Тригонометрические уравнения
Тригонометрические уравнения. В составе экзамена по математике в первой части имеется задание связанное с решением уравнения — это простые уравнения, которые решаются за минуты, многие типы можно решить устно. Включают в себя: линейные, квадратные, рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения.
В этой статье мы рассмотрим тригонометрические уравнения. Их решение отличается и по объёму вычисления и по сложности от остальных задач этой части. Не пугайтесь, под словом «сложность», имеется виду их относительную сложность по сравнению с другими заданиями.
Кроме нахождения самих корней уравнения, необходимо определить наибольший отрицательный, либо наименьший положительный корень. Вероятность того, что вам на экзамене попадёт тригонометрическое уравнение, конечно же, мала.
Их в данной части ЕГЭ менее 7%. Но это не означает, что их нужно оставить без внимания. В части С тоже необходимо решить тригонометрическое уравнение, поэтому хорошо разобраться с методикой решения и понимать теорию просто необходимо.
Понимание раздела «Тригонометрия» в математике во многом определяет ваш успех при решении многих задач. Напоминаю, что ответом является целое число или конечная десятичная дробь. После того, как получите корни уравнения, ОБЯЗАТЕЛЬНО сделайте проверку. Много времени это не займёт, а вас избавит от ошибки.
В будущем мы также рассмотрим и другие уравнения, не пропустите! Вспомним формулы корней тригонометрических уравнений, их необходимо знать:
Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.
Алгоритм восстановления этих значений прост, он также приведён в теории, полученной вами во втором письме после подписки на рассылку. Если ещё не подписались, сделайте это! В будущем также рассмотрим, как эти значения можно определить по тригонометрической окружности. Не даром её называют «Золотое сердце тригонометрии».
Сразу поясню, во избежание путаницы, что в рассматриваемых ниже уравнениях даны определения арксинуса, арккосинуса, арктангенса с использованием угла х для соответствующих уравнений: cosx=a, sinx=a, tgx=a, где х может быть и выражением. В примерах ниже у нас аргумент задан именно выражением.
Итак, рассмотрим следующие задачи:
Найдите корень уравнения:
В ответе запишите наибольший отрицательный корень.
Решением уравнения cos x = a являются два корня:
Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.
Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.
Общая рекомендация для всех подобных задач: для начала берите диапазон n от – 2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: – 3 и 3, – 4 и 4 и так далее.
При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5
При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5
При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5
При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5
При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5
Получили, что наибольший отрицательный корень равен –1,5
В ответе напишите наименьший положительный корень.
Решением уравнения sin x = a являются два корня:
Либо (он объединяет оба указанные выше):
Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от – 90 о до 90 о синус которого равен a.
Выразим x (умножим обе части уравнения на 4 и разделим на Пи):
Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n мы получим отрицательные корни. Поэтому будем подставлять n = 0,1,2 …
При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4
При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6
При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12
Проверим при n = –1 х = (–1) –1 + 4∙(–1) + 3 = –2
Значит наименьший положительный корень равен 4.
В ответе напишите наименьший положительный корень.
Решением уравнения tg x = a является корень:
Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.
Выразим x (умножим обе части уравнения на 6 и разделим на Пи):
Найдём наименьший положительный корень. Подставим значения n = 1,2,3. Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:
Таким образом, наименьший положительный корень равен 0,25.
Определение котангенса: Арккотангенсом числа a (a – любое число) называется угол x принадлежащий интервалу (0;П), котангенс которого равен a.
Здесь хочу добавить, что в уравнениях в правой части может стоять отрицательное число, то есть тригонометрическая функция от аргумента может иметь отрицательное значение. Если в ходе решения вы не сможете определить угол, например, для
то данные формулы вам помогут:
Спасибо за внимание, учитесь с удовольствием!
Найдите наибольший отрицательный корень уравнения
Найдите наибольший отрицательный корень уравнения:
Решением уравнения cosx=a являются два корня:
Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.
Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.
Общая рекомендация для всех подобных задач: для начала берите диапазон n от –2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: –3 и 3, –4 и 4 и так далее. Вычисляем:
При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5
При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5
При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5
При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5
При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5
Получили, что наибольший отрицательный корень равен –1,5
Найдите наименьший положительный корень уравнения:
Решением уравнения sin x = a являются два корня:
Либо (он объединяет оба указанные выше):
Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от –90 о до 90 о синус которого равен a.
Значит
Выразим x (умножим на 4 и разделим на Пи):
Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n получим отрицательные корни. Поэтому будем подставлять n=0,1,2 …
При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4
При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6
При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12
Проверим при n=–1 х=(–1) –1 + 4∙(–1) + 3 = –2
Значит наименьший положительный корень равен 4.
Найдите наименьший положительный корень уравнения:
Решением уравнения tg x = a является корень:
Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.
Значит
Выразим x (умножим на 6 и разделим на Пи):
Найдём наименьший положительный корень. Подставим значения n=0,1,2,3 … Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:
Таким образом, наименьший положительный корень равен 0,25.
Решение №1803 Найдите корень уравнения cos(π(x−7)/3)=1/2.
Найдите корень уравнения .
В ответе запишите наибольший отрицательный корень.
x1 = 1 + 7 + 6n = 8 + 6n
n = –2, x = 8 + 6·(–2) = –4
Ответ: –4.
Подробное решение похожего задания здесь .
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 0 / 5. Количество оценок: 0
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время
В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.
[spoiler title=”источники:”]
http://matematikaege.ru/uravneniya/najdite-naibolshij-otricatelnyj-koren-uravneniya.html
[/spoiler]
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Тригонометрические уравнения с отрицательным аргументом
Методы решения тригонометрических уравнений.
1. Алгебраический метод.
( метод замены переменной и подстановки ).
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Тригонометрические уравнения — формулы, решения, примеры
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| leq 1` имеет бесконечное множество решений.
Формула корней: `x=pm arccos a + 2pi n, n in Z`
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + pi n, n in Z`
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + pi n, n in Z`
Формулы корней тригонометрических уравнений в таблице
Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,
делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.
Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
- `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.
Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a>=cos varphi`, ` frac b> =sin varphi`, `frac c>=C`, тогда:
`cos varphi sin x + sin varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos varphi sin x+sin varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `frac <1+cos x>=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=pi n`, `n in Z`
- `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.
Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.
Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
источники:
http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij
http://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/trigonometricheskie-uravnenija/
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Содержание статьи:
- 1 Простейшие тригонометрические уравнения
- 2 Формулы корней тригонометрических уравнений в таблице
- 3 Методы решения тригонометрических уравнений
- 3.1 Алгебраический метод.
- 3.2 Разложение на множители.
- 3.3 Приведение к однородному уравнению
- 3.4 Переход к половинному углу
- 3.5 Введение вспомогательного угла
- 3.6 Дробно-рациональные тригонометрические уравнения
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`
Таблица арксинусов
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| leq 1` имеет бесконечное множество решений.
Формула корней: `x=pm arccos a + 2pi n, n in Z`
Таблица арккосинусов
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + pi n, n in Z`
Таблица арктангенсов
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + pi n, n in Z`
Таблица арккотангенсов
Формулы корней тригонометрических уравнений в таблице
Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,
делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.
Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:
`frac {sin^2 x}{cos^2 x}+frac{sin x cos x}{cos^2 x} — frac{2 cos^2 x}{cos^2 x}=0`
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
- `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.
Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:
`frac a{sqrt {a^2+b^2}} sin x +` `frac b{sqrt {a^2+b^2}} cos x =` `frac c{sqrt {a^2+b^2}}`.
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a{sqrt {a^2+b^2}}=cos varphi`, ` frac b{sqrt {a^2+b^2}} =sin varphi`, `frac c{sqrt {a^2+b^2}}=C`, тогда:
`cos varphi sin x + sin varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:
`frac {3 sin x} {sqrt {3^2+4^2}}+` `frac{4 cos x}{sqrt {3^2+4^2}}=` `frac 2{sqrt {3^2+4^2}}`
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos varphi sin x+sin varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`sin (x+varphi)=2/5`,
`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `frac {sin x}{1+cos x}=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
`frac {sin x}{1+cos x}=` `frac {(1-cos x)(1+cos x)}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {1-cos^2 x}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {sin^2 x}{1+cos x}`
`frac {sin x}{1+cos x}-` `frac {sin^2 x}{1+cos x}=0`
`frac {sin x-sin^2 x}{1+cos x}=0`
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=pi n`, `n in Z`
- `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.
Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.
Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
Материалы по теме:
- Формулы квадратного и кубического уравнения
- Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами (конкретный пример)
- Решение уравнений
- Производная функции (конкретные примеры).
Загрузка…
урок 5. Математика ЕГЭ
Тригонометрические уравнения
Тригонометрия – одна из самых важных тем на ЕГЭ по профильной математике. Она может встретиться в №1 (простейшие уравнения), №4 (преобразование выражений, в том числе тригонометрических), знание свойств тригонометрических функций может пригодится в №9, №11 (производные) и в задании из второй части №12 (тригонометрические уравнения).
Как видите, потенциально хорошие знания по тригонометрии могут принести вам до 6 первичных баллов на ЕГЭ. Конечно, вряд ли тригонометрия будет сразу во всех перечисленных номерах, но без нее написать хорошо профильную математику будет сложно.
Самой сложной темой из тригонометрии являются тригонометрические уравнения. Здесь вам понадобятся все ваши умения по работе с тригонометрической окружностью, знание тригонометрических формул, умение работать с тригонометрическими выражениями и переводить градусы в радианы и наоборот. Тригонометрические уравнения почти всегда попадаются в 12-м номере ЕГЭ, а это уже вторая часть, и за это задание дают целых два первичных балла.
Что такое тригонометрические уравнения?
Итак, если в уравнении переменная (x) (или какое-то выражение от (x)) содержится внутри функций синуса, косинуса, тангенса или котангенса, то такое уравнение называется тригонометрическим. Например:
$$3sin(2x)-2cos(x)^2=0;$$
Но будьте внимательными, если уравнения имеет вид:
$$cos(x)+2x=3;$$
То такое уравнение уже будет называться смешанным, так как в нем есть и тригонометрическая функция ((cos(x))), и линейная ((2x)). Такое уравнение уже значительно сложнее, и в ЕГЭ они если и встречаются, то очень редко. Здесь смешанные уравнения мы рассматривать не будем.
Но начинать изучение мы будем с простейших тригонометрических уравнений. Это фундамент, на котором строится все остальное. Простейшие уравнения имеют такой вид:
$$sin(f(x))=a;$$
$$cos(f(x))=a;$$
$$tg(f(x))=a;$$
$$ctg(f(x))=a;$$
где (a) – некоторое число, а (f(x)) – некоторое выражение, зависящее от (x);
Примеры простейших тригонометрических уравнений:
$$sin(x)=frac{1}{2};$$
$$cos(3x)=-1;$$
Как решать простейшие тригонометрические уравнения?
Существует два основных метода решения:
- При помощи единичной окружности;
- С использованием готовых формул;
Лично я сторонник решения при помощи единичной окружности. С использованием формул решать, на мой взгляд, не очень удобно, потому что нужно их учить и теряется, как и при любой зубрежке, элемент понимания того, что ты делаешь. Но мы разберем оба способа.
Решение тригонометрического уравнения с синусом на окружности
Здесь необходимо идеальное знание тригонометрической окружности. Если его нет (а без нее в тригонометрии, в любом случае, делать нечего), то рекомендую почитать про нее по ссылке, либо же переходите сразу к методу решения через формулы.
Будем учиться на примере простейшего тригонометрического уравнения:
Пример 1
$$sin(x)=frac{1}{2};$$
Что такое решить уравнение? Значит найти такие значения углов (x), синус от которых будет равен (frac{1}{2}).
Чтобы найти эти самые углы, нарисуем тригонометрическую окружность. (Рис.1)
Рис.1. Тригонометрические уравнения с синусом
На оси синусов (вертикальная ось) отметим значение (frac{1}{2}), обозначим эту точку за (K).
Для того, чтобы понять, какие углы соответствуют этому значению, необходимо провести перпендикуляр (прямая (a)) к оси синусов через точку (K).
Этот перпендикуляр пересечет нашу единичную окружность в двух точках (M) и (N).
Эти точки как раз и будут соответствовать углам, синус от которых будет равен (frac{1}{2}).
На рисунке 1 эти углы отмечены как (angle{MOA}) и (angle{NOA}).
Понятное дело, что мы с вами не можем точно понять по рисунку, что это за углы. Для этого нам понадобится очень точный рисунок на миллиметровке. В нашем случае рисунок показывает нам, что оказывается, есть как минимум два угла (angle{MOA}) и (angle{NOA}), синус от которых будет (frac{1}{2}).
А чтобы найти эти самые углы, мы воспользуемся таблицей значений тригонометрических функций. Видим, что синус равен (frac{1}{2}) от угла в (30^o) или, если в радианах,(frac{pi}{6}).
Рис.2. Таблица значений тригонометрических функций
Но в таблице дан только один угол, синус от которого (frac{1}{2}). И этот угол, если вспомнить, что все положительные углы на единичной окружности отсчитываются от отрезка (OA) против часовой стрелки, судя по всему, соответствует углу (angle{MOA}).
$$x_{1}=frac{pi}{6};$$
А где же взять значение второго угла (angle{NOA})?
И тут нам опять поможет единичная окружность. Посмотрите на рисунок 1: он абсолютно симметричен относительно оси синусов, его можно сложить, как открытку, и правая часть окружности полностью совпадет с левой. Это значит, что углы (angle{MOA}) и (angle{KOC}) равны геометрически:
$$angle{MOA}=angle{KOC}=30^o=frac{pi}{6};$$
Этот интуитивный факт можно строго доказать из равенства треугольников (triangle{MKO}) и (triangle{NKO}).
Итак, из равенства (angle{MOA}=angle{KOC}) можно легко найти угол (angle{NOA}):
$$angle{NOA}=180-angle{KOC}=180-30=150^o;$$
Или в радианах:
$$angle{NOA}=pi-angle{KOC}=pi-frac{pi}{6}=frac{6pi-pi}{6}=frac{5pi}{6};$$
Мы нашли значения обоих углов. Получается, что теперь можем записать значения искомого в уравнении (x):
$$x_{1}=30^o=frac{pi}{6};$$
$$x_{2}=150^o=frac{5pi}{6};$$
Но, к сожалению, ответ пока записывать рано. Потому что есть еще один очень важный момент!
