Как найти падение напряжения на лампочке

Падение напряжения

На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении.

Если в электрической цепи только одно сопротивление r, все напряжение источника Uист падает на этом сопротивлении.

Если в цепи имеются два сопротивления r1 и r2, соединенные последовательно, то сумма напряжений на сопротивлениях U1=I∙r1 и U2=I∙r2 т. е. падений напряжения, равна напряжению источника: Uист=U1+U2.

Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).

1. Какое падение напряжения возникает на нити лампы сопротивлением r=15 Ом при прохождении тока I=0,3 А (рис. 1)?

Падение напряжения подсчитывается по закону Ома: U=I∙r=0,3∙15=4,5 В.

Напряжение между точками 1 и 2 лампочки (см. схему) составляет 4,5 В. Лампочка светит нормально, если через нее проходит номинальный ток или если между точками 1 и 2 номинальное напряжение (номинальные ток и напряжение указываются на лампочке).

2. Две одинаковые лампочки на напряжение 2,5 В и ток 0,3 А соединены последовательно и подключены к карманной батарее с напряжением 4,5 В. Какое падение напряжения создается на зажимах отдельных лампочек (рис. 2)?

Одинаковые лампочки имеют равные сопротивления r. При последовательном включении через них проходит один и тот же ток I. Из этого следует, что на них будут одинаковые падения напряжения, сумма этих напряжений должна быть равна напряжению источника U=4,5 В. На каждую лампочку приходится напряжение 4,5:2=2,25 В.

Можно решить эту задачу и последовательным расчетом. Сопротивление лампочки рассчитываем по данным: rл=2,5/0,3=8,33 Ом.

Ток в цепи I = U/(2rл )=4,5/16,66=0,27 А.

Падение напряжения на лампочке U=Irл=0,27∙8,33=2,25 В.

3. Напряжение между рельсом и контактным проводом трамвайной линии равно 500 В. Для освещения используются четыре одинаковые лампы, соединенные последовательно. На какое напряжение должна быть выбрана каждая лампа (рис. 3)?

Одинаковые лампы имеют равные сопротивления, через которые проходит один и тот же ток. Падения напряжения на лампах будут тоже одинаковыми. Значит, на каждую лампу будет приходиться 500:4=125 В.

4. Две лампы мощностью 40 и 60 Вт с номинальным напряжением 220 В соединены последовательно и включены в сеть с напряжением 220 В. Какое падение напряжения возникает на каждой из них (рис. 4)?

Первая лампа имеет сопротивление r1=1210 Ом, а вторая r2=806,6 Ом (в нагретом состоянии). Ток, проходящий через лампы, I=U/(r1+r2 )=220/2016,6=0,109 А.

Падение напряжения на первой лампе U1=I∙r1=0,109∙1210=132 В.

Падение напряжения на второй лампе U2=I∙r2=0,109∙806,6=88 В.

На лампе с большим сопротивлением большее падение напряжения, и наоборот. Накал нитей обеих ламп очень слаб, однако у лампы 40 Вт он несколько сильнее, чем у лампы 60 Вт.

5. Чтобы напряжение на электродвигателе Д (рис. 5) было равно 220 В, напряжение в начале длинной линии (на электростанции) должно быть больше 220 В на величину падения (потери) напряжения на линии. Чем больше сопротивление линии и ток в ней, тем больше падение напряжения на линии.

В нашем примере падение напряжения в каждом проводе линии равно 5 В. Тогда напряжение на шинах электростанции должно быть равно 230 В.

6. От аккумулятора напряжением 80 В потребитель питается током 30 А. Для нормальной работы потребителя допустимо 3% падения напряжения в проводах из алюминия с сечением 16 мм2. Каким может быть максимальное расстояние от аккумулятора до потребителя?

Допустимое падение напряжения в линии U=3/100∙80=2,4 В.

Сопротивление проводов ограничивается допустимым падением напряжения rпр=U/I=2,4/30=0,08 Ом.

По формуле для определения сопротивления подсчитаем длину проводов: r=ρ∙l/S, откуда l=(r∙S)/ρ=(0,08∙16)/0,029=44,1 м.

Если потребитель будет отдален от аккумулятора на 22 м, то напряжение на нем будет меньше 80 В на 3%, т.е. равным 77,6 В.

