок 13. Неравенства с двумя переменными
- Урок 14. Системы неравенств с двумя переменными
- Урок 15. Приближённые вычисления
Нам нужно на некоторое время оторваться от рассмотрения методов измерений и вернуться с погрешностям. Я знаю, погрешности любят не многие, но уметь работать с ними необходимо. Большинство современных измерительных приборов состоят из нескольких компонентов (узлов), которые объединены в единое целое. Мы не раз говорили, что итоговая погрешность измерения равна сумме погрешностей метода, методики, измерительных преобразователей, приборов, методов обработки результата. Но не разбирались, а как именно эта сумма вычисляется? Сегодня этим и займемся.
В статье не получится избежать математики, но она будет довольно простой.
Еще раз, кратко, о погрешностях
Давайте вспомним, что мы уже знаем о погрешностях из того, что нам сегодня потребуется. Прежде всего, погрешности можно разделить на абсолютную, относительную, приведенную
Приведенная погрешность отличается от относительной тем, что знаменателем является не истинное, а нормирующее значение величины. Чаще всего, в качестве нормирующего значения выступает верхний предел соответствующего поддиапазона измерительного прибора.
Я уже рассказывал, зачем потребовалась приведенная погрешность. Дело в том, что мы не можем по результату измерения и параметрам погрешности прибора определить истинное значение величины. Не смотря на то, что приведенные выше формулы позволяют, на первый взгляд, усомниться в этом утверждении. Однако, погрешности это случайные величины, работать с которыми нужно по правилам математической статистики. И это очень важно.
Вы можете даже возмутиться “Как так, мы же знаем, что погрешность может быть систематической и случайной! Получается, что и систематическая погрешность случайна? Автор ничего не перепутал?”. Нет, автор ничего не перепутал. Давайте разберемся и вы сами все увидите.
Действительно, погрешность измерительного прибора, да и собственно измерения, можно представить как сумму систематической и случайной погрешностей. Причем для систематическая погрешность может быть как неизменной, так и изменяющейся. Примером неизменной систематической погрешности является “смещение нуля”, например, смещение начального положения стрелки прибора относительно нулевого деления. Примером изменяющейся систематической погрешности может быть “смещение нуля” в цифровом приборе, например, зависящее от температуры.
Систематическая погрешность конкретного экземпляра прибора прогнозируема в конкретных условиях измерения. И мы можем провести процедуру калибровки (не путать с регулировкой!) для определения систематической погрешности. Проблема в том, что это будет касаться лишь конкретного экземпляра прибора в условиях метрологической лаборатории. Для другого экземпляра прибора, других условий, или через некоторое время, погрешность может измениться. Причем не только по величине, но и по знаку. Но он останется прогнозируемой. В отличии от погрешности случайной.
То есть, для измерительных приборов в целом, а не конкретного экземпляра в конкретных условиях, даже систематическая погрешность будет величиной случайной, задающей границы возможных погрешностей для каждого конкретного экземпляра. И в паспортах измерительных приборов погрешность указывается именно как максимальная, определяющая границы, а не точное значение погрешности.
Систематическая погрешность может быть уменьшена с помощью различных ухищрений. Точно так же, как случайная погрешность может быть снижена с помощью вычисления среднего арифметического. Но сегодня мы этих вопросов касаться не будем.
Погрешности узлов измерительных приборов
Все сказанное выше применимо не только к измерительным приборам в целом, но и к отдельным компонентам приборов. За исключением приведенной погрешности, конечно. Давайте рассмотрим самый простой пример – постоянный резистор. Например, металлопленочный резистор MBB0207 сопротивлением 100 кОм. Вот документация на него
Эти резисторы обладают точностью сопротивления 1%. То есть, для нашего резистора реальное сопротивление будет лежать в диапазоне от 99 кОм до 101 кОм. Но это еще не все. Любой резистор имеет ненулевое значение ТКС (температурный коэффициент сопротивления). В данном случае – 5 Ом на каждый градус Цельсия (для сопротивления 100 кОм). Но и это еще не все. Резисторы подвержены старению, причем скорость старения зависит от рассеиваемой резистором мощности. Для нашего резистора сопротивление может измениться а пределах 0.25% за 1000 часов работы при рассеивании номинальной мощности. И на 0.5% за 8000 часов. В документации все указано.