Если вы внимательно изучали предыдущие темы по тригонометрии, то должны знать, что если прибавить к углам (angle{MOA}) и (angle{NOA}) полный оборот ((360^p) или (2pi)), то мы получим новые углы равные соответственно (30^o+360^o=390^o) и (150^o+360^o=510^o), значение синуса которых тоже будет (frac{1}{2})! Так как эти углы тоже соответствуют точкам (M) и (N).
Кроме того, я могу прибавить не один оборот, а хоть миллион оборотов, и опять попаду в те же самые точки (M) и (N), соответствующие синусу (frac{1}{2}). А углы еще бывают отрицательные, и еще можно вычитать полные обороты и опять попадать в эти точки.
Другими словами, у функции синуса есть период, равный ((360^o=2pi)), то есть каждый полный оборот значение синуса будет повторяться.
Для нас это все означает, что существует БЕСКОНЕЧНОЕ количество углов, синус от которых будет (frac{1}{2}) c периодом (360^o=2pi)).
И вот теперь мы можем записать ответ. Он записывается в виде правила, которое описывает это бесконечное количество решений нашего уравнения (правил у нас будет два, каждое соответствует точкам (M) и (N)). И запишу я ответ в радианах, так как в градусах его никто не пишет:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Обратите внимание, что к нашим первоначальным корням (x_{1}=30^o=frac{pi}{6}) и (x_{2}=150^o=frac{5pi}{6}) теперь прибавляется слагаемое (2pi*n), где (n) – это некоторое целое число. Подставляя вместо (n) различные целые числа, вы будете получать углы, удовлетворяющие нашему уравнению. Например, при (n=3) получим корни:
$$x_{1}=frac{pi}{6}+2pi*3=frac{pi}{6}+6pi=frac{37pi}{6};$$
$$x_{2}=frac{5pi}{6}+2pi*3=frac{5pi}{6}+6pi=frac{41pi}{6};$$
А при (n=-2) корни:
$$x_{1}=frac{pi}{6}+2pi*(-2)=frac{pi}{6}-4pi=-frac{23pi}{6};$$
$$x_{2}=frac{5pi}{6}+2pi*(-2)=frac{5pi}{6}-4pi=-frac{19pi}{6};$$
И так можно подставлять абсолютно любые (n) и получать корни.
Таким образом, тригонометрические уравнения обычно имеют бесконечное количество решений, которые записываются в виде некоторых правил, как в нашем примере. Запомните это, почему-то немногие это понимают.
Ответ:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z.$$
Пример 2
$$sin(x)=-frac{sqrt{2}}{2};$$
Этот пример так подробно, как предыдущий, разбирать не будем, а только распишем алгоритм решения:
- Рисуем тригонометрическую окружность;
- Отмечаем примерное значение (-frac{sqrt{2}}{2}approx-frac{1,4}{2}=-0,7) на оси синусов в точке (P);
- Проводим перпендикуляр к оси синусов через точку (P);
- Получили две точки пересечения с единичной окружностью (F) и (T);
- Согласно построению, углы (angle{AOF}) и (angle{AOT}) искомые (показаны на рис. 3 синим цветом): синус от них будет равен (-frac{sqrt{2}}{2}). Не забываем отсчитывать углы от отрезка (OA) ПРОТИВ часовой стрелки, здесь углы будут тупыми, как показано на рисунке;
- Выяснили при помощи окружности, что нас устраивает как минимум два значения (x) (угол (angle{AOF}) и (angle{AOT}));
- Внимание! Осталось найти значения этих углов. И вот тут у нас загвоздка, так как значение синуса у нас отрицательное, и его нет в таблице стандартных углов. Как же найти углы?
Но зато в таблице есть значение (frac{sqrt{2}}{2})! (См.Рис. 2)
Проделаем и отметим на окружности все предыдущие шаги, как будто мы решаем уравнение (sin(x)=frac{sqrt{2}}{2}). Теперь все происходит в верхней половине окружности. Обозначим углы, синус от которых (frac{sqrt{2}}{2}) за (angle{MOA}) и (angle{NOA}). Эти углы мы найти можем, так как значение синуса (frac{sqrt{2}}{2}) есть в таблице стандартных углов:
$$angle{MOA}=45^o=frac{pi}{4};$$
Аналогично примеру №1 находим:
$$angle{NOA}=180^o-angle{NOC}=180^o-45^o=135^o=frac{3pi}{4};$$Получилась абсолютно симметричная картина относительно горизонтальной оси (оси косинусов). (См. Рис. 3). Если согнуть рисунок по горизонтальной оси, то верхняя половина единичной окружности точно совпадет с нижней. Это значит, что (angle{MOA}=angle{FOA}) и (angle{TOA}=angle{NOA}) (углы показаны на рис.3. зелёным цветом).
Тогда согласно рис.3 мы можем выразить искомые углы:
$$angle{AOF}=360^o-angle{FOA}=360^o-angle{MOA}=360^o-45^o=315^o=2pi-frac{pi}{4}=frac{7pi}{4};$$
$$angle{AOT}=360^o-angle{TOA} =360^o-angle{NOA}=360^o-135^o=225^o=2pi-frac{3pi}{4}=frac{5pi}{4};$$ - Углы найдены, добавляем к каждому период (2pi*n) и записываем ответ.
Ответ:
$$x_{1}=frac{5pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=frac{7pi}{4}+2pi*n, quad n in Z;$$
Важное замечание!Напоминаю, что углы на тригонометрической окружности можно отсчитывать от отрезка (OA) и ПО часовой стрелке, только тогда они будут со знаком минус. А для нас это прекрасная новость, ведь тогда:
$$angle{FOA}=-angle{MOA}=-45^o=-frac{pi}{4};$$
$$angle{TOA}=-angle{NOA}=-135^o=-frac{3pi}{4};$$
И ответ на пример №2 можно записать в другом виде через углы (angle{FOA}) и (angle{TOA}), отсчитанным против часовой стрелки:
Ответ:
$$x_{1}=-frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
Абсолютно без разницы в каком виде записать ответ в примере №2, по сути, первый и второй вариант ответа это одно и то же. Напоминаю, что ответы в тригонометрии мы записываем в виде правила, которому подчиняются бесконечное количество углов. Правило одно и то же, и задает одни и те же углы, только разная точка отсчета, к которой прибавляется период (2pi*n.) Попробуйте на бумаге поподставлять различные значения (n) и туда, и туда. Убедитесь сами, что корни будут получаться одинаковые.
Я бы использовал второй вариант написания ответа, на мой взгляд, он легче.
Пример 3
$$sin(x)=1;$$
Решим вот такое интересное тригонометрическое уравнение.
- Рисуем единичную окружность;
- На оси синусов отмечаем значение (1);
- Проводим перпендикуляр к оси синусов через (1);
- Наш перпендикуляр пересечет окружность только в одной точке! На Рис.4. эта точка отмечена как (B);
- Раз у нас всего лишь одна точка, значит и угол будет один. Точка (B) соответствует углу (90^o=frac{3pi}{2});
- Записываем ответ, не забывая про период;
Ответ:(x=frac{3pi}{2}+2pi*n, quad n in Z;)
Пример 4
$$sin(x)=5;$$
Это пример-ловушка. Дело в том, что (sin(x)) – это функция ограниченная. Синус не может принимать значения большие (1) и меньшие (-1):
$$sin(x)in[-1;1];$$
Этот факт следует из определения синуса. Его нужно запомнить и быть внимательным.
Арксинус. Обратная тригонометрическая функция синусу
И разберем последнее типовое тригонометрическое уравнение с синусом:
Пример 5
$$sin(x)=frac{1}{3};$$
Алгоритм решения здесь такой же. Не будем четвертый раз повторяться.
Но здесь есть большая проблема. Дело в том, что значение синуса (frac{1}{3}) не табличное, его нет в таблице стандартных углов! Как же тогда искать углы, синус от которых будет (frac{1}{3})?
Чтобы было возможно решать такие тригонометрические уравнения без калькулятора, люди придумали дополнительную функцию, которую назвали арксинус.
(arcsin(frac{1}{3})) – это обозначение такого угла, синус от которого равен (frac{1}{3}).
$$sin(arcsinleft(frac{1}{3}right))=frac{1}{3};$$
В общем случае (arcsin(a)) – это угол, синус от которого равен (a). Где (ain[-1;1]), так как значения синуса принадлежат промежутку ([-1;1].)
$$sin(arcsin(a))=a;$$
Кстати, для арксинуса справедлива очень важная формула:
$$mathbf{arcsin(-a)=-arcsin(a);}$$
Запомните ее, мы еще с ней встретимся.
В общем, арксинус – это просто обозначение угла. Но так как в предыдущих примерах мы выяснили, что практически любому значению синуса соответствует как минимум два угла, то какой из этих углов это арксинус?
Посмотрите выше на рис. 5. Значению (frac{1}{3}) соответствует два угла (angle{MOA}) и (angle{NOA}), какой именно угол из этих двух будет равен (arcsin(frac{1}{3}))?
Для того, чтобы не было такой неопределённости, и чтобы арксинусу (frac{1}{3}) однозначно соответствовал ровно один угол, придумали ограничения, накладываемые на функцию арксинуса:
$$arcsin(a)in[-frac{pi}{2};frac{pi}{2}];$$
То есть арксинусы – это углы, обязательно лежащие в промежутке ([-frac{pi}{2};frac{pi}{2}].). На рисунке промежуток показан фиолетовым цветом.
Тогда в нашем примере:
$$angle{MOA}=arcsin(frac{1}{3});$$
Для того, чтобы найти (angle{NOA}), нужно просто из геометрических соображений из угла (180^o=pi) вычесть угол (angle{NOB}=angle{MOA}=arcsin(frac{1}{3})):
$$angle{NOA}=pi-arcsin(frac{1}{3});$$
Добавляем к получившимся углам период и получаем:
Ответ:
$$angle{MOA}=arcsin(frac{1}{3})+2pi*n, quad n in Z;$$
$$angle{NOA}=pi-arcsin(frac{1}{3})+2pi*n, quad n in Z.$$
Решение тригонометрического уравнения с косинусом на окружности
На самом деле, уравнения с косинусом мало чем отличаются от уравнений с синусом. Рассмотрим алгоритм решения на примере:
Пример 6
$$cos(x)=frac{1}{2};$$
- Рисуем единичную окружность;
- Отмечаем на линии косинусов (горизонтальная линия) значение (frac{1}{2}) в точке (P);
- Проводим перпендикуляр (a) к линии косинусов через точку (P);
- Перпендикуляр (a) пересечет окружность в точках (K) и (L);
- Точки (K) и (L) соответствуют углам (angle{KOA}) и (angle{LOA});
- Косинус от углов (angle{KOA}) и (angle{LOA}) будет равен (frac{1}{2}) по построению;
- Осталось найти значение этих углов. Смотрим в таблицу стандартных значений и находим, что косинус от угла (60^o=frac{pi}{3}) будет как раз равен (frac{1}{2});
- Тогда, держа в голове, что углы отсчитываются ПРОТИВ часовой стрелки от отрезка (OA) делаем вывод, что (angle{KOA}=60^o=frac{pi}{3};)
- Угол (angle{LOA}) находим из соображения симметрии картинки относительно горизонтальной оси косинусов: (angle{LOA}=-angle{KOA}=-60^o=-frac{pi}{3}.) Знак минус появляется потому что (angle{LOA}) мы отсчитываем от отрезка (OA) ПО часовой стрелке.
- Мы нашли углы, косинус от которых будет равен (frac{1}{2}), добавляем период (2pi*n) и записываем ответ;
Ответ:
$$x_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Тригонометрические уравнения с косинусом легче, чем с синусом: находишь один угол, а второй просто записываешь со знаком минус из горизонтальной симметрии.
Пример 7
$$cos(x)=- frac{sqrt{3}}{2};$$
- Рисуем тригонометрическую окружность;
- Отмечаем на линии косинусов примерное значение (-frac{sqrt{3}}{2}approx-frac{1,7}{2}=-0,85) в точке (F);
- Проводим перпендикуляр к линии косинусов через точку (F);
- Обозначим точки пересечения с окружностью за (M) и (N);
- Точки (M) и (N) соответствуют углам (angle{MOA}) и (angle{NOA});
- Осталось найти значение этих углов. Но у нас опять небольшая проблема: в таблице стандартных углов нет значения (-frac{sqrt{3}}{2}). Зато там есть (frac{sqrt{3}}{2}).
Отметим на той же окружности решение уравнения (cos(x)=frac{sqrt{3}}{2}) (см. Рис. 7), оно будет в правой части окружности, а углы (angle{EOA}) и (angle{TOA}) будут решениями. Из таблицы стандартных углов находим, что косинус от угла (30^o=frac{pi}{6}) будет равен (frac{sqrt{3}}{2}). Значит (angle{EOA}=frac{pi}{6}), а (angle{TOA}=-frac{pi}{6}), если его отсчитать по часовой стрелке.
Обратите внимание, что рисунок симметричен относительно вертикальной оси синусов, что нам дает равенство углов (angle{MOC}=angle{EOA}=30^o=frac{pi}{6}). Теперь можем найти (angle{MOA}):
$$angle{MOA}=180^o-angle{MOC}=180^o-30^o=150^o=pi-frac{pi}{6}=frac{5pi}{6};$$
А угол (angle{NOA}) из геометрических соображений равен (angle{MOA}), но отсчитываем мы его ПО часовой стрелке:
$$angle{NOA}=-angle{MOA}=-frac{5pi}{6};$$ - Мы нашли углы, косинус от которых будет равен (-frac{sqrt{3}}{2}), добавляем период (2pi*n) и записываем ответ;
Ответ:
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{3}+2pi*n, quad n in Z.$$
Пример 8
$$cos(x)=0;$$
- Как обычно, рисуем окружность;
- На оси косинусов отмечаем значение (0), оно лежит прямо в пересечении осей синуса и косинуса;
- Проводим перпендикуляр к оси косинусов через точку (0). Будьте внимательны, этот перпендикуляр полностью совпадет с осью синусов и пересечет окружность в точках (B) и (D;)
- Углы (angle{BOA}) и (angle{DOA}) искомые;
- Точки (B) и (D) соответствуют на окружности углам (90^o=frac{pi}{2}) и (-90^o=-frac{3pi}{2}.)