7. Телеграфная линия длиной 20 км выполнена из стального провода диаметром 3,5 мм. Обратная линия заменена заземлением через металлические шины. Переходное сопротивление между шиной и землей rз=50 Ом. Каким должно быть напряжение батареи в начале линии, если сопротивление реле на конце линии rр=300 Ом, а ток реле I=5 мА?

Схема включения показана на рис. 6. При нажатии телеграфного ключа в месте посылки сигнала реле в месте приема на конце линии притягивает якорь К, который в свою очередь включает своим контактом катушку записывающего аппарата. Напряжение источника должно компенсировать падение напряжения в линии, принимающем реле и переходных сопротивлениях заземляющих шин: U=I∙rл+I∙rр+I∙2∙rз; U=I∙(rл+rр+2∙rз).

Напряжение источника равно произведению тока на общее сопротивление цепи.

Сечение провода S=(π∙d^2)/4=(π∙3,5^2)/4=9,6 мм2.

Сопротивление линии rл=ρ∙l/S=0,11∙20000/9,6=229,2 Ом.

Результирующее сопротивление r=229,2+300+2∙50=629,2 Ом.

Напряжение источника U=I∙r=0,005∙629,2=3,146 В; U≈3,2 В.

Падение напряжения в линии при прохождении тока I=0,005 А будет: Uл=I∙rл=0,005∙229,2=1,146 В.

Сравнительно малое падение напряжения в линии достигается благодаря малой величине тока (5 мА). Поэтому в месте приема должно быть чувствительное реле (усилитель), которое включается от слабого импульса 5 мА и своим контактом включает другое, более мощное реле.

8. Как велико напряжение на лампах в схеме на рис. 28, когда: а) двигатель не включен; б) двигатель запускается; в) двигатель в работе.

Двигатель и 20 ламп включены в сеть с напряжением 110 В. Лампы рассчитаны на напряжение 110 В и мощность 40 Вт. Пусковой ток двигателя Iп=50 А, а его номинальный ток Iн=30 А.

Подводящий медный провод имеет сечение 16 мм2 и длину 40 м.

Из рис. 7 и условия задачи видно, что ток двигателя и ламп вызывает в линии падение напряжения, поэтому напряжение на нагрузке будет меньше 110 В.

Отсюда напряжение на лампах Uламп=U-2∙Uл.

Надо определить падение напряжения в линии при различных токах: Uл=I∙rл.

Ток, проходящий через все лампы,

Падение напряжения в линии, когда включены только лампы (без двигателя),

Напряжение на лампах в этом случае равно:

При пуске двигателя лампы будут светить слабее, так как падение напряжения в линии больше:

2∙Uл=(Iламп+Iдв )∙2∙rл=(7,27+50)∙0,089=57,27∙0,089=5,1 В.

Минимальное напряжение на лампах при пуске двигателя будет:

Когда двигатель работает, падение напряжения в линии меньше, чем при пуске двигателя, но больше, чем при выключенном двигателе:

2∙Uл=(Iламп+Iном )∙2∙rл=(7,27+30)∙0,089=37,27∙0,089=3,32 В.

Напряжение на лампах при нормальной работе двигателя равно:

Даже небольшое снижение напряжения на лампах относительно номинального сильно влияет на яркость освещения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Определение падения напряжения

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Источник

В книгах по электротехнике или описаниях радиосхем можно встретить фразу: «падение напряжения на резисторе или диоде». А почему резистор вообще вызывает падение напряжения и что это на самом деле означает? Давайте разбираться…

Электрические заряды не перемещаются по проводникам добровольно, им нужен какой-то стимул для создания электрического тока (потока). В мире электричества стимулом является напряжение – чем оно выше, тем большая сила толкает электроны, заставляя их двигаться быстрее и создавать больший ток. Но электрического напряжения как бы и нет. Это не физическое явление само по себе и не потенциальное. Напряжение и потенциал – это математические понятия, изобретенные людьми, которые не могли видеть энергию глазами, но хотели как-то ее описать.