Таким образом, не только реальное сопротивление может отличаться от номинала, но оно зависит и от температуры, и от времени наработки. Давайте посмотрим, что это для нас означает. Пусть рабочая температура резистора достигает 50 градусов. Номинальное сопротивление указывается для 25 градусов, так что при 50 градусах сопротивление изменится на
5 * 25 = 125 Ом
что составляет 0.125%. С одной стороны, это мало, по сравнению с точностью сопротивления. Но, с другой стороны, это может потребоваться учитывать. 1000 часов это примерно 1 квартал (3 месяца) ежедневной работы по 8 часов в день. Не много, но изменение сопротивления может достигать 0.25%. Итого, для заданных рабочих условий через примерно 3 месяца работы точность сопротивления резистора будет не 1%, а 1.375%!
Несколько неожиданный результат для части читателей. Но совершенно закономерный. Прецизионные резисторы не только имеют более высокую начальную точность, но и меньший ТКС. Например, С2-29В группы С имеет ТКС 10ppm, что в 5 раз ниже. Прецизионные резисторы и меньше изменяют сопротивление при старении. Но и это еще не все. На сопротивление влияет и атмосферное давление. И влажность воздуха, что наиболее значимо для высокоомных резисторов. Сопротивление резистора зависит и от приложения механической нагрузки.
Но давайте не будем слишком углубляться. Все эти тонкости нужны профессионалам, которые разрабатывают высокоточные устройства. Большинству читателей достаточно иметь представление, что оказывает влияние на сопротивление резистора, которое указано его маркировкой.
Давайте теперь рассмотрим простейший делитель напряжения, например, 1:10. Верхнее плечо будет иметь сопротивление 900 кОм, а нижнее 100 кОм. Да, я знаю, что 900 кОм не входит в стандартный ряд, нам сейчас это не важно. Точность 1%, резисторы новые, температура 25 градусов. То есть, сопротивление резистора верхнего плеча будет лежать в диапазоне от 891 кОм до 909 кОм. А нижнего плеча, как мы уже считали, в диапазоне от 99 кОм до 101 кОм.
Пусть на делитель подано напряжение 10 В, какое напряжение мы можем получить на выходе? Расчетное, исходя из номинальных сопротивлений резисторов, 1 В. А с учетом погрешностей? Мы не можем точно сказать. Мы можем лишь определить границы диапазона, когда отклонения сопротивлений резисторов максимальны и имеют разные знаки. Выходное напряжение будет лежать в диапазоне от 0.98 В до 1.02 В.
Давайте оценим относительную погрешность выходного напряжения. В обоих случаях отклонение составляет 0.02 В. То есть, относительная погрешность (модуль относительной погрешности) 2%. Все точно так, как и говорил в статье про учет тепла про расходомеры. И все верно, но с одним небольшим нюансом – это предельные границы, максимальная погрешность, самый плохой случай.
Суммирование арифметическое и геометрическое
Приведенный выше пример определения погрешности делителя напряжения является пессимистичным. Такой пессимизм действительно бывает нужен для задач требующих максимальной точности. Но во многих случаях достаточной будет оценка “типового случая”. Что же это за случай такой?
Давайте вспомним, что даже систематическая погрешность для каждого отдельного экземпляра будет случайной величиной для большой выборки (например, партии измерительных приборов или резисторов)
Если измерить сопротивления резисторов в большой партии и построить график плотности вероятности (гистограмму), то мы увидим хорошо знакомое нам нормальное распределение. Часть резисторов будет иметь сопротивление выше номинала (отклонение положительное), часть ниже (отклонение отрицательное). Для большинства резисторов отклонения будут малы, значительно меньше предельно допустимой погрешности. Резисторы, отклонение сопротивления которых превышает установленные границы (в нашем примере 1%) являются браком.
Эти границы, которые заданы как предельная величина отклонения, являются одновременно и доверительным интервалом. Мы видим, что вероятность рассмотренных ранее предельных случаев меньше, чем вероятность малых отклонений. Поэтому и отклонение выходного напряжения, ожидаемое, вероятно будет меньше, чем предельные случаи. И это действительно так.