- Учитывая период, записываем ответ:
Ответ:
$$x_{1}=frac{pi}{2}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{2}+2pi*n, quad n in Z;$$
Арккосинус. Обратная тригонометрическая функция косинусу
По аналогии с арксинусом существует функция обратная косинусу. Каждый раз, когда вам встречается не табличное значение, придется использовать арккосинус. Познакомимся с ним на примере:
Пример 9
$$cos(x)=frac{1}{5};$$
Как обычно, отметим на оси косинусов (frac{1}{5}) и нарисуем соответствующие этому значению углы (angle{KOA}) и (angle{LOA}).
В таблице значения (frac{1}{5}) нет. И чтобы этот пример можно было решить, люди придумали функцию арккосинуса, при помощи которой обозначают нестандартные углы.
(arccos(frac{1}{5})) – это обозначение угла, косинус от которого будет равен (frac{1}{5}).
$$cos(arccosleft(frac{1}{5}right))=frac{1}{5};$$
В общем виде (arccos(a)) – это угол, косинус от которого будет равен (a), где (ain[-1;1]), ведь значения косинуса лежат в промежутке ([-1;1].)
Так как почти любому значению косинуса соответствует минимум две точки (два угла) на окружности, то для того, чтобы понять, какой именно угол из этих двух будет арккосинусом, на функцию арккосинус накладываются определенные ограничения:
$$arccos(a)in[0;pi];$$
То есть, арккосинус – это углы, лежащие в верхней половине единичной окружности в промежутке ([0;pi].)
Кстати, для арккосинуса справедлива формула:
$$mathbf{arccos(-a)=pi-arccos(a);}$$
Возвращаясь к нашему примеру:
$$angle{KOA}=arccos(frac{1}{5});$$
А для того, чтобы найти второй угол (angle{LOA}), нужно заметить, что:
$$angle{LOA}=-angle{KOA}=-arccos(frac{1}{5});$$
Если считать угол по часовой стрелке.
Не забываем про период и записываем ответ:
Ответ:
$$angle{KOA}=arccos(frac{1}{5})+2pi*n, quad n in Z;$$
$$angle{LOA}=-arccos(frac{1}{5}+2pi*n, quad n in Z;$$
Важно! Значения косинуса, так же, как и синуса, принадлежат промежутку ([-1;1]). Если вы встретите уравнение по типу (cos(x)=3), то оно не будет иметь решений.
Тригонометрическое уравнение с тангенсом на окружности
Тангенс и котангенс на единичной окружности ведут себя несколько иначе, чем синус и косинус. Кто не помнит, как тангенс и котангенс отображаются на окружности и какими свойствами обладают, рекомендую повторить.
Как обычно, будем учиться на примерах:
Пример 10
$$tg(x)=1;$$
- На тригонометрической окружности необходимо нарисовать ось тангенсов. Напоминаю, что она параллельна оси синусов и проходит через точку (A);
- На оси тангенсов отмечаем значение (1), обозначим эту точку за (K);
- Соединим точку (K) с центром окружности и продлим до пересечения с окружностью;
- Получим две точки на окружности (M) и (N);
- Они соответствуют углам (angle{MOA}) и (angle{NOA}), тангенс от которых будет равен (1);
- По таблице стандартных углов находим, что тангенс равен (1) от угла (45^o=frac{pi}{4}), судя по рисунку №10, это будет угол (angle{MOA});
- Угол (angle{NOA}) можно найти по формуле:
$$angle{NOA}=180^o+angle{MOA}=pi+angle{MOA}=pi+frac{pi}{4}=frac{5pi}{4};$$
Это следует из окружности, посмотрите на Рис.10. Наши два угла отличаются ровно на (180^o=pi) градусов. Это важный момент, который дает нам возможность записывать ответ в одну строчку, а не в две, как у синуса и косинуса:
$$x=frac{pi}{4}+pi*n, quad n in Z;$$
Это весь ответ, больше ничего писать не нужно. Обратите внимание на период, здесь он у нас (pi*n), а не (2pi*n), как было у синуса и косинуса. Подставляя различные значения (n), вы будет прибавлять к (frac{pi}{4}):
$$n=1 qquad x_{1}=frac{pi}{4}+pi;$$
Смотрите, прибавив (pi) при (n=1) вы из точки (M) попали в точку (N).
$$n=2 qquad x_{2}=frac{pi}{4}+2pi;$$
При (n=2) мы опять вернулись из точки (N) в точку (M).
$$n=3 qquad x_{1}=frac{pi}{4}+3pi;$$
При (n=3) попадаем из (M) в точку (N).
Другими словами, период (pi*n) означает, что ваши корни лежат на окружности с периодом в половину окружности, а правило (x=frac{pi}{4}+pi*n, quad n in Z;) покрывает обе точки и (M), и (N).
Главный вывод в том, что у простейшего уравнения с тангенсом записывается в ответ только одна точка (любая) и прибавляется период (pi*n). Этот факт можно просто запомнить.
Ответ: (x=frac{pi}{4}+pi*n, quad n in Z.)
Арктангенс. Обратная тригонометрическая функция тангенсу
По аналогии с арксинусом и арккосинусом существует и арктангенс – функция, обратная тангенсу. Она необходима, когда перед вами нестандартные (не табличные) значения тангенса.
В общем виде арктангенс от некоторого числа (a) – это угол, тангенс от которого равен (a):
$$tg(arctg(a))=a; qquad ain(-infty;+infty); $$
$$arctg(a)in(-frac{pi}{2};frac{pi}{2}).$$
Обратите внимание, что значения арктангенса всегда по определению лежат в промежутке ((-frac{pi}{2};frac{pi}{2})): в правой полуокружности.
Кстати, для арктангенса справедлива формула:
$$mathbf{arctg(-a)=-arctg(a)};$$
Пример 11
$$tg(x)=3;$$
- Рисуем единичную окружность;
- Отмечаем на оси тангенсов значение (3), обозначим за точку (K);
- Через точку (K) и центр окружности проводим прямую, которая пересечет окружность в двух точках (M) и (N);
- В таблице стандартных углов тангенс, равный (3), вы не найдете. И тут нам пригодится арктангенс. Арктангенсом мы будем называть угол, тангенс от которого равен 3-м. Поэтому угол (angle{MOA}=arctg(3),) согласно определению арктангенса;
- Угол (angle{NOA}) можно найти по формуле:
$$angle{NOA}=angle{MOA}+180^0=angle{MOA}+pi=arctg(3)+pi;$$ - Но на самом деле, оба угла (angle{MOA}) и (angle{MOA}) для ответа нам не нужны. В ответ мы можем записать любой из них и указать период (pi*n), который покроет оба угла;
Ответ: (x=arctg(3)+pi*n, quad n in Z.)
Тригонометрическое уравнение с котангенсом
Уравнения с котангенсом очень похожи на уравнения с тангенсом с одним исключением: ось котангенсов на единичной окружности параллельна горизонтальной оси косинусов, полностью ее дублирует и проходит через точку (B).
Пример 12
$$ctg(x)=sqrt{3};$$
- Рисуем единичную окружность;
- Проводим через точку (B) ось котангенсов параллельно горизонтальной оси;
- На оси котангенсов отмечаем значение (sqrt{3}approx1,7), обозначим за точку (P);
- Соединяем точку (P) с центром окружности и продляем до пересечения с ней в двух точках: (L) и (F);
- Котангенс от углов (angle{LOA}) и (angle{FOA}) и будет равен (sqrt{3});
- В таблице стандартных углов находим, что (ctg(frac{pi}{6})=sqrt{3};)
- Согласно рисунку (angle{LOA}=frac{pi}{6}), а угол (angle{FOA}=frac{pi}{6}+pi=frac{7pi}{6};)
- Как и с тангенсом, оба угла нам не нужно, достаточно в ответе указать одну точку с периодом (pi*n);
Ответ: (x=frac{pi}{6}+pi*n, quad n in Z.)
В простейших уравнениях с котангенсом в ответе мы указываем любой из двух получившихся углов, при этом не забываем про период (pi*n).
Разберем еще уравнение с отрицательной правой частью:
Пример 13
$$ctg(x)=-1;$$
Отметим на тригонометрической окружности ось котангенсов и на ней значение (-1). Так подробно расписывать решение, как в прошлых примерах, мы не будем, идея уже должна быть давно понятна.
На рисунке искомыми углами будут (angle{MOA}) и (angle{NOA}). Мы не можем воспользоваться таблицей стандартных углов, так как там нет значения котангенса (-1), но зато есть значение (1.)
Решим на этой же самой окружности уравнение (ctg(x)=1). Котангенс от углов (angle{KOA}) и (angle{LOA}) будет равен (1). Из таблицы стандартных углов делаем вывод, что (angle{KOA}=frac{pi}{4}).
Так как получившийся рисунок симметричен относительно вертикальной оси синусов, то из геометрических соображений:
$$angle{KOA}=angle{MOC};$$
Тогда:
$$angle{MOA}=pi-angle{MOC}=pi-angle{KOA}=pi-frac{pi}{4}=frac{3pi}{4};$$
Кроме того, наш рисунок симметричен относительно горизонтальной оси косинусов. Из чего легко сделать вывод:
$$angle{NOA}=-angle{KOA}=-frac{pi}{4};$$
Знак минус возникает из-за того, что мы отсчитываем угол (angle{NOA}) ПО часовой стрелке.
Записываем ответ, указывая любой из углов (angle{MOA}) или (angle{NOA}) с учетом периода (pi*n).
Ответ: (x=-frac{pi}{4}+pi*n, quad n in Z.)
Арккотангенс. Обратная тригонометрическая функция котангенсу
И нам осталось обсудить последнюю тригонометрическую функцию в школьной программе: арккотангенс.
Как и другие обратные функции, арккотангенс от некоторого числа (a) – это угол, котангенс от которого будет равен (a):
$$tg(arcctg(a))=a; qquad ain(-infty;+infty); $$
$$arcctg(a)in(0;pi).$$
Обратите внимание на ограничения, которые по определению накладываются на арккотангенс: его значения принадлежат промежутку ((0;pi)), то есть это углы, лежащие в верхней половине окружности. Эти ограничения необходимы для однозначности функции арккотангенса, так как любому значению котангенса всегда соответствует две точки на окружности, а значит минимум два угла (в верхней и нижней полуокружностях).
Кстати, для арккотангенса справедлива формула:
$$mathbf{arcctg(-a)=pi-arcctg(a);}$$
Арккотангенс используется, когда в уравнении встречаются нестандартные значения:
Пример 14
$$ctg(x)=5;$$
Отметим все на окружности. Искомыми углами будут (angle{MOA}) и (angle{KOA}).
Так как значение (5) нестандартное, то нам придется воспользоваться функцией арккотангенса: (arcctg(5)).
На нашей окружности (angle{MOA}=arcctg(5)) так как именно он лежит в верхней половине окружности.
Второй угол, как и во всех уравнениях с тангенсом и котангенсом искать совсем не обязательно, но для тренировки сделаем это:
$$angle{KOA}=pi+arcctg(5);$$
И записываем в ответ любой из этих углов с периодом (pi*n).
Ответ: (x=arcctg(5)+pi*n, quad n in Z.)
Формулы для решения тригонометрических уравнений
Мы разобрали решения всех основные типы простейших тригонометрических уравнений при помощи единичной окружности. Я бы рекомендовал всегда решать именно при помощи окружности, это очень полезно для понимания.
А сейчас мы запишем формулы, при помощи которых можно решать уравнения без единичной окружности.
Пусть у нас есть простейшие тригонометрические уравнения:
$$sin(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain[-1;1]);
Тогда решением этого уравнения будет:
$$x=(-1)^n*arcsin(a)+pi*n, quad n in Z;$$
$$cos(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain[-1;1]);
Тогда решением этого уравнения будет:
$$x=pmarccos(a)+2pi*n, quad n in Z;$$
$$tg(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain(-infty;+infty));
Тогда решением этого уравнения будет:
$$x=arctg(a)+pi*n, quad n in Z;$$
$$ctg(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain(-infty;+infty));
Тогда решением этого уравнения будет:
$$x=arcctg(a)+pi*n, quad n in Z;$$
Можно просто запомнить формулы и решать уравнения с их помощью.
И полезно помнить формулы, которые мы вводили, когда давали определение обратных функций:
$$arcsin(-a)=-arcsin(a);$$
$$arccos(-a)=pi-arccos(a);$$
$$arctg(-a)=-arctg(a);$$
$$arcctg(-a)=pi-arcctg(a).$$
Рассмотрим примеры:
Пример 15
$$sin(x)=frac{1}{2};$$
Сразу выпишем общую формулу ответа:
$$x=(-1)^n*arcsin(a)+pi*n, quad n in Z;$$
где (a=frac{1}{2});
$$x=(-1)^n*arcsin(frac{1}{2})+pi*n, quad n in Z;$$
В таком виде лучше не оставлять. Если вы можете посчитать, чему равен арксинус, то это обязательно нужно сделать.
Арксинус от (frac{1}{2}), согласно определению, это угол, синус от которого равен (frac{1}{2}). По таблице стандартных углов мы видим, что синус равен (frac{1}{2}) от угла (frac{pi}{6}):
$$arcsin(frac{1}{2})=frac{pi}{6};$$
$$x=(-1)^n*frac{pi}{6}+pi*n, quad n in Z;$$
В таком виде уже можно записывать ответ:
Ответ: (x=(-1)^n*frac{pi}{6}+pi*n, quad n in Z.)
Пример 16
$$cos(x)=-frac{sqrt{2}}{2};$$
Общий вид решения:
$$x=pmarccos(a)+2pi*n, quad n in Z;$$
где (a=-frac{sqrt{2}}{2});
$$x=pmarccos(-frac{sqrt{2}}{2})+2pi*n, quad n in Z;$$
Арккосинус от (-frac{sqrt{2}}{2}) это угол, косинус от которого будет равен (-frac{sqrt{2}}{2}). Но в таблице нет значения (-frac{sqrt{2}}{2}), зато есть (frac{sqrt{2}}{2}).
Используя свойство арккосинуса:
$$arccos(-a)=pi-arccos(a);$$
Можно записать:
$$x=pm(pi-arccos(frac{sqrt{2}}{2}))+2pi*n, quad n in Z;$$
Учитывая:
$$arccos(frac{sqrt{2}}{2})=frac{pi}{4};$$
Подставляем:
$$x=pm(pi-frac{pi}{4})+2pi*n, quad n in Z;$$
$$x=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Ответ: (x=pmfrac{3pi}{4}+2pi*n, quad n in Z.)