Электрический ток – это не электроны, бесцельно перетекающие от одного полюса батареи к другому. Суть в энергии, которую они могут дать этим движением. И хотя в этом здесь важнее всего энергия, о напряжении и потенциале почему-то обычно пишут больше. Это просто отличное и очень четкое описание этой энергии. Зная о напряжении, сразу понимаем, с чем имеем дело и сколько из этого можно извлечь.

Можно предположить, что батарея на 1,5 вольта никогда не будет выделять такую энергию как удар молнии с напряжением в несколько миллионов вольт. Также знаем, что небольшой светодиод лучше не вставлять в электрическую розетку, потому что 220 В сразу его сожгет. Такое напряжение отлично подойдет для питания обычной лампочки, которая не загорится при подключении к обычному аккумулятору АА.

Это соотношение напряжения и энергии чрезвычайно простое – больше вольт означает больше энергии, которую несет с собой каждый отдельный электрон. Коэффициент преобразования прост – например, напряжение 220 В равно 220 Дж / Кл (джоуль в кулон), то есть один кулон несет энергию 220 джоулей. А поскольку мы знаем, что 1 кулон равен примерно 6 триллионам электронов, можем сказать, что при напряжении 220 В поток из 6 триллионов электронов через лампочку даст ей ровно 220 Дж энергии. Хотя конечно взаимосвязь между напряжением и энергией идет намного глубже, чем простое преобразование единиц.

Когда падает напряжение?

Казалось бы, раз в розетке 220 В, а батарея это 3 В, эти значения постоянные. А вот и нет. Напряжение падает, и попробуем понять, почему это происходит.

Существует три основных причины падения напряжения:

  1. Истощение источника – если имеем дело с источником напряжения, который может быть исчерпан (например, аккумулятор или батарейка), это истощение проявляется в падении напряжения. И неудивительно – напряжение описывает энергию элемента, поэтому при потреблении этой энергии уровень напряжения также должен падать. Это явление тесно связано с так называемым внутренним сопротивлением аккумулятора.
  2. Слишком большая нагрузка на источник – выключите все приборы в доме и измерьте мультиметром напряжение в розетке. Затем включите электродуховку, чайник и стиральную машину и снова измерьте напряжение – разница в обоих измерениях составит несколько вольт. Это связано с упомянутым ранее внутренним сопротивлением.
  3. Падение напряжения на потребителе – два предыдущих примера говорят о ситуации, когда источник напряжения «перестает работать». А вот падение напряжения на потребителе – это совсем другая тема. У нас может быть лучший в мире источник напряжения, который практически невозможно просадить, и все же каждый подключенный к нему потребитель вызовет так называемые «падение напряжения».

Объясним почему на основе электрических цепей. Например есть батарея, несколько резисторов, лампочка и описание: Напряжение батареи составляет 9 В. Падение напряжения на каждом резисторе составляет 2 В. Падение напряжения через лампочку 1 В. Но почему резистор и лампочка вообще вызывают падение напряжения?

Стрелки «падение напряжения» всегда указывают в направлении, противоположном напряжению аккумулятора.

Падение напряжения лампочки

Давайте возьмем 3-х вольтовую батарею и подключим ее к маленькой лампочке, которая точно соответствует этому напряжению. Лампочка будет светиться благодаря электричеству, идущему от батареи. Чтобы узнать, сколько тока проходит через него, можем либо подключить амперметр, либо измерить сопротивление лампочки. Предположим оно составляет 60 Ом, следовательно, применив закон Ома, получим значение тока 0,05 А.

То что в такой схеме светит лампочка, не должно удивлять. Есть напряжение, значит есть энергия. Электричество течет, поэтому энергия поступает в лампочку. Колба получает энергию, поэтому светит и нагревается.

Когда цепь замкнута, то есть создается проводящий путь между отрицательной и положительной клеммами батареи, именно здесь начинает течь ток. Электроны в цепи начинают ускоряться и толкать друг друга, поскольку каждый из них хочет достичь положительного полюса. Обычно они могут добраться туда за доли секунды, но есть что-то, что их останавливает. Речь идет о препятствии в виде лампочки.

Нить лампы накаливания – большое препятствие для ускорения электронов, несущих энергию. Не случайно она изготовлена из чрезвычайно тонкой и плохо проводящей вольфрамовой проволоки. Втекая в нить, электроны сжимаются и сталкиваются с ее атомами и даже друг с другом. Эти столкновения заставляют электроны на мгновение замедляться и терять энергию.