Давайте вспомним, что в теории вероятности суммирование статистически независимых (некоррелированных) случайных величин осуществляется путем сложения их дисперсий. Отклонения сопротивлений наших резисторов действительно независимы и, как мы уже видели, являются случайными в большой партии. А значит, мы можем выполнять суммирование отклонений, погрешностей, как суммирование дисперсий.
На практике более привычным является среднеквадратичное отклонение, которое равняется квадратному корню из дисперсии. И мы получаем классическую формулу геометрической суммы. Поскольку для резисторов погрешность указана как относительная, то как сумму относительных погрешностей. Вот так это выглядит в общем виде
Да, корень квадратный из суммы квадратов. И мы можем сказать, для нашего делителя напряжения итоговая погрешность равна 1.41%, а не 2%. Это более оптимистичный вариант оценки погрешности, который можно назвать тем самым “типовым случаем”. Повторю, что такое определение суммарной погрешности возможно только для независимых погрешностей, причем с нормальным законом распределения плотности вероятности. Иначе формула будет иной. Кроме того, вспомним, что доверительный интервал суммы не равен сумме доверительных интервалов.
А теперь подумаем, являются ли отклонения сопротивлений резисторов вызванные изменением температуры независимыми? Это не такой простой вопрос. Но во многих случаях их нельзя считать независимыми. А значит, для суммирования нам придется использовать обычное арифметическое суммирование. Другими словами, мы должны по разному учитывать влияние различных составляющих погрешности каждого компонента на итоговую погрешность. Неверно просто взять суммарную погрешность отдельного компонента и рассчитать итоговую погрешность прибора через геометрическую сумму.
Это верно не только для вычисления погрешности измерительного прибора, но и для оценки погрешности всего измерительного эксперимента. То есть, погрешность измерения некоторой величины (прямая или косвенная) будет вычисляться как сумма всех погрешностей. Причем сумма геометрическая. Но некоторые составляющие этой погрешности могут суммировать и арифметически.
Коротко о записи результатов измерений с погрешностью
Существует старый спор между сторонниками “много знаков лучше” и сторонниками “без лишних знаков”. Метрология на стороне последних.
Как вы помните, результат измерений может быть весьма “точным” по виду, но весьма посредственным по своему содержанию. Магия большого количества отображаемых на дисплее цифрового прибора цифр совратила не мало неокрепших умов. Разрешающая способность может быть большой, но вот точность не обязательно соответствует разрядности. А о том, что погрешность прибора определяется суммой погрешностей, забывают многие.
Запись результата измерения, если говорить строго, должна включать в себя и указание погрешности. Причем запись не должна вызывать ложного чувства повышенной точности. Например,
12.5 В ± 1 В
неправильно, так как десятые доли вольта указанная погрешность делает недостоверными. Правильно будет
12 В ± 1 В
Другой пример,
134 В ± 1%
правильный, так как 1% равняется 1.34 В, что делает последнюю цифру результата достоверной. Но
134 В ± 10%
будет неверно, так как абсолютное значение погрешности составит 13.4 В, а значит, последняя цифра результата недостоверна. Правильно будет
130 В ± 10%
Это кажется мелочами и излишним педантизмом, но это не так. При этом результаты измерений, которые используются в дальнейших расчетах для получения итогового результата, не должны округляться. Округляется только собственно итоговый результат. Дело в том, что округление промежуточных результатов вычислений и измерений вносит дополнительную погрешность. А ошибки имеют свойство накапливаться.
О погрешности равной половине цены деления шкалы
Весьма распространенным заблуждением является утверждение, что погрешность измерительного прибора всегда равна половине деления шкалы, половине цены деления. Это верно лишь для случаев, когда в паспорте прибора нет указания погрешности в явном виде. Если погрешность указана явно, следует руководствоваться именно ей, а не вглядываться деления шкалы!
Заключение
Да, как всегда кратко и довольно упрощенно. Но затронутые сегодня вопросы являются важными. Причем именно с практической точки зрения.