Пример 17
$$tg(x)=-sqrt{3};$$
Общий вид решения:
$$x=arctg(a)+pi*n, quad n in Z;$$
где (a=-sqrt{3});
$$x=arctg(-sqrt{3})+pi*n, quad n in Z;$$
Арктангенс от (-sqrt{3}) это угол, тангенс от которого равен (-sqrt{3}). В таблице опять нет такого значения (-sqrt{3}), но есть положительное (sqrt{3}), арктангенс от которого можно посчитать:
$$arctg(sqrt{3})=frac{pi}{3};$$
Учитывая свойство арктангенса:
$$arctg(-a)=-arctg(a);$$
Подставляем в нашу формулу:
$$x=-arctg(sqrt{3})+pi*n, quad n in Z;$$
$$x=-frac{pi}{3}+pi*n, quad n in Z;$$
Ответ: (x=-frac{pi}{3}+pi*n, quad n in Z.)
Замена переменной в тригонометрических уравнениях
Замена выражения под тригонометрической функцией
Мы научились решать простейшие уравнения. И на этом строится решение всех остальных тригонометрических уравнений. Они все так или иначе сводятся к решению простейших. И один из способов – это введение замены переменной.
Вы должны были с этим регулярно сталкиваться в младших классах при решении, например, биквадратных уравнений. Все дальнейшие рассуждения предполагают, что вы знаете, что такое замена переменной. Итак, разберем пример:
Пример 18
$$sin(2x)=frac{sqrt{3}}{2};$$
Обратите внимание, что теперь у нас под синусом стоит не просто (x), а целое выражение. Давайте избавимся от него, убрав (2x) в замену: пусть (t=2x).
$$sin(t)=frac{sqrt{3}}{2};$$
Теперь наше уравнение превратилось в простейшее тригонометрическое. Решаем его относительно переменной (t) (вы можете решать при помощи единичной окружности или по готовым формулам, как вам удобнее. Я же буду просто выписывать ответ):
$$t_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$t_{2}=frac{2pi}{3}+2pi*n, quad n in Z;$$
На этом решение не заканчивается. Мы нашли значения (t), а нам надо найти (x). Делаем обратную замену, вспоминая, что (t=2x):
$$2x_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$2x_{2}=frac{2pi}{3}+2pi*n, quad n in Z;$$
И просто выражаем из получившихся выражений (x), для этого разделим левую и правую часть равенства на (2):
$$frac{2x_{1}}{2}=frac{frac{pi}{3}+2pi*n}{2}, quad n in Z;$$
$$frac{2x_{2}}{2}=frac{frac{2pi}{3}+2pi*n}{2}, quad n in Z;$$
$$x_{1}=frac{1}{2}*frac{pi}{3}+pi*n, quad n in Z;$$
$$x_{2}=frac{1}{2}*frac{2pi}{3}+pi*n, quad n in Z;$$
Обратите внимание, что период тоже не забываем поделить на (2).
Ответ:
$$x_{1}=frac{pi}{6}+pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{3}+pi*n, quad n in Z.$$
Аналогичным образом можно решать тригонометрические уравнения с более сложным подтригонометрическим выражением:
Пример 19
$$tg(frac{2x+pi}{3})=1;$$
Под тангенсом тут стоит целая дробь, зависящая от (x). Засунем всю эту дробь в замену:
$$t=frac{2x+pi}{3};$$
Уравнение примет вид:
$$tg(t)=1;$$
Решением этого простейшего уравнения будет:
$$t=frac{pi}{4}+pi*n, quad n in Z;$$
Делаем обратную замену, вместо (t) подставляем (frac{2x+pi}{3}):
$$frac{2x+pi}{3}=frac{pi}{4}+pi*n, quad n in Z;$$
И выражаем отсюда (x). Домножим равенство на (3):
$$2x+pi=3*(frac{pi}{4}+pi*n), quad n in Z;$$
$$2x+pi=frac{3pi}{4}+3pi*n, quad n in Z;$$
Перенесем (pi) направо:
$$2x=-pi+frac{3pi}{4}+3pi*n, quad n in Z;$$
Приведем подобные слагаемые:
$$2x=-frac{pi}{4}+3pi*n, quad n in Z;$$
И разделим на (2):
$$x=-frac{pi}{8}+frac{3}{2}*pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{8}+frac{3}{2}*pi*n, quad n in Z;$$
Замена всей тригонометрической функции
Что делать с подтригонометрическим выражением, мы разобрались. Теперь решим пример на замену, при помощи которой тригонометрическое уравнение сводится к квадратному.
Пример 20
$$2*sin^2(x)+sin(x)-1=0;$$
Обращаем внимание на одинаковое выражение (sin(x)). Сделаем замену:
$$t=sin(x);$$
$$2t^2+t-1=0;$$
Получили обыкновенное квадратное уравнение, которое решается через дискриминант:
$$D=1-4*2*(-1)=9;$$
$$t_{1}=frac{-1+3}{4}=frac{1}{2};$$
$$t_{2}=frac{-1-3}{4}=-1;$$
Делаем обратную замену и получаем два простейших тригонометрических уравнения. Первое:
$$sin(x)=frac{1}{2};$$
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Второе:
$$sin(x)=-1;$$
$$x_{3}=frac{3pi}{2}+2pi*n, quad n in Z;$$
Записываем ответ из трех наборов решений.
Ответ:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{3}=frac{3pi}{2}+2pi*n, quad n in Z;$$
Тригонометрические уравнения в ЕГЭ
В ЕГЭ в большинстве тригонометрических уравнений нужно уметь преобразовать исходное уравнение и сделать замену. Для того, чтобы правильно преобразовывать уравнение, необходимо хорошо знать тригонометрические формулы и помнить главное правило:
Стараться свести уравнение к виду, в котором все тригонометрические функции и выражения, от которых они берутся, одинаковы.
Другими словами, нужно сделать так, чтобы во всем уравнении везде был, например, только синус от (x).
Рассмотрим несложный реальный пример из ЕГЭ.
Пример 21
$$2cos^2(x)+sin(x)+1=0;$$
Смотрите, в уравнении сразу две тригонометрические функции и синус, и косинус. Это плохо. Нужно сделать так, чтобы была только одна из них. Тут нам поможет основное тригонометрическое тождество:
$$sin^2(x)+cos^2(x)=1;$$
$$cos^2(x)=1-sin^2(x);$$
И подставим в исходное уравнение:
$$1-sin^2(x)+sin(x)+1=0;$$
Приведем подобные слагаемые:
$$-sin^2(x)+sin(x)+2=0;$$
Теперь в уравнении везде (sin(x)), можно сделать замену:
$$t=sin(x);$$
Уравнение примет вид:
$$-t^2+t+2=0;$$
Находим корни квадратного уравнения:
$$D=9;$$
$$t_{1}=frac{-1+3}{-2}=-1;$$
$$t_{2}=frac{-1-3}{-2}=2;$$
Обратная замена:
$$sin(x)=-1;$$
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
И второе уравнение:
$$sin(x)=2;$$
Оно не имеет решений, так как синус может принимать значения только из промежутка ([-1;1]).
Ответ:
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
Пример 22
$$2*sin^2(pi+x)-5*cos(frac{pi}{2}+x)+2=0;$$
Этот пример уже сложнее: во-первых, под тригонометрическими функциями стоят какие-то непонятные, да еще и разные, выражения; во-вторых, в уравнении у нас и синус, и косинус, а должно быть что-то одно.
Читатель, который знаком с формулами приведения, обязательно должен был заметить, что под синусом и косинусом стоят не просто какие-то выражения, а это формулы приведения. Выпишем их отдельно и преобразуем:
$$sin(pi+x)=-sin(x);$$
$$cos(frac{pi}{2}+x)=-sin(x);$$
Подставим преобразования в исходное уравнение.
Внимание! Когда мы будем подставлять (-sin(x)) вместо (sin(pi+x)), то знак минус сгорит, так как у нас (sin(pi+x)) под квадратом. Это очень частая ошибка.
$$2*(-sin(x))^2-5*(-sin(x))+2=0;$$
$$2*sin^2(x)+5*sin(x)+2=0;$$
Применив формулы привидения, у нас чудесным образом получилось уравнение, в котором можно сделать замену:
$$t=sin(x);$$
$$2*t^2+5*t+2=0;$$
$$D=9;$$
$$t_{1}=frac{-5+3}{4}=-frac{1}{2};$$
$$t_{2}=frac{-5-3}{4}=-2;$$
Обратная замена:
$$sin(x)=-frac{1}{2};$$
$$x_{1}=-frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
И второе уравнение:
$$sin(x)=-2;$$
Решений не имеет, так как (sin(x)in[-1;1]) по определению.
Ответ:
$$x_{1}=-frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Однородные тригонометрические уравнения
Мы выяснили, что для того, чтобы решить уравнение, необходимо привести все к одинаковым тригонометрическим функциям от одинаковых аргументов. Но иногда сделать это затруднительно. Например, как вы будете решать вот такое уравнение:
Пример 23
$$sin(x)+cos(x)=0;$$
Нет такой удобной формулы, по которой можно превратить синус в косинус или наоборот. Хотя, конечно, можно воспользоваться основным тригонометрическим тождеством и выразить оттуда синус через косинус:
$$sin^2(x)+cos^2(x)=1;$$
$$sin^2(x)=1-cos^2(x);$$
$$sin(x)=pmsqrt{1-cos^2(x)};$$
Подставив это выражение вместо синуса в исходное уравнение, мы получим в уравнении одни косинусы, но уравнение станет иррациональным (то есть с корнем). Его можно решить, но это достаточно сложно. И так никто не делает.
Оптимальным решением здесь будет поделить исходное уравнение на синус или косинус, давайте поделим на косинус:
$$frac{sin(x)+cos(x)}{cos(x)}=frac{0}{cos(x)};$$
$$frac{sin(x)}{cos(x)}+frac{cos(x)}{cos(x)}=0;$$
$$tg(x)+1=0;$$
$$tg(x)=-1;$$
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Рассмотрим еще один пример:
Пример 24
$$sin(x)+sqrt{3}*cos(x)=0;$$
Аналогично предыдущему примеру поделим все уравнение на (sin(x)):
$$1+sqrt{3}*frac{cos(x)}{sin(x)}=0;$$
$$1+sqrt{3}*ctg(x)=0;$$
$$sqrt{3}*ctg(x)=-1;$$
$$ctg(x)=-frac{1}{sqrt{3}};$$
$$x=frac{pi}{3}+pi*n, quad n in Z;$$
Ответ:
$$x=frac{pi}{3}+pi*n, quad n in Z;$$
Мы рассмотрели два примера так называемых однородных уравнений первой степени. Рассмотрим пример на однородное уравнение второй степени.
Пример 25
$$3sin^2(x)+sin(x)*cos(x)=2cos^2(x);$$
Здесь тоже будем применять деление, только в этот раз будем делить каждое слагаемое на (cos^2(x)) (можно поделить и на (sin^2(x)), это не имеет значения):
$$3frac{sin^2(x)}{cos^2(x)}+frac{sin(x)*cos(x)}{sin^2(x)}=frac{2cos^2(x)}{cos^2(x)};$$
$$3tg^2(x)+tg(x)=2;$$
Теперь можно сделать замену (t=tg(x)):
$$3t^2+t=2;$$
$$3t^2+t-2=0;$$
$$D=1+24=25;$$
$$t_{1}=frac{-1-5}{6}=-1;$$
$$t_{2}=frac{-1+5}{6}=frac{2}{3};$$
Обратная замена:
Первое уравнение:
$$tg(x)=-1;$$
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Второе уравнение:
$$tg(x)=frac{2}{3};$$
$$x=arctg(frac{2}{3})+pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
$$x=arctg(frac{2}{3})+pi*n, quad n in Z;$$
Есть нюанс, на котором школьники часто сыпятся. Освоив метод деления, ученик начинает пытаться решить тригонометрические уравнения только через него и на экзамене, решив вроде все правильно, получает 0 баллов.
Оказывается, что не всякое уравнение можно разделить на выражение зависящее от (x). Посмотрите пример №26, это убережет вас от подобных ошибок на экзамене.
Пример 26
$$sin^2(x)+sin(x)=0;$$
Разделим уравнение на (sin(x)):
$$sin(x)+1=0;$$
$$sin(x)=-1;$$
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
И тут, кажется, можно записывать ответ, но это неверное решение уравнения, так решать нельзя. Достаточно легко заметить, что (sin(x)=0) тоже будет являться решением исходного уравнения. Подставьте вместо (sin(x)) ноль и получите верное равенство. А в нашем решении такого ответа нет, значит где-то по дороге мы потеряли корни. А потеряли мы их именно в тот момент, когда сделали деление.
Запомните важное правило! Делить уравнение можно только тогда, когда выражение, на которое вы делите, равное нулю не будет корнем исходного уравнения.
В нашем случае мы делим на (sin(x)), но (sin(x)=0) является решением, поэтому делить нельзя.
Чтобы все-таки решить это уравнение правильно, нужно воспользоваться вынесением общего множителя за скобки.
Вынесение общего множителя в тригонометрических уравнениях
Еще один распространенный на ЕГЭ тип тригонометрических уравнений, в которых необходимо вынести общий множитель.