Атомы нити накала все больше и больше вибрируют, и нить нагревается до белизны. Вот так лампочка начинает светиться за счет маленьких электронов. Далее они с помощью остатка своих сил и их коллег, давящих сзади, наконец достигают положительного вывода батареи, где могут спокойно завершить свою миссию.

Весь процесс – это преобразование одного типа энергии в другой. Химическая энергия хранящаяся в батарее, преобразуется в электроны кинетической энергии, отправляемые в цепь. При столкновении с атомами нити та же кинетическая энергия преобразуется в тепловую энергию, количество которой настолько велико, что нить нагревается и светится – вылетают фотоны. Таким образом, лампочка светит потому что получает энергию от входящих электронов.

Когда у электронов много энергии, это высокое напряжение, а если мало энергии, напряжение низкое. Итак, поскольку нить накала – это место, где энергия электронов уменьшается, это означает что также должно быть место, где каким-то образом падает напряжение.

Напряжение батареи составляет 3 В. Электроны движутся от отрицательного полюса, потенциал которого обычно принимается равным 0 В, к положительному полюсу с потенциалом +3 В. Если подключим вольтметр на обе стороны батареи, он покажет разность потенциалов 3 В.

Если бы нить накала была достаточно большой, чтобы могли приложить один из щупов вольтметра посередине ее длины, оказалось бы что напряжение составляет только половину напряжения батареи, то есть 1,5 В. Поскольку электроны, протекающие через нить, отдают ей всю свою энергию, логично что преодолев половину ее длины, они отдадут ей ровно половину этой энергии. Половина энергии = половина напряжения, показанного на вольтметре.

Если продвигать щуп дальше, напряжение будет падать, пока не окажется за нитью накала, и измеритель покажет значение 0 В. То есть вначале напряжение составляло 3 В. Перемещая щуп вольтметра по нити накала, оно постепенно упало до 0 В. Таким образом можем сказать, что падение напряжения на лампочке составляет 3 В. На «физическом» уровне говорят, что количество энергии, подводимой к лампочке, составляет ровно 3 джоуля на кулон.

Падение напряжения на нескольких резисторах

Убедились, что одна лампочка может поглотить всю энергию, выделяемую электронами, что приводит к падению напряжения, равному напряжению батареи. Но что, если в цепи две или более лампочки одна за другой? Поскольку одна лампочка «съедает» всю энергию, останется ли что-нибудь для других?

Напряжение нити составляет 1,5 вольта. Что, если разрежем нить в этой точке и соединим обе части проволокой? Что-нибудь изменится?

Теоретически, вместо одной лампочки у нас теперь две с сопротивлением по 30 Ом. Но на практике ничего не изменилось. После прохождения половины исходной нити накала, то есть первых 30 Ом, напряжение составляет 1,5 В, и этот кусок вставленного провода не добавляет здесь ничего нового.

Конечно нить можно разделить на любое количество частей и ситуация останется прежней. Итак, давайте изменим подход. Оставьте нить накала целиком, чтобы она имела сопротивление 60 Ом, и положите рядом другую такую ??же. Как будет себя вести схема? Поскольку знаем, что 60 Ом может забрать всю энергию, останется ли от нее для второй нити накала? Измеряем напряжение между ними.

Хотя каждая нить имеет по 60 Ом, по какой-то причине они решили разделить энергию поровну. Как это возможно? Раньше одна 60-омная нить накала потребляла всю энергию, но теперь она отдает половину другой. Откуда такое сотрудничество?

Все происходит из-за того, что закон Ома действительно сложно обмануть. Он не влияет на сопротивление лампы или напряжение, подаваемое батареей, но может управлять током, протекающим в цепи. Когда была одна лампочка, она забирала всю энергию, а ток, протекающий в цепи, составлял 0,05 А. После вставки второй лампочки общее сопротивление цепи увеличивается в два раза, и снова применяя закон Ома находим, что текущее значение уменьшается до значения всего 0,025 А. Это в корне меняет ситуацию.