Пример 27
$$sin(2x)-2sin^2(x)=0;$$
В этом уравнении только одна тригонометрическая функция – (sin(x)). Но под синусами стоят разные выражения. Поэтому избавимся от двойного угла под синусом при помощи формулы синуса двойного угла:
$$sin(2x)=2sin(x)*cos(x);$$
Уравнение примет вид:
$$2sin(x)*cos(x)-2sin^2(x)=0;$$
Замечаем общий множитель (2*sin(x)), вынесем его за скобки:
$$2*sin(x)*(cos(x)-sin(x))=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Уравнение разбивается на два:
Либо:
$$2sin(x)=0;$$
$$sin(x)=0;$$
$$x_{1}=0+2pi*n=2pi*n, quad n in Z;$$
$$x_{2}=pi+2pi*n, quad n in Z;$$
(Кстати, эти два решения можно объединить в одно: (x=0+pi*n=pi*n, quad n in Z;))
Либо второе уравнение:
$$cos(x)-sin(x)=0;$$
Это уравнение решается при помощи деления. Разделим левую и правую часть уравнения на (cos(x)):
$$frac{cos(x)-sin(x)}{cos(x)}=frac{0}{cos(x)};$$
$$1-frac{sin(x)}{cos(x)}=0;$$
$$1-tg(x)=0;$$
$$tg(x)=1;$$
$$x=frac{pi}{4}+pi*n, quad n in Z;$$
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{4}+pi*n, quad n in Z;$$
Пример 28
$$2cos(frac{pi}{2}-x)=tg(x);$$
Сразу замечаем формулу приведения под косинусом:
$$cos(frac{pi}{2}-x)=sin(x);$$
Подставляем в исходное уравнение
$$2sin(x)=tg(x);$$
Распишем тангенс по определению:
$$tg(x)=frac{sin(x)}{cos(x)};$$
$$2sin(x)=frac{sin(x)}{cos(x)};$$
$$2sin(x)-frac{sin(x)}{cos(x)}=0;$$
И здесь тоже будет общий множитель (sin(x)):
$$sin(x)*(2-frac{1}{cos(x)})=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
Первый множитель:
$$sin(x)=0;$$
$$x_{1}=0+pi*n=pi*n, quad n in Z;$$
Второй множитель:
$$2-frac{1}{cos(x)}=0;$$
Приведем к общему знаменателю:
$$frac{2cos(x)}{cos(x)}-frac{1}{cos(x)}=0;$$
$$frac{2cos(x)-1}{cos(x)}=0;$$
Дробь равна нулю, когда числитель равен нулю – избавляемся от знаменателя:
$$2cos(x)-1=0;$$
$$2cos(x)=1;$$
$$cos(x)=frac{1}{2};$$
$$x_{2}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{3}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{3}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Метод группировки в тригонометрических уравнениях
Рассмотрим еще уравнение, которое было на ЕГЭ 2015 года на метод группировки. Тоже нужно обязательно это знать. Сам метод, если кто не знает, сводится, по сути, к вынесению общего множителя за скобки, только немного сложнее.
Пример 29
$$sin(2x)+sqrt{2}sin(x)=2cos(x)+sqrt{2};$$
Избавляемся от двойного угла:
$$2*sin(x)cos(x)+sqrt{2}sin(x)=2cos(x)+sqrt{2};$$
И перенесем все в левую часть:
$$2*sin(x)cos(x)+sqrt{2}sin(x)-2cos(x)-sqrt{2}=0;$$
У нас 4 слагаемых, сгруппируем их попарно: 1-е со 2-м, а 3-е с 4-м, и вынесем в каждой паре общий множитель:
$$sin(x)(2cos(x)+sqrt{2})-1(2cos(x)+sqrt{2})=0;$$
У 3-го и 4-го слагаемых я вынес за скобки (-1).
Теперь обратите внимание, что в скобках получились идентичные выражения, то есть эти скобки абсолютно одинаковые. Вынесем эту общую скобку за скобку!
$$(2cos(x)+sqrt{2})(sin(x)-1)=0;$$
Вот мы и сгруппировали, теперь приравниваем каждый множитель к нулю:
Первый множитель:
$$2cos(x)+sqrt{2}=0;$$
$$cos(x)=frac{-sqrt{2}}{2};$$
$$x_{1}=frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
Второй множитель:
$$sin(x)-1=0;$$
$$sin(x)=1;$$
$$x_{3}=frac{pi}{2}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1}=frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{3}=frac{pi}{2}+2pi*n, quad n in Z;$$
ОДЗ в тригонометрических уравнениях
С областью допустимых значений мы сталкиваемся в уравнениях и неравенствах, в которых есть знаменатели, корни и логарифмы.
Тригонометрические уравнения не исключение, в них тоже встречается все вышеперечисленное. И в этом случае мы вынуждены не забывать про ограничения и выписывать ОДЗ перед тем, как решать.
Пример 30
$$frac{2sin^2(x)-sin(x)}{2cos(x)-sqrt{3}}=0;$$
В этом уравнении есть знаменатель, при некоторых значениях (x) он может быть равен (0), а тогда у нас будет деление на 0, что запрещено правилами математики. Поэтому надо исключить такие значения (x). Посмотрим, при каких (x) знаменатель равен (0):
$$2cos(x)-sqrt{3}=0;$$
$$cos(x)=frac{sqrt{3}}{2};$$
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{6}+2pi*n, quad n in Z;$$
Мы получили значения, которые (x) не может принимать, так как возникает деление на (0). Другими словами, мы нашли ОДЗ.
Теперь решим исходное уравнение:
$$frac{2sin^2(x)-sin(x)}{2cos(x)-sqrt{3}}=0;$$
Дробь равна (0), когда числитель равен (0). Избавляемся от знаменателя и приравниваем числитель к (0):
$$2sin^2(x)-sin(x)=0;$$
Вынесем общий множитель:
$$sin(x)(2sin(x)-1)=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
Первый:
$$sin(x)=0;$$
$$x_{1}==pi*n, quad n in Z;$$
Второй множитель:
$$2sin(x)-1=0;$$
$$sin(x)=frac{1}{2};$$
$$x_{2}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{3}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Получилось три набора решений, но не все они подходят. Вспоминаем про ОДЗ и видим, что решение (x_{2}=frac{pi}{6}+2pi*n, quad n in Z;) не удовлетворяет ОДЗ, так как при этих значениях (x) возникает деление на (0). Исключаем его из ответа.
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{3}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Пример 31
$$frac{sin(2x)}{cos(frac{pi}{2}+x)}=sqrt{3};$$
Найдем ОДЗ:
$$cos(frac{pi}{2}+x)=0;$$
Сделаем замену, пусть (t=frac{pi}{2}+x):
$$cos(t)=0;$$
$$t=frac{pi}{2}+pi*n, quad n in Z;$$
Обратная замена:
$$frac{pi}{2}+x=frac{pi}{2}+pi*n, quad n in Z;$$
$$x=pi*n, quad n in Z;$$
Это и будет наше ОДЗ, (x) не может принимать значения (pi*n, quad n in Z), так как при этих (x) будет деление на (0).
А теперь приступим непосредственно к решению исходного уравнения:
$$frac{sin(2x)}{cos(frac{pi}{2}+x)}=sqrt{3};$$
Используем формулы приведения, чтобы упростить знаменатель. И формулу двойного угла в числителе:
$$frac{2sin(x)*cos(x)}{-sin(x)}=sqrt{3};$$
$$-2cos(x)=sqrt{3};$$
$$cos(x)=-frac{sqrt{3}}{2};$$
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Смотрим на ОДЗ и видим, что оба набора решения нам подходят, пересечения с ОДЗ не случилось. Записываем ответ:
Ответ:
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Пример 32
$$(tg^2(x)-1)*sqrt{13cos(x)}=0;$$
В этом уравнении есть квадратный корень, а значит подкоренное выражение не может быть меньше нуля, невозможно взять корень из отрицательного числа. ОДЗ будет выглядеть:
$$13cos(x)ge0;$$
$$cos(x)ge0;$$
Получили тригонометрическое неравенство, которое мы решать еще не умеем. Более того, в школах часто совсем не проходят тему тригонометрических неравенств. Поэтому постараемся решить исходя из логики при помощи единичной окружности.
Если посмотреть на рисунок, то видно, что косинус будет положительным от углов, лежащих в правой половине окружности. Закрашенная часть круга удовлетворяет ОДЗ, а не закрашенная – нет. Запомним это и начнем решать исходное уравнение:
$$(tg^2(x)-1)*sqrt{13cos(x)}=0;$$
Из произведения двух множителей получаем два уравнения. Первое:
$$tg^2(x)-1=0;$$
$$tg(x)=pm1;$$
Обратите внимание на (pm), из-за квадрата будет два решения. Будьте осторожны!
$$tg(x)=1;$$
$$x_{1}=frac{pi}{4}+pi*n, quad n in Z;$$
$$tg(x)=-1;$$
$$x_{2}=-frac{pi}{4}+pi*n, quad n in Z;$$
Второе уравнение:
$$sqrt{13cos(x)}=0;$$
$$13cos(x)=0;$$
$$cos(x)=0;$$
$$x_{3}=frac{pi}{2}+pi*n, quad n in Z;$$
Помним, что нам еще как-то надо проверить, подходят ли получившиеся корни под ОДЗ. На старом рисунке отметим наши корни. Все точки, которые попадают в левую часть окружности, не удовлетворяют ОДЗ, а в правой части – удовлетворяют.
Ответ:
$$x_{1}=frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{3}=frac{pi}{2}+pi*n, quad n in Z;$$
Обратите внимание, что в ответе период стал (2pi*n), а не (pi*n), как у нас получалось при решении. Это связано с тем, что период (pi*n) покрывает на окружности две точки: из левой полуокружности, которая нам не подходит по ОДЗ, и из правой, которая подходит. А раз нам подходит только одна правая точка, то период будет (2pi*n).
Разные типы тригонометрических уравнений
Подведем важные итоги. Существует три основных метода решения тригонометрических уравнений: замена переменной, вынесение общего множителя (группировка), и деление (однородные уравнения).
Во избежание ошибок, я бы всегда стремился решать либо через замену, либо через вынесение общего множителя. А деление использовать, когда у вас не получается решить другими способами. Это убережет от ошибок, описанных в конце главы про однородные уравнения.
Порешаем разные полезные нестандартные уравнения, которые могут встретиться на ЕГЭ.
Пример 32
$$4cos^4(x)-4cos^2(x)+1=0;$$
Уравнение с четвертой степенью, но пугаться не надо. Это биквадратное уравнение, которое мы решим при помощи простой замены:
$$t=cos^2(x);$$
$$4t^2-4t+1=0;$$
Перед вами формула сокращенного умножения – полный квадрат:
$$(2t-1)^2=0;$$
$$t=frac{1}{2};$$
Обратная замена:
$$cos^2(x)=frac{1}{2};$$
Перед нами еще одно квадратное уравнение. Чтобы такое решить, перенесем все в левую часть и разложим по формуле разности квадратов:
$$cos^2(x)-frac{1}{2}=0;$$
$$(cos(x)-sqrt{frac{1}{2}})(cos(x)-sqrt{frac{1}{2}})=0;$$
Произведение равно нулю, когда один из множителей равен нулю. Первый множитель:
$$cos(x)-sqrt{frac{1}{2}}=0;$$
$$cos(x)=sqrt{frac{1}{2}};$$
$$cos(x)=frac{1}{sqrt{2}};$$
$$x_{1,2}=pmfrac{pi}{4}+2pi*n, quad n in Z;$$
Второй множитель:
$$cos(x)+sqrt{frac{1}{2}}=0;$$
$$cos(x)=-sqrt{frac{1}{2}};$$
$$cos(x)=-frac{1}{sqrt{2}};$$
$$x_{3,4}=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1,2}=pmfrac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{3,4}=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Пример 33
$$sqrt{3}sin(2x)+3cos(2x)=0;$$
Обратите внимание, что тут обе тригонометрические функции берутся от (2x). В предыдущих примерах мы всегда избавлялись от (2x) и старались преобразовать так, чтоб аргумент был просто (x).
Но, оказывается, так делать необязательно. Так как тут аргумент везде (2x), то будем решать с ним. Нам, на самом деле, не важно, какой у вас аргумент, главное, чтобы он был одинаковый у всех тригонометрических функций, входящих в уравнение.
Разделим исходное уравнение на (cos(2x)), при этом убедимся, что (cos(2x)=0) не будет являться решением. Так как (sin(2x)) и (cos(2x)) одновременно при одинаковых значениях (x) не могут равняться нулю, то (cos(2x)=0) не является решением уравнения и можно спокойно делить:
$$sqrt{3}tg(2x)+3=0;$$
$$tg(2x)=frac{-3}{sqrt{3}};$$
$$tg(2x)=-sqrt{3};$$
$$2x=-frac{pi}{3}+pi*n, quad n in Z;$$
$$x=-frac{pi}{6}+frac{pi*n}{2}, quad n in Z;$$
Ответ:
$$x=-frac{pi}{6}+frac{pi*n}{2}, quad n in Z;$$
Как пользоваться формулами приведения? Правило лошади, единичная окружность и формулы суммы и разности для нахождения формул приведения.
Как пользоваться тригонометрической окружностью? Синус, косинус, тангнес и котангнес на единичной окружности. Свойства симметрии. Перевод градусов в радианы.
Разбираем тригонометрию с нуля. Синус, косинус, тангенс и котангенс в прямоугольном треугольнике. Таблица стандартных углов и свойства тригонометрических функций.
Как решать показательные неравенства. Общий алгоритм решения. Замена переменной. Однородные степенные неравенства.
Как решать неравенства с логарифмами. Общий алгоритм решения. Замена переменной. Переменное основание в логарифмических неравенствах. Сужение ОДЗ.
Подробный разбор метода координат в стереометрии. Формулы расстояния и угла между скрещивающимися прямыми. Уравнение плоскости. Координаты вектора. Расстояние от точки до плоскости. Угол между плоскостями. Выбор системы координат.
Как решать уравнения со степенями. Разбираем основные методы и способы решения простейших показательных уравнений.
Урок по теме логарифмы и их свойства. Разбираемся, что такое логарифм и какие у него свойства. Научимся считать выражения, содержащие логарифмы. И рассмотри несколько возможных заданий №4 из ЕГЭ по профильной математике.
Цикл уроков про степени и логарифмы и их свойства. Учимся решать показательные и логарифмические уравнения и неравенства. Задания №9 и №15 ЕГЭ по профильной математике.
Индивидуальные занятия с репетитором для учеников 6-11 классов. Для каждого ученика я составляю индивидуальную программу обучения. Стараюсь заинтересовать ребенка предметом, чтобы он с удовольствием занимался математикой и физикой.
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Поехали!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
- что такое синус, косинус, тангенс, котангенс;
- какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
- какие из этих функций нечётные, а какие – чётные;
- знание значений тригонометрических функций в основных углах 1 четверти.
Если ты что-то не знаешь, повтори следующие разделы:
- Синус, косинус, тангенс и котангенс угла и числа
- Тригонометрическая окружность
- Формулы тригонометрии
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
( displaystyle frac{2}{2{x}-11}=frac{1}{3})
тригонометрическим?
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции ( displaystyle left( sin x,cos x,tg x,ctg x right)) в нём и в помине нет!
А что насчёт вот такого уравнения?
( displaystyle sin2x+3x=2)
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (( displaystyle 3x)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
Например:
- ( displaystyle 6co{{s}^{2}}x+5sin{x}-7=0)
- ( displaystyle sinpi sqrt{x}=-1)
- ( displaystyle frac{3}{5}sinx+frac{4}{5}cosx=1) и т.д.
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
- ( displaystyle sinfleft( x right)=a)
- ( displaystyle cosfleft( x right)=a)
- ( displaystyle tgfleft( x right)=a)
- ( displaystyle ctgfleft( x right)=a)
Где ( displaystyle a) – некоторое постоянное число.