Во-первых, удвоение тока означает, что электроны текут в цепи вдвое медленнее. А поскольку они текут вдвое медленнее, сила столкновения с атомами нити в два раза меньше. В результате электроны больше не оставляют всю энергию в нити 60 Ом, а только ее половину. С одной стороны это хорошо, потому что на прохождение второй лампочки остается еще половина энергии. Обратной стороной этого является то, что обе лампочки будут светить заметно меньше.

Подтвердить слова можно измерив напряжение за первой лампочкой. Тогда заметим, что это всего лишь 1,5 В, а одна лампочка «забирала» полные 3 В.

Если бы было три лампочки, каждая из них получала бы 1 вольт, или 1/3 всей энергии. Четыре лампочки – это деление энергии на четыре и так далее. Такое идеально равномерное распределение энергии, конечно имеет место только тогда, когда лампочки имеют одинаковое сопротивление. Если бы в цепи были лампочки с сопротивлением 30 Ом и 60 Ом, то падение напряжения было бы пропорционально распределено – 1 В на первой и 2 В на второй.

Подведем итоги

В общем падение напряжения – одна из самых важных проблем в электротехнике, и ее следует хорошо понимать. Итак, давайте подытожим полученные знания в нескольких моментах:

  • Напряжение определяет количество энергии каждого электрона – чем выше напряжение, тем больше энергии будет обеспечивать каждый электрон. Но будьте осторожны, потому что хотя энергии может быть слишком мало, она также может быть слишком большой. Слишком высокое напряжение – основная сила, разрушающая хрупкую электронику.
  • Напряжение падает только тогда, когда течет электричество – падение напряжения отражает потребляемую энергию, и энергия может быть использована только тогда, когда ее физически доставляют электроны. Следовательно, падение напряжения происходит только тогда, когда цепь замкнута и течет ток.
  • Энергия распределяется между всеми приемниками тока – один резистор берет на себя все – два и более должны уже делиться. Их сопротивление определяет, сколько энергии они получают. Большее сопротивление означает большее падение напряжения, меньшее сопротивление означает меньшее потребление энергии.
  • Провода также вызывают падение напряжения – все кабели имеют определенное сопротивление, поэтому их правильный выбор так важен для электриков. Дело в том, что падение напряжения на кабелях должно быть как можно меньше, чтобы энергия могла доходить до потребителей без больших потерь.

Иногда люди не совсем понимают, что отвечает за движение электронов к батарее, так как напряжение между ней и нитью накала равно 0. Поскольку у электронов остаточная сила, это также означает, что у них осталась некоторая кинетическая энергия. Электроны, которые прижимаются к передним в цепной реакции, также должны иметь некоторую оставшуюся энергию. Значит ли это, что напряжение, которое потребляют нити, не будет равно напряжению аккумулятора?

Дело в том, что утверждения «Между лампочкой и аккумулятором напряжение 0 В» и «После выхода из лампочки у них еще есть энергия» немного спорны. Если есть энергия, почему напряжение 0 В? Объясняем: лампочка забирает энергию у электронов, потому что у нее есть сопротивление, но и провода от батареи к лампочке тоже. Анализируя всю схему выясняется, что лампочка забирает 99,8% энергии, провод с одной стороны – 0,1% энергии, а провод с другой стороны – тоже 0,1% энергии.

Теперь: электроны выходят из батареи. Дойдя до лампочки, они уже потеряли 0,1% из-за проводников. В лампочке они теряют еще 99,8% энергии, а оставив ее, у них остаются последние 0,1% энергии, чтобы покрыть другую половину цепи и достичь батареи. И хотя измеритель показывает что там уже 0 В, если бы он был очень точным, это означало бы, что на самом деле существует какое-то напряжение в 0,0001 В. Это остаточная энергия, которая осталась чтобы пересечь последний участок провода и достичь батареи.

Итак, подведем итог – лампочка никогда не будет потреблять ровно столько напряжения, сколько обеспечивает батарея, потому что это напряжение также съедается проводами. В действительности сопротивление проводов по сравнению с лампочкой настолько низкое, что для простоты предполагаем, что оно равно 0 В. Если лампочка не находится в нескольких километрах от батареи, когда сопротивление лампы провода будут играть важную роль.