Например: ( displaystyle 0,5;~1;~-1;pi ; ~1-sqrt{3};~1000) и т. д.
( displaystyle fleft( x right)) – некоторая функция, зависящая от искомой переменной ( displaystyle x), например ( displaystyle fleft( x right)=x,~fleft( x right)=2-x,~fleft( x right)=frac{pi x}{7}) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
- Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
- Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
- Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
- Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
- ( displaystyle text{sinx}=text{a}),
- ( displaystyle text{cosx}=text{a}),
- ( displaystyle text{tgx}=text{a}),
- ( displaystyle text{ctgx}=text{a}).
Я хочу сразу оговориться вот о чем, будь внимателен:
Уравнения вида: ( displaystyle sinfleft( x right)=a), ( displaystyle cosfleft( x right)=a) имеют смысл только тогда, когда ( displaystyle -1le text{a}le 1)
Уравнения вида: ( displaystyle text{tgx}=text{a}), ( displaystyle text{ctgx}=text{a}) имеют смысл уже при всех значениях ( displaystyle text{a}).
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
( displaystyle sinx=1000)
( displaystyle cosleft( 3{x}-sinleft( x right) right)=2)
( displaystyle sinleft( 2{{x}^{2}}-2x+1 right)=-3)
Корней не имеют!!!
Почему?
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок!!!
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
( displaystyle A) | ( displaystyle a) | ( displaystyle -1) | ( displaystyle 0) | ( displaystyle 1) |
---|---|---|---|---|
( displaystyle sin x=A) | ( displaystyle {{left( -1 right)}^{n}}arcsin alpha +pi n) | ( displaystyle -frac{pi }{2}+2pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{2}+2pi n) |
( displaystyle cos x=A) | ( displaystyle pm arccos alpha +2pi n) | ( displaystyle pi +2pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle 2pi n) |
( displaystyle tgx=A) | ( displaystyle arctgalpha +pi n) | ( displaystyle -frac{pi }{4}+pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{4}+pi n) |
( displaystyle ctgx=A) | ( displaystyle arcctgalpha +pi n) | ( displaystyle frac{3pi }{4}+pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle frac{pi }{4}+pi n) |
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое ( displaystyle n) и что такое, например ( displaystyle arcsinalpha ~left( arccosalpha ,~arctgalpha ,~arcctgalpha right))?
Отвечаю на все по порядку:
( displaystyle n) – это любое целое число ( displaystyle left( 0,text{ }1,text{ }-1,text{ }2,text{ }-2,text{ }ldots .text{ } right)).
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ!!!
И число ( displaystyle n) и служит для обозначения этой «бесконечности».
Конечно, вместо ( displaystyle n) можно писать любую другую букву, только не забывай добавить в ответе: ( displaystyle nin Z) – что означает, что ( displaystyle n) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, ( displaystyle arcsinalpha ) надо как «угол, синус которого равен ( displaystyle alpha )«
- ( displaystyle arcsinalpha)– угол, синус которого равен ( displaystyle alpha)
- ( displaystyle arccosalpha)– угол, косинус которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arctgalpha)– угол, тангенс которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arcctgalpha) – угол, котангенс которого равен ( displaystyle alpha)
Например,
- ( displaystyle arcsin left( 0 right)=0,)
- ( displaystyle arccos left( frac{sqrt{2}}{2} right)=frac{pi }{4},)
- ( displaystyle arctgleft( 1 right)=frac{pi }{4},)
- ( displaystyle arcsin left( 0,5 right)=frac{pi }{6},)
- ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6},)
- ( displaystyle arctgleft( sqrt{3} right)=frac{pi }{3})
то есть,
Алгоритм вычисления арксинусов и других «арок»
- Смотрим на то, что стоит под «аркой» – какое там число
- Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
- Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
- Записываем ответ
Вот простой пример вычисления аркосинуса:
( displaystyle arccos left( frac{sqrt{3}}{2} right))
Решение:
- Под аркой число ( displaystyle frac{sqrt{3}}{2})
- Арка для функции – косинус!
- Косинус какого угла равен ( displaystyle frac{sqrt{3}}{2})? Угла ( displaystyle frac{pi }{6}) (или ( displaystyle 30) градусов!)
- Тогда ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6})
Сам посчитай:
- ( displaystyle arctgleft( frac{1}{sqrt{3}} right))
- ( displaystyle arcsin left( frac{sqrt{3}}{2} right))
Ответы:
( displaystyle frac{pi }{6}) и ( displaystyle frac{pi }{3}).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
- ( displaystyle text{arcsin}left( -alpha right)=-text{arcsin}alpha )
- ( displaystyle text{arctg}left( -alpha right)=-text{arctg}alpha )
И внимание!!!
- ( displaystyle text{arcctg}left( -alpha right)=text{ }!!pi!!text{ }-text{arcctg}alpha )
- ( displaystyle text{arccos}left( -alpha right)=text{ }!!pi!!text{ }-text{arccos}alpha )
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. ( displaystyle sinleft( x right)=0,5)
Запишу по определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( 0,5 right)+pi n,~nin Z)
Всё готово, осталось только упростить, посчитав значение арксинуса.
Уравнение 2. ( displaystyle sinleft( x right)=-frac{sqrt{3}}{2})
Снова по определению:
Тогда запишу
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -frac{sqrt{3}}{2} right)+pi n,~nin Z)
Так оставлять нельзя! Вначале вынесу «минус» из арксинуса!
Уравнение 3. ( displaystyle sinleft( x right)=frac{pi }{2})
Пример-ловушка! Невнимательный ученик бы записал ответ в лоб:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( frac{pi }{2} right)+pi n,~nin Z)
Или того хуже:
( displaystyle x={{left( -1 right)}^{n}}cdot 1+pi n,~nin Z)
Так как ( displaystyle sin left( frac{pi }{2} right)=1)
Но ты же внимательно читал мои пространные рассуждения, не так ли? И ты ведь не напишешь такую чушь? И ты понял, в чем здесь подвох?
А подвох вот в чем:
Уравнение 4. ( displaystyle sinleft( x right)=-0,1)
По определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -0,1 right)+pi n,~nin Z)
Или вынесем минус (как в примере 2):
( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
На этом стоп! Такого числа как 0,1 нет в таблице значений тригонометрических функций, поэтому оставим всё как есть:
Ответ: ( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
Уравнение 5. ( displaystyle cosleft( x right)=1)
И снова по определению (теперь для уравнения другого вида)
( displaystyle x=pm arccos1+2pi n,~nin Z)
Чему равен угол, косинус которого равен ( displaystyle 1)?
Этот угол равен( displaystyle 0)!
( displaystyle x=pm 0+2pi n,~nin Z)
Тогда нет смысла прибавлять или вычитать ноль, всё равно это ноль.
( displaystyle x=2pi n,~nin Z)
Получили формулу, которая есть в таблице решений тригонометрических уравнений!
Ответ: ( displaystyle x=2pi n,~nin Z)
Уравнение 6. ( displaystyle cosleft( x right)=-frac{1}{sqrt{2}})
По определению:
( displaystyle x=pm arccos left( -frac{1}{sqrt{2}} right)+2pi n,~nin Z)
Прежде всего вынесем «минус» по правилам для арккосинуса:
( displaystyle x=pm left( pi -arccos left( frac{1}{sqrt{2}} right) right)+2pi n,~nin Z)
Вот так и никак иначе выносится минус, запомни это!
Теперь арккосинус.
Не во всех таблицах есть значение ( displaystyle frac{1}{sqrt{2}}), но во всех есть ( displaystyle frac{sqrt{2}}{2})!!!
А теперь, внимание, ловкость рук и никакого мошенничества!
Уравнение 7. ( displaystyle cosleft( x right)=frac{pi }{4})
( displaystyle cosleft( x right)=frac{pi }{4})
Ещё один пример-обманка! Хотя данное уравнение решения имеет, ибо:
( displaystyle frac{pi }{4}=frac{3,14}{4}<1)
Тогда по определению:
( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Но из этого никак не следует, что ( displaystyle arccos left( frac{text{ }!!pi!!text{ }}{4} right)=frac{sqrt{2}}{2})!!!!!!
Запомни, арккосинус – это угол, его аргумент (начинка) – это число, а выход – угол!!!
Ты когда-нибудь встречал в своей практике такой странный угол как ( displaystyle frac{sqrt{2}}{2})?!
Вот и я нет. Поэтому оставим как есть!
Ответ: ( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Уравнение 8. ( displaystyle cosleft( x right)=-sqrt{2})
Всё просто: ( displaystyle -sqrt{2}<-1)
… и решений данное уравнение не имеет.
Уравнение 9. ( displaystyle tgleft( x right)=sqrt{2})
Запишем по определению:
( displaystyle x=arctgsqrt{2}+pi n,~nin Z)
( displaystyle arctgsqrt{2}) – не табличное значение, поэтому ответ сохраняем неизменным.
Обрати внимание, что в отличие от уравнений с синусом и косинусом, здесь мне не уже важно, какое у меня число стоит в правой части уравнения.
Уравнение 10. ( displaystyle ctgleft( x right)=-sqrt{3})
Снова по определению:
( displaystyle x=arсctgleft( -sqrt{3} right)+pi n,~nin Z)
Без проблем выносим минус из арккотангенса:
Уравнение 11. ( displaystyle ctgleft( x right)=1)
По формуле: ( displaystyle x=arcctg1+pi n,~nin Z).
Котангенс какого угла равен ( displaystyle 1)?
Это угол ( displaystyle frac{pi }{4}).
Ответ: ( displaystyle x=frac{pi }{4}+pi n,~nin Z).
Ну как, материал не кажется тебе слишком сложным? Я надеюсь, что нет. Теперь давай порешаем для закрепления чуть более сложные задачки.
Решение 3-х более сложных уравнений
Уравнение 12. Найдите корни уравнения: ( displaystyle cosfrac{8pi x}{6}=frac{sqrt{3}}{2}). В ответе запишите наибольший отрицательный корень.
Логика простая: будем поступать так, как поступали раньше не взирая на то, что теперь у тригонометрических функций стал более сложный аргумент!
Если бы мы решали уравнение вида:
( displaystyle cost=frac{sqrt{3}}{2})
То мы бы записали вот такой ответ:
( displaystyle t=pm arccosfrac{sqrt{3}}{2}+2pi n,~nin Z)
Или (так как ( displaystyle arccosfrac{sqrt{3}}{2}=frac{pi }{6}))
( displaystyle t=pm frac{pi }{6}+2pi n,~nin Z)
Но теперь в роли ( displaystyle t) у нас выступаем вот такое выражение: ( displaystyle t=frac{8pi x}{6})
Тогда можно записать:
( displaystyle frac{8pi x}{6}=pm frac{pi }{6}+2pi n)
Наша с тобою цель – сделать так, чтобы слева стоял просто ( displaystyle x), без всяких «примесей»!
Давай постепенно от них избавляться!
Вначале уберём знаменатель при ( displaystyle x): для этого домножим наше равенство на ( displaystyle 6):
( displaystyle frac{6cdot 8pi x}{6}=6cdot left( pm frac{pi }{6}+2pi n right))
( displaystyle 8pi x=pm frac{6pi }{6}+12pi n)
( displaystyle 8pi x=pm pi +12pi n)
Теперь избавимся от ( displaystyle pi ), разделив на него обе части:
( displaystyle 8x=pm 1+12n)
Теперь избавимся от восьмёрки:
( displaystyle frac{8x}{8}=pm frac{1}{8}+frac{12n}{8})
( displaystyle x=pm frac{1}{8}+frac{3n}{2})
Полученное выражение можно расписать как 2 серии решений (по аналогии с квадратным уравнением, где мы либо прибавляем, либо вычитаем дискриминант)
( displaystyle x=frac{1}{8}+frac{3n}{2})
или
( displaystyle x=-frac{1}{8}+frac{3n}{2})
Нам нужно найти наибольший отрицательный корень! Ясно, что надо перебирать ( displaystyle n).
Рассмотрим вначале первую серию:
Уравнение 13. Найдите корни уравнения: ( displaystyle cosfrac{pi left( {x}-7 right)}{3}=frac{1}{2}). В ответ запишите наибольший отрицательный корень.
Опять решаем, не взирая на сложный аргумент косинуса:
( displaystyle frac{pi left( {x}-7 right)}{3}=pm arccosfrac{1}{2}+2pi n,~nin Z)
( displaystyle frac{pi left( {x}-7 right)}{3}=pm frac{pi }{3}+2pi n,~nin Z)
Теперь снова выражаем ( displaystyle x) слева:
Умножаем обе стороны на ( displaystyle 3)
( displaystyle frac{3pi left( {x}-7 right)}{3}=pm frac{3pi }{3}+2cdot 3pi n,~nin Z)
( displaystyle pi left( {x}-7 right)=pm pi +6pi n,~nin Z)
Делим обе стороны на ( displaystyle pi)
( displaystyle frac{pi left( {x}-7 right)}{pi }=pm frac{pi }{pi }+frac{6pi n}{pi },~nin Z)
( displaystyle ~{x}-7=pm 1+6n,~nin Z)
Всё, что осталось, – это перенести ( displaystyle 7) вправо, изменив её знак с минуса на плюс.
( displaystyle x=7pm 1+6n,~nin Z)
У нас опять получается 2 серии корней, одна с ( displaystyle +1), а другая с ( displaystyle -1).
( displaystyle x=8+6n,~nin Z)
или
( displaystyle x=6+6n,~nin Z)
Нам нужно найти наибольший отрицательный корень. Рассмотрим первую серию:
Уравнение 14. Решите уравнение ( displaystyle tgfrac{pi x}{4}=-1). В ответе напишите наибольший отрицательный корень.
Решаем, не взирая на сложный аргумент тангенса.
Вот, вроде бы ничего сложного, не так ли?
( displaystyle frac{pi x}{4}=arctgleft( -1 right)+pi n)
( displaystyle frac{pi x}{4}=-arctgleft( 1 right)+pi n)
( displaystyle frac{pi x}{4}=-frac{pi }{4}+pi n)
Как и раньше, выражаем ( displaystyle x) в левой части:
( displaystyle frac{4pi x}{4}=-frac{4pi }{4}+4pi n)
( displaystyle pi x=-pi +4pi n)
( displaystyle frac{pi x}{pi }=-frac{pi }{pi }+frac{4pi n}{pi })
( displaystyle x=-1+4n)
Ну вот и замечательно, здесь вообще всего одна серия корней! Опять найдём наибольший отрицательный.