Уверены, что теперь тема падения напряжения перестанет быть для вас малопонятной, а если что осталось неясным – вопросы как обычно на форум.



Ученик

(100),
закрыт



10 лет назад

Дополнен 13 лет назад

Приведите пожалуйста пример, есть источник питания например 12В! лампочка 12В, 0.3А, и добавочный резистор (например 300 Ом) . Как посчитать падение напряжения? Какое будит напряжение, если замерить после лампочки и резистора.? *

StarP

Просветленный

(41043)


13 лет назад

Сопротивление лампочки R=U/I=12/0.3=40 Ом; Общее сопротивление цепи: Rобщ= Rл+Rд=40+300=340 Ом; Ток в цепи: Iобщ=U/Rобщ=12/340=0,035А (округленно)
Падение напряжения на лампочке: u=Iобщ*Rл=0,035*40=1,4В;
То же, на сопротивлении: u=Iобщ*Rд=0,035*300=10,5В
uл+uд=1,4+10,5=11,9В (должно быть 12В, разница из-за округления при расчете общего тока в цепи)

Говорят, что в своё время между Эдисоном и Тесла проходило соперничество – какой ток выбрать для передачи на большие расстояния – переменный или постоянный? Эдисон был за то, чтобы для передачи электричества использовать постоянный ток. Тесла утверждал, что переменный ток легче передавать и преобразовывать.

Впоследствии, как известно, победил Тесла. Сейчас повсеместно используется переменный ток, в России с частотой 50 Гц. Такой ток дешевле передавать на большие расстояния. Хотя, есть и линии электропередач постоянного тока специального применения.

А если использовать высокие напряжения (например, 110 или 10 кВ), то выходит значительная экономия на проводах, по сравнению с низким напряжением. Об этом я рассказываю на Дзене в статье про то, чем отличается напряжение 380В от 220В.

Тесла потом пошёл ещё дальше – нашёл способ, как передавать электрический ток совсем без проводов. Чем вызвал большое недовольство производителей меди. Но это уже тема совсем другой статьи.

Забегая вперед, скажу, что расчет сечения провода для постоянного тока строится на двух критериях:

  1. Падение напряжения (потери)
  2. Нагрев провода

Первый пункт для постоянного тока наиболее важен, а второй лишь вытекает из первого.

Теперь обстоятельно, по порядку, для тех, кто хочет ПОНИМАТЬ.

Ниже все расчеты для постоянного тока. Для переменного есть своя специфика, ссылки в конце.

Падение напряжения на проводе

Статья будет конкретная, с теоретическими выкладками и формулами. Кому не интересно, что откуда и почему, советую перейти сразу к Таблице 2 – Выбор сечения провода в зависимости от тока и падения напряжения.

Итак, если взять неизменной мощность, то при понижении напряжения ток должен возрастать, согласно формуле:

P = I U.       (1)

При этом падение напряжения на проводе (потери в проводах) за счет сопротивления рассчитывается, исходя из закона Ома:

U = R I.       (2)

Из этих двух формул видно,  что при понижении питающего напряжения потери на проводе возрастают. Поэтому чем ниже питающее напряжение, тем большее сечение провода нужно использовать, чтобы передать ту же мощность.

Для постоянного тока, где используется низкое напряжение, приходится тщательно подходить к вопросу сечения и длины, поскольку именно от этих двух параметров зависит, сколько вольт пропадёт зря.

Сопротивление медного провода постоянному току

Сопротивление провода зависит от удельного сопротивления ρ,  которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².

Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:

R = (ρ l) / S, где                 (3)

R – сопротивление провода, Ом,

ρ – удельное сопротивление провода, Ом·мм²/м,

l – длина провода, м,

S – площадь поперечного сечения, мм².

Удельное сопротивление медного провода равно ρ = 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.

Не факт, что производители медного кабеля используют чистую медь “0,0175 пробы”, поэтому на практике всегда сечение берется с запасом, а от перегрузки провода используют защитные автоматы, тоже с запасом.

Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.

Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.

Таблица 0. Сопротивление медного провода в зависимости от площади сечения

Сопротивление медного провода в зависимости от площади сечения
Сопротивление медного провода в зависимости от площади сечения

Расчет падения напряжения на проводе для постоянного тока

Теперь по формуле (2) рассчитаем падение напряжения на проводе:

U = ((ρ l) / S) I ,             (4)

То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.