Ясно, что он получается, если положить ( displaystyle n=0). И корень этот равен ( displaystyle -1).
Ответ: ( displaystyle -1)
Теперь попробуй самостоятельно решить следующие задачи.
Решение 3-х примеров для самостоятельной работы
- Решите уравнение ( displaystyle sinfrac{pi x}{3}=0,5). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle tgfrac{pi left( {x}-6 right)}{6}=frac{1}{sqrt{3}}). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle sinfrac{pi left( 2{x}-3 right)}{6}=-0,5). В ответе напишите наименьший положительный корень.
Готов? Проверяем. Я не буду подробно описывать весь алгоритм решения, мне кажется, ему и так уделено достаточно внимания выше.
Ну что же, теперь ты умеешь решать простейшие тригонометрические уравнения! Сверься с решениями и ответами:
Ну что, всё правильно? Ох уж эти гадкие синусы, с ними всегда какие-то беды!
Эти знания помогут тебе решать многие задачи, с которыми ты столкнёшься в экзамене.
Если же ты претендуешь на оценку «5», то тебе просто необходимо перейти к чтению статьи для среднего уровня, которая будет посвящена решению более сложных тригонометрических уравнений.
СРЕДНИЙ УРОВЕНЬ СЛОЖНОСТИ
В этой части статьи я опишу решение тригонометрических уравнений более сложного типа и объясню, как производить отбор их корней. Здесь я буду опираться на следующие темы:
- Тригонометрические уравнения для начального уровня (см. выше)
- Формулы тригонометрии
Рекомендую тебе прежде ознакомиться с ними, прежде чем приступать к чтению и разбору этого чтива. Итак, все готово? Прекрасно. Тогда вперед.
Более сложные тригонометрические уравнения – это основа задач повышенной сложности. В них требуется как решить само уравнение в общем виде, так и найти корни этого уравнения, принадлежащие некоторому заданному промежутку.
Решение тригонометрических уравнений сводится к двум подзадачам:
- Решение уравнения
- Отбор корней
Следует отметить, что второе требуется не всегда, но все же в большинстве примеров требуется производить отбор. А если же он не требуется, то тебе скорее можно посочувствовать – это значит, что уравнение достаточно сложное само по себе.
Мой опыт разбора задач повышенной сложности показывает, что они как правило делятся на вот такие 4 категории.
Четыре категории задач повышенной сложности
- Уравнения, сводящиеся к разложению на множители.
- Уравнения, сводящиеся к виду ( displaystyle tgx=a).
- Уравнения, решаемые заменой переменной.
- Уравнения, требующие дополнительного отбора корней из-за иррациональности или знаменателя.
Говоря по-простому: если тебе попалось одно из уравнений первых трех типов, то считай, что тебе повезло. Для них как правило дополнительно нужно подобрать корни, принадлежащие некоторому промежутку.
Если же тебе попалось уравнение 4 типа, то тебе повезло меньше: с ним нужно повозиться подольше и повнимательнее, зато довольно часто в нем не требуется дополнительно отбирать корни.
Тем не менее данный тип уравнений я буду разбирать в разделе для продвинутых, а эту посвящу решению уравнений первых трех типов.
Уравнения, сводящихся к разложению на множители
Самое важное, что тебе нужно помнить, чтобы решать уравнения этого типа, это:
- Формулы приведения
- Синус, косинус двойного угла
Как показывает практика, как правило, этих знаний достаточно. Давай обратимся к примерам.
Уравнения, сводящиеся к разложению с помощью синуса двойного угла:
Уравнение 18. Решите уравнение ( displaystyle sin2x=text{sin}left( frac{pi }{2}+x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{7pi }{2},-frac{5pi }{2} right])
Здесь, как я и обещал, работают формулы приведения:
( displaystyle sin left( frac{pi }{2}+x right)=cosx)
Тогда мое уравнение примет вот такой вид:
( displaystyle sin2x=cosx)
Что дальше? А дальше обещанный мною второй пункт программы – синус двойного угла:
( displaystyle sin2x=2sinxcosx)
Тогда мое уравнение примет следующую форму:
( displaystyle 2sinxcosx=cosx)
Недальновидный ученик мог бы сказать: а теперь я сокращу обе части на ( displaystyle cosx), получаю простейшее уравнение ( displaystyle 2sinx=1) и радуюсь жизни! И будет горько заблуждаться!
Запомни!
Никогда нельзя сокращать обе части тригонометрического уравнения на функцию, содержащую неизвестную! Таки образом ты теряешь корни!
Так что же делать? Да все просто, переносить все в одну сторону и выносить общий множитель:
( displaystyle 2sinxcosx-cosx=0)
( displaystyle cosxleft( 2sinx-1 right)=0)
Ну вот, на множители разложили, ура! Теперь решаем:
( displaystyle cosx=0) или ( displaystyle 2sinx=1)
Первое уравнение имеет корни:
( displaystyle x=frac{pi }{2}+pi n).
А второе:
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
На этом первая часть задачи решена. Теперь нужно отобрать корни.
Уравнения, сводящиеся к разложению на множители с помощью формул приведения
Уравнение 19. Решите уравнение ( displaystyle 2si{{n}^{2}}x=cos left( frac{3pi }{2}-x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{5pi }{2},-pi right]).
Решение:
Опять пресловутые формулы приведения:
( displaystyle cos left( frac{3pi }{2}-x right)=-sinx)
( displaystyle 2si{{n}^{2}}x=-sinx)
Опять не вздумай сокращать!
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
Откуда:
( displaystyle sinx=0) или ( displaystyle 2sinx+1=0,~sinx=-frac{1}{2})
Первое уравнение имеет корни:
( displaystyle x=pi n)
А второе:
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
Теперь снова поиск корней.
Уравнение 20. Решите уравнение ( displaystyle sqrt{2}sin left( frac{3pi }{2}-x right)cdot sinx=cosx)
Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},frac{3pi }{2} right]).
И снова формула приведения:
( displaystyle ~sin left( frac{3pi }{2}-x right)=-cosx)
( displaystyle -sqrt{2}cosxsinx=cosx)
( displaystyle -sqrt{2}cosxsinx-cosx=0)
( displaystyle sqrt{2}cosxsinx+cosx=0)
( displaystyle cosxleft( sqrt{2}sinx+1 right)=0)
( displaystyle cosx=0) или ( displaystyle sqrt{2}sinx+1=0)
( displaystyle sinx=-frac{1}{sqrt{2}})
Первая серия корней:
( displaystyle x=frac{pi }{2}+pi n).
Вторая серия корней:
Уравнение 20. Решите уравнение ( displaystyle 2sin2x=4cosx-sinx+1)
Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -5pi ,-4pi right])
Довольно хитрая группировка на множители (применю формулу синуса двойного угла):
( displaystyle 2cdot 2sinxcosx=4cosx-sinx+1)
( displaystyle 4sinxcosx-4cosx+sinx-1=0)
( displaystyle 4cosxleft( sinx-1 right)+left( sinx-1 right)=0)
( displaystyle left( 4cosx+1 right)left( sinx-1 right)=0)
тогда ( displaystyle 4cosx+1=0) или ( displaystyle left( sinx-1 right)=0)
( displaystyle cosx=-frac{1}{4}) или ( displaystyle sinx=1)
( displaystyle x=pm left( pi -arccosfrac{1}{4} right)+2pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Это общее решение. Теперь надо отбирать корни. Беда в том, что мы не можем сказать точное значение угла, косинус которого равен одной четверти. Поэтому я не могу просто так избавиться от арккосинуса – вот такая досада!
Что я могу сделать?
Я могу прикинуть, что так как ( displaystyle frac{1}{4}<0,5), то ( displaystyle arccosfrac{1}{4}>frac{pi }{3}).
( displaystyle frac{pi }{2}>arccosfrac{1}{4}>frac{pi }{3})
Составим таблицу: промежуток: ( displaystyle left[ -5pi ;~-4pi right])
Уравнение 21. Решите уравнение ( displaystyle sin2x-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle ~left[ -frac{pi }{2},pi right]).
Уравнение пугающего вида. Однако решается довольно просто путем применения формулы синуса двойного угла:
( displaystyle 2sinxcosx-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0)
Сократим на 2:
( displaystyle sinxcosx-sqrt{3}si{{n}^{2}}x+2cosx-2sqrt{3}sinx=0)
Сгруппируем первое слагаемое со вторым и третье с четвертым и вынесем общие множители:
( displaystyle sinxleft( cosx-sqrt{3}sinx right)+2left( cosx-sqrt{3}sinx right)=0)
( displaystyle left( sinx+2 right)left( cosx-sqrt{3}sinx right)=0)
( displaystyle sinx+2=0) или ( displaystyle cosx-sqrt{3}sinx=0)
Ясно, что первое уравнение корней не имеет, а теперь рассмотрим второе:
( displaystyle cosx-sqrt{3}sinx=0)
Вообще я собирался чуть позже остановиться на решении таких уравнений, но раз уж подвернулось, то делать нечего, надо решать…
Уравнения, сводящиеся к виду tgx=a
Ну вот, теперь самое время переходить ко второй порции уравнений, тем более, что я уже и так проболтался в чем состоит решение тригонометрических уравнений нового типа.
Но не лишним будет повторить, что уравнение вида
( displaystyle text{acosx}+text{bsinx}=0text{ }!!~!!text{ }left( text{a},text{b}ne 0 right))
Решается делением обеих частей на косинус:
( displaystyle text{a}frac{text{cosx}}{text{cosx}}+text{b}frac{text{sinx}}{text{cosx}}=0)
( displaystyle text{a}+text{btgx}=0)
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Таким образом, решить уравнение вида
( displaystyle text{acosx}+text{bsinx}=0 )
все равно, что решить
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Мы только что рассмотрели, как это происходит на практике. Однако давай решим еще и вот такие примеры.
Разбор 3-х примеров для закрепления материала
Уравнение 22. Решите уравнение ( displaystyle sinx+si{{n}^{2}}frac{x}{2}=co{{s}^{2}}frac{x}{2}). Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-frac{pi }{2} right]).
Решение:
Ну совсем простое. Перенесем ( displaystyle si{{n}^{2}}frac{x}{2}) вправо и применим формулу косинуса двойного угла:
( displaystyle sinx=co{{s}^{2}}frac{x}{2}-si{{n}^{2}}frac{x}{2})
( displaystyle sinx=cosx)
Ага! Уравнение вида:
( displaystyle acosx+bsinx=0).
Делю обе части на ( displaystyle cosx)
( displaystyle frac{sinx}{cosx}=frac{cosx}{cosx})
( displaystyle tgx=1)
( displaystyle x=frac{pi }{4}+pi n)
Делаем отсев корней:
Уравнение 23. Решите уравнение ( displaystyle cosx={{left( cosfrac{x}{2}-sinfrac{x}{2} right)}^{2}}-1). Укажите корни уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},2pi right]).
Все тоже довольно тривиально: раскроем скобки справа:
( displaystyle cosx=co{{s}^{2}}frac{x}{2}-2sinfrac{x}{2}cosfrac{x}{2}+si{{n}^{2}}frac{x}{2}-1)
Основное тригонометрическое тождество:
( displaystyle co{{s}^{2}}frac{x}{2}+si{{n}^{2}}frac{x}{2}=1)
Синус двойного угла:
( displaystyle 2sinfrac{x}{2}cosfrac{x}{2}=sinx)
Окончательно получим:
Уравнение 24. Решите уравнение ( displaystyle sqrt{3}sin2x+3cos2x=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{3pi }{2},3pi right]).
Уравнение решается сразу же, достаточно поделить обе части на ( displaystyle cos2x):
( displaystyle sqrt{3}tg2x+3=0)
( displaystyle sqrt{3}tg2x=-3)
( displaystyle tg2x=-frac{3}{sqrt{3}})
( displaystyle 2x=-frac{pi }{3}+pi n)
( displaystyle x=-frac{pi }{6}+frac{pi n}{2})
Отсев корней:
( displaystyle n) | ( displaystyle x=-frac{pi }{6}+frac{pi n}{2}) |
---|---|
( displaystyle 3) | ( displaystyle -frac{pi }{6}+frac{3pi }{2}) — маленький недолет на ( displaystyle frac{pi }{6}) |
( displaystyle 4) | ( displaystyle -frac{pi }{6}+2pi =frac{11pi }{6}) — попал! |
( displaystyle 5) | ( displaystyle -frac{pi }{6}+frac{5pi }{2}=frac{7pi }{3}) — снова в яблочко! |
( displaystyle 6) | ( displaystyle -frac{pi }{6}+3pi =frac{17pi }{6}) — и снова удача на нашей стороне! |
( displaystyle 7) | ( displaystyle -frac{pi }{12}+frac{7pi }{2}) — на сей раз уже перелет! |
Ответ: ( displaystyle frac{11pi }{6};frac{14pi }{6};frac{17pi }{6}).
Так или иначе, нам еще предстоит встретиться с уравнениями того вида, которые мы только что разобрали. Однако нам еще рано закругляться: остался еще один «пласт» уравнений, которые мы не разобрали. Итак:
Решение тригонометрических уравнений заменой переменной
Здесь все прозрачно: смотрим пристально на уравнение, максимально его упрощаем, делаем замену, решаем, делаем обратную замену!
На словах все очень легко. Давай посмотрим на деле:
Уравнение 25. Решить уравнение: ( displaystyle 4co{{s}^{4}}x-4co{{s}^{2}}x+1=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-pi right]).
Ну что же, здесь замена сама напрашивается к нам в руки!
( displaystyle t=co{{s}^{2}}x)
Тогда наше уравнение превратится вот в такое:
Уравнение 26. Решите уравнение ( displaystyle 6si{{n}^{2}}x+sin2x=2). Укажите корни данного уравнения, принадлежащие промежутку ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Решение:
Здесь замена сразу не видна, более того, она не очень очевидна. Давай вначале подумаем: а что мы можем сделать?