Вот такие табличные данные будут для длины 1 м и тока 1А:

Таблица 1.
Падение напряжения на медном проводе 1 м разного сечения и токе 1А:

Падение напряжения на медном проводе
Падение напряжения на медном проводе

Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).

Таблица 2.
Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец).
Длина = 1 метр

Падение напряжения при разном сечении провода и токе
Падение напряжения при разном сечении провода и токе

Какие пояснения можно сделать для этой таблицы?

1. Красным цветом я отметил те случаи, когда провод будет перегреваться, то есть ток будет выше максимально допустимого для данного сечения. Пользовался таблицей из статьи, приведенной у меня на канале: Выбор площади сечения провода.

2. Синий цвет – когда применение слишком толстого провода экономически и технически нецелесообразно и дорого. За порог взял падение менее 1 В на длине 100 м.

Эта же таблица 2, с токами до 100А:

Выбор сечения от тока и падения напряжения
Выбор сечения от тока и падения напряжения

Как пользоваться таблицей выбора сечения?

Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии – 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение – 0,5В.

В наличии – провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.

Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина – 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.

Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства – 11,34. Этот пример актуален для питания светодиодной ленты.

Эй, коллега и комментариев, я в курсе, что это не учитывая переходное сопротивление контактов и неидеальность провода (“проба” меди не та, примеси, и т.п.)

Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.

А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.

1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.

2. Повышать выходное напряжение источника питания. Это чревато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.

Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции “потери”.

Вывод по выбору сечения провода для постоянного напряжения:

Чем короче и толще провод, по которому течет постоянный ток, тем меньше падение напряжения на нём, тем лучше. То есть, потеря напряжения в проводах минимальна.

Если смотреть на таблицу 2, нужно выбирать значения сверху-справа, не переходя в “синюю” зону.

Для переменного тока ситуация та же, но вопрос не стоит столь остро – там мощность передается за счет повышения напряжения и понижения тока. См. формулу (1).

В заключение – таблица, в которой падение постоянного напряжения задано пределом 2% , а напряжение питания равно 12 В.  Искомый параметр – максимальная длина провода.

Внимание! Имеется ввиду двухпроводная  линия, например кабель, содержащий 2 провода. То есть, тот случай, когда через кабель длиной 1 м ток делает путь 2 м, туда-сюда. Я привёл этот вариант, т.к. он чаще всего встречается на практике. Для одного провода, чтобы узнать падение на нём напряжения, надо число внутри таблицы умножить на 2. Спасибо внимательным читателям!

Таблица 3. Максимальная длина провода для падения постоянного напряжения 2%.

Расчет максимальной длины провода
Расчет максимальной длины провода

Наша полторашка по этой таблице может иметь длину только 1 метр. Падать на ней будет 2%, или 0,24В. Проверяем по формуле (4) – всё сходится.

Если напряжение выше (например, 24 В постоянного тока), то и длина может быть соответственно больше (в 2 раза).

Всё вышесказанное относится не только к постоянному, но и вообще к низкому напряжению. И при выборе площади сечения в таких случаях следует руководствоваться не только нагревом провода, но и падением напряжения на нём. Например, при питании галогенных ламп через понижающий трансформатор.

Прошу прокомментировать статью, у кого как теория совпадает с практикой?

Источник статьи

Статьи в тему на Дзене

Питание светодиодной ленты. Вопрос, на который нет ответа

Расчет падения напряжения на кабеле 0,4 кВ

Площадь сечения провода. Таблицы и формулы

Сечение провода: таблицы не нужны!

——————————————————————-

Статья заинтересовала? Лайк, подписка, комментарий!

СамЭлектрик.ру
СамЭлектрик.ру

Ещё больше статей на канале СамЭлектрик.ру

и на блоге СамЭлектрик.ру.

Спасибо, что читаете меня! Мне тоже интересно то, о чем я пишу!

Пожалуйста, будьте вежливы и уважайте мнение автора и читателей!

Внимание! Автор не гарантирует, что всё написанное на этой странице – истина. За ваши действия и за вашу безопасность ответственны только вы!

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Физическое определение

Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.

Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:

  • сопротивление;
  • величина рассеиваемой энергии;
  • рабочее напряжение;
  • мощность;
  • устойчивость к влиянию окружающей среды;
  • паразитная составляющая.

Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.

Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.

На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.

При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.

Значение сопротивления

Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:

R = U / I, где:

  • R — сопротивление на участке цепи, Ом.
  • I — сила тока, проходящая через этот участок, А.
  • U — разность потенциалов на узлах части схемы, В.

Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.

Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.

Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.

Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.

Импеданс резистора

Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.

Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.

Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:

  • R — активное значение, R = p*l/s.
  • Xc — ёмкостная величина, Хс = 1/w*C.
  • Xl — индуктивная величина, Хl = w*C.
  • w- циклическая частота, w = 2πƒ.

Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.

Характеристика мощности резистора

Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:
P= I * U (произведение силы тока и напряжения), где

P – значение мощности (Вт).

Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора

Важно! Мощность резистора – это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Как рассчитать сопротивление для понижения напряжения: формула падения на резисторе

Подбор резистора для понижения напряжения

Резистор является одним из самых распространённых элементов в электрической цепи. С его помощью ограничивается ток и изменяется напряжение. Конструируя схемы, часто может понадобится рассчитать сопротивление для понижения напряжения. Это актуально при построении делителей цифровых устройств или блоков питания, поэтому уметь выполнять такие вычисления должен каждый радиолюбитель.

Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.

Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:

  • сопротивление;
  • величина рассеиваемой энергии;
  • рабочее напряжение;
  • мощность;
  • устойчивость к влиянию окружающей среды;
  • паразитная составляющая.

Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.

Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.

На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.

При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.

Значение сопротивления

Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:

R = U / I, где:

  • R — сопротивление на участке цепи, Ом.
  • I — сила тока, проходящая через этот участок, А.
  • U — разность потенциалов на узлах части схемы, В.

Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.

Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.

Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.

Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.

Импеданс резистора

Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.

Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.

Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:

  • R — активное значение, R = p*l/s.
  • Xc — ёмкостная величина, Хс = 1/w*C.
  • Xl — индуктивная величина, Хl = w*C.
  • w- циклическая частота, w = 2πƒ.

Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.

Параллельное соединение

В электрических схемах на участках цепи используется как параллельное, так и последовательное соединение. Первое представляет собой цепь, в которой каждый её элемент подключён к другому обоими контактами, но при этом между собственными его выводами нет прямой электрической связи. Т. е. существует две точки (электрические узлы), к которым присоединено несколько резисторов.

При таком включении ток, проходя через узел, начинает разделяться, и через каждый элемент потечёт разное его значение. Величина тока на каждом элементе будет прямо пропорциональна сопротивлению резистора, поэтому общая проводимость на этом участке увеличится, а её импеданс уменьшится.

Формула, с помощью которой можно рассчитать общую проводимость, выглядит так: G = 1/ Rобщ = 1/ R1 + 1/ R2 +…+ 1/ Rn, где n — обозначает порядковый номер резистора в цепи.

Преобразовав эту формулу, получится выражение вида: R общ = 1/G = (R1*R2*…* Rn) / (R1*R2 + R2*Rn +…+ R1*Rn. Проанализировав его, можно сделать вывод, что при параллельном соединении импеданс всегда будет меньше самого маленького значения отдельного резистора.

При таком соединении напряжение между узлами одновременно является общей разностью потенциалов для всего участка и на каждом отдельно взятом резисторе. Поэтому если рассчитать падение напряжения на одном приборе, то оно будет таким же на любом параллельно подключённом элементе: U общ = U 1 = U 2 =…= U n.

А вот электрический ток, проходящий через отдельный элемент, исходя из закона Ома будет равен: I Rn = U Rn / R n.

Последовательное включение

Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2+…+Rn.

Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2+…+Rn).

Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.

Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.

Расчёт делителя напряжения

Резистивный делитель напряжения представляет элементарную схему для понижения напряжения. Состоять он может из двух или более элементов. Простейший делитель можно представить в виде двух участков цепи, которые называют плечами. Одно из них, которое располагается между положительной точкой потенциала и нулевой, — верхнее, а другое, между отрицательной и минусовой, — нижнее.

Такая