Можем, например, представить
( displaystyle sin2x=2sinxcosx)
А заодно и
( displaystyle 2=2si{{n}^{2}}x+2co{{s}^{2}}x)
Тогда мое уравнение примет вид:
( displaystyle 6si{{n}^{2}}x+2sinxcosx=2si{{n}^{2}}x+2co{{s}^{2}}x)
( displaystyle 4si{{n}^{2}}x+2sinxcosx-2co{{s}^{2}}x=0)
( displaystyle 2si{{n}^{2}}x+sinxcosx-co{{s}^{2}}x=0)
А теперь внимание, фокус:
Давай разделим обе части уравнения на ( displaystyle co{{s}^{2}}x):
( displaystyle 2frac{si{{n}^{2}}x}{co{{s}^{2}}x}+frac{sinxcosx}{co{{s}^{2}}x}-frac{co{{s}^{2}}x}{co{{s}^{2}}x}=0)
( displaystyle 2t{{g}^{2}}x+tgx-1=0)
Внезапно мы с тобой получили квадратное уравнение относительно ( displaystyle tgx)!
Сделаем замену ( displaystyle t=tgx), тогда получим:
( displaystyle 2{{t}^{2}}+t-1=0)
Уравнение имеет следующие корни:
( displaystyle {{t}_{1}}=-1,{{t}_{2}}=frac{1}{2})
Отсюда:
( displaystyle tgx=-1).
( displaystyle x=-frac{pi }{4}+pi n)
Или
( displaystyle tgx=frac{1}{2}).
( displaystyle x=arctgfrac{1}{2}+pi n)
Неприятная вторая серия корней, но ничего не поделаешь!
Производим отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Нам также нужно учитывать, что:
Уравнение 27. Решите уравнение ( displaystyle frac{1}{t{{g}^{2}}x}+frac{3}{sinx}+3=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ 2pi ,frac{7pi }{2} right]).
Решение:
Здесь нужно держать ухо востро: у нас появились знаменатели, которые могут быть нулевыми! Поэтому надо быть особо внимательными к корням!
Прежде всего, мне нужно преобразовать уравнение так, чтобы я мог сделать подходящую замену. Я не могу придумать сейчас ничего лучше, чем переписать тангенс через синус и косинус:
( displaystyle t{{g}^{2}}x=frac{si{{n}^{2}}x}{co{{s}^{2}}x})
( displaystyle frac{co{{s}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
Теперь я перейду от косинуса к синусу по основному тригонометрическому тождеству:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
И, наконец, приведу все к общему знаменателю:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3sinx}{si{{n}^{2}}x}+frac{3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{1-si{{n}^{2}}x+3sinx+3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{2si{{n}^{2}}x+3sinx+1}{si{{n}^{2}}x}=0)
Теперь я могу перейти к уравнению:
( displaystyle 2si{{n}^{2}}x+3sinx+1=0)
Но при ( displaystyle si{{n}^{2}}xne 0) (то есть при ( displaystyle xne pi n)).
Теперь все готово для замены: ( displaystyle t=sin x)
Уравнение 28. Решите уравнение ( displaystyle 4si{{n}^{2}}x+8sin left( frac{3pi }{2}+x right)+1=0)
Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -3pi ,-frac{3pi }{2} right]).
Работаем по формулам приведения:
( displaystyle sin left( frac{3pi }{2}+x right)=-cosx)
Подставляем в уравнение:
( displaystyle 4si{{n}^{2}}x+8left( -cosx right)+1=0)
Перепишем все через косинусы, чтобы удобнее было делать замену:
( displaystyle 4left( 1-co{{s}^{2}}x right)-8cosx+1=0)
( displaystyle -4co{{s}^{2}}x-8cosx+5=0)
( displaystyle 4co{{s}^{2}}x+8cosx-5=0)
Теперь легко сделать замену:
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}+8t-5=0)
( displaystyle {{t}_{1}}=-frac{5}{2},{{t}_{2}}=frac{1}{2})
Ясно, что ( displaystyle {{t}_{1}}=-frac{5}{2}) — посторонний корень, так как уравнение ( displaystyle cosx=-frac{5}{2}) решений не имеет.
Уравнение 30. Решите уравнение ( displaystyle t{{g}^{2}}x+left( 1+sqrt{3} right)tgx+sqrt{3}=0)
Укажите корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{5pi }{2},4pi right]).
Здесь замена видна сразу: ( displaystyle t=tgx)
( displaystyle {{t}^{2}}+left( 1+sqrt{3} right)t+sqrt{3}=0)
( displaystyle {{t}_{1}}=-1,~{{t}_{2}}=-sqrt{3})
Тогда ( displaystyle tgx=-1) или ( displaystyle tgx=-sqrt{3})
( displaystyle x=-frac{pi }{4}+pi n)
или
( displaystyle x=-frac{pi }{3}+pi n)
Отбор корней на промежутке ( displaystyle left[ frac{5pi }{2},4pi right]):
( displaystyle n)
( displaystyle x=-frac{pi }{4}+pi n)
( displaystyle x=-frac{pi }{3}+pi n)
( displaystyle 3)
( displaystyle x=frac{11pi }{4}) — подходит!
( displaystyle x=frac{8pi }{3}) — подходит!
( displaystyle 4)
( displaystyle x=frac{15pi }{4}) — подходит!
( displaystyle x=frac{11pi }{3}) — подходит!
( displaystyle 5)
( displaystyle x=frac{19pi }{4}) — много!
( displaystyle x=frac{14pi }{3}) — тоже много!
Ответ: ( displaystyle frac{11pi }{4}; frac{8pi }{3}; frac{15pi }{4}; frac{11pi }{3})
Ну вот, теперь все! Но решение тригонометрических уравнений на этом не заканчивается, за бортом у нас остались самые сложные случаи: когда в уравнениях присутствует иррациональность или разного рода «сложные знаменатели».
Как решать подобные задания мы рассмотрим далее в разделе для продвинутого уровня.
ПРОДВИНУТЫЙ УРОВЕНЬ СЛОЖНОСТИ
Уравнения, требующие дополнительного отбора корней из-за иррациональности и знаменателя
В дополнение к рассмотренным в предыдущих двух статьях тригонометрическим уравнениям, рассмотрим еще один класс уравнений, которые требуют еще более внимательного анализа.
Данные тригонометрические примеры содержат либо иррациональность, либо знаменатель, что делает их анализ более сложным.
Тем не менее ты вполне можешь столкнуться с данными уравнениями на ЕГЭ (и получить за них максимальное количество баллов!).
Однако нет худа без добра: для таких уравнений уже, как правило, не ставится вопрос о том, какие из его корней принадлежат заданному промежутку.
Давай не будем ходить вокруг да около, а сразу тригонометрические примеры.
Уравниние 31. Решить уравнение ( displaystyle frac{2si{{n}^{2}}x+sinx}{2cosx-sqrt{3}}=0~) и найти те корни, которые принадлежат отрезку ( displaystyle left[ -frac{3pi }{2},0 right]).
Решение:
У нас появляется знаменатель, который не должен быть равен нулю! Тогда решить данное уравнение – это все равно, что решить систему
( displaystyle left{ begin{array}{l}2si{{n}^{2}}x+sinx=0\2cosx-sqrt{3}ne 0end{array} right.)
Решим каждое из уравнений:
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=-frac{1}{2})
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
А теперь второе:
( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle xne pm frac{pi }{6}+2pi n)
или ( displaystyle xne frac{pi }{6}+2pi n), ( displaystyle xne -frac{pi }{6}+2pi n)
Теперь давай посмотрим на серию:
Уравнение 32. Решите уравнение: ( displaystyle left( sinx-frac{sqrt{3}}{2} right)sqrt{3{{x}^{2}}-7x+4}=0)
Решение:
Ну хотя бы не надо отбирать корни и то хорошо! Давай вначале решим уравнение, не взирая на иррациональность:
( displaystyle sinx=frac{sqrt{3}}{2})
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{3}+pi n)
( displaystyle 3{{x}^{2}}-7x+4=0)
( displaystyle {{x}_{1}}=1,{{x}_{2}}=frac{4}{3})
И что, это все? Нет, увы, так было бы слишком просто! Надо помнить, что под корнем могут стоять только неотрицательные числа. Тогда:
( displaystyle 3{{x}^{2}}-7x+4ge 0)
Решение этого неравенства:
Уравнение 33. ( displaystyle left( 2{{x}^{2}}-5x+2 right)sqrt{cosx-sqrt{3}sinx}=0)
Как и раньше: вначале решим каждое отдельно, а потом подумаем, что же мы наделали.
( displaystyle 2{{x}^{2}}-5x+2=0)
( displaystyle {{x}_{1}}=2,~{{x}_{2}}=0,5)
Теперь второе уравнение:
( displaystyle cosx-sqrt{3}sinx=0)
( displaystyle tgx=frac{1}{sqrt{3}})
( displaystyle x=frac{pi }{6}+pi n)
Теперь самое сложное – выяснить, не получаются ли отрицательные значения под арифметическим корнем, если мы подставим туда корни из первого уравнения:
( displaystyle cos2-sqrt{3}sin2)
Число ( displaystyle 2) надо понимать как ( displaystyle 2) радианы.
Так как ( displaystyle 1) радиана – это примерно ( displaystyle 57) градусов, то ( displaystyle 2) радианы – порядка ( displaystyle 114) градусов. Это угол второй четверти.
Косинус второй четверти имеет какой знак? Минус. А синус? Плюс. Так что можно сказать про выражение
( displaystyle cos2-sqrt{3}sin2)?
Оно меньше нуля!
( displaystyle cos2-sqrt{3}sin2<0)
А значит ( displaystyle 2) – не является корнем уравнения.
Теперь черед ( displaystyle frac{1}{2}).
( displaystyle cosfrac{1}{2}-sqrt{3}sinfrac{1}{2})
Сравним это число с нулем.
Уравнение 34. ( displaystyle left( 4co{{s}^{2}}x-4cosx-3 right)sqrt{-6sinx}=0)
Решение:
( displaystyle 4co{{s}^{2}}x-4cosx-3=0)
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}-4t-3=0)
( displaystyle {{t}_{1}}=-0,5;{{t}_{2}}=1,5) – корень ( displaystyle {{t}_{2}}) не годится, ввиду ограниченности косинуса
( displaystyle cosx=-0,5)
( displaystyle x=pm frac{2pi }{3}+2pi n)
Теперь второе:
Уравнение 35. ( displaystyle frac{cos2x+sinx}{sqrt{text{sin}left( x-frac{pi }{4} right)}}=0)
Ну, ничего не поделаешь – поступаем так, как и раньше.
( displaystyle cos2x+sinx=0)
( displaystyle 1-2si{{n}^{2}}x+sinx=0)
( displaystyle 2si{{n}^{2}}x-sinx-1=0)
( displaystyle t=sinx)
( displaystyle 2{{t}^{2}}-t-1=0)
( displaystyle {{t}_{1}}=-0,5,{{t}_{2}}=1)
( displaystyle sinx=-0,5) или ( displaystyle sinx=1)
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Теперь работаем со знаменателем:
( displaystyle text{sin}left( x-frac{pi }{4} right)ge 0)
Я не хочу решать тригонометрическое неравенство, а потому поступлю хитро: возьму и подставлю в неравенство мои серии корней:
Уравнение 36. ( displaystyle sqrt{9-{{x}^{2}}}cosx=0)
Первое уравнение: ( displaystyle 9-{{x}^{2}}=0)
( displaystyle x=3) или ( displaystyle x=-3)
ОДЗ корня:
( displaystyle 9-{{x}^{2}}ge 0)
( displaystyle xin left[ -3;3 right])
Второе уравнение:
Уравнение 37. ( displaystyle frac{2si{{n}^{2}}x-sinx}{2cosx-sqrt{3}}=0)
( displaystyle 2si{{n}^{2}}x-sinx=0)
( displaystyle sinxleft( 2sinx-1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=0,5)
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
Но ( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle cosxne frac{sqrt{3}}{2})
( displaystyle xne pm frac{pi }{6}+2pi n)
Рассмотрим ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n).
Если ( displaystyle n) – четное, то
( displaystyle x=frac{pi }{6}+2pi k) – не подходит!
Если ( displaystyle n) – нечетное, ( displaystyle n=2k+1):
( displaystyle x=-frac{pi }{6}+2pi k+pi =frac{5pi }{6}+2pi k) – подходит!
Значит, наше уравнение имеет такие серии корней:
( displaystyle x=pi n) или ( displaystyle x=frac{5pi }{6}+2pi n)
Отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},3pi right]):
( displaystyle n) | ( displaystyle 1) | ( displaystyle 2) | ( displaystyle 3) |
---|---|---|---|
( displaystyle x=pi n) | ( displaystyle pi )— не подходит | ( displaystyle 2pi ) – подходит | ( displaystyle 3pi ) – подходит |
( displaystyle x=frac{5pi }{6}+2pi n) | ( displaystyle frac{5pi }{6}+2pi =frac{17pi }{6}) – подходит | ( displaystyle frac{5pi }{6}+4pi ) – много | много |
Ответ: ( displaystyle 3pi ), ( displaystyle 2pi ), ( displaystyle frac{17pi }{6}).
Уравнение 38. ( displaystyle left( 2co{{s}^{2}}x-cosx right)sqrt{-11tgx}=0)
( displaystyle 2co{{s}^{2}}x-cosx=0)
( displaystyle cosxleft( 2cosx-1 right)=0)
( displaystyle cosx=0~)или ( displaystyle 2cosx-1=0)
Так как ( displaystyle tgx=frac{sinx}{cosx}), то при ( displaystyle cosx=0~) тангенс не определен. Тут же отбрасываем эту серию корней!
( displaystyle 2cosx-1=0)
( displaystyle cosx=0,5)
( displaystyle x=pm frac{pi }{3}+2pi n)
Вторая часть:
( displaystyle -11tgx=0)
( displaystyle x=pi n)
В то же время по ОДЗ требуется, чтобы
( displaystyle tgxle 0)
Проверяем найденные в первом уравнении корни:
( displaystyle tgleft( pm frac{pi }{3}+2pi n right)le 0)
Если знак ( displaystyle +):
( displaystyle tgleft( frac{pi }{3}+2pi n right)le 0)
( displaystyle frac{pi }{3}+2pi n) – углы первой четверти, где тангенс положительный. Не подходит!
Если знак ( displaystyle —):
( displaystyle tgleft( -frac{pi }{3}+2pi n right)le 0)
( displaystyle -frac{pi }{3}+2pi n) – угол четвертой четверти. Там тангенс отрицательный. Подходит. Записываем ответ:
Ответ: ( displaystyle x=pi n), ( displaystyle x=-frac{pi }{3}+2pi n).
Мы вместе разобрали в этой статье сложные тригонометрические примеры, но тебе стоит прорешать уравнения самому.
Подготовка к ЕГЭ на 90+
Алексей Шевчук — ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 — WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org — email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж — c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
- отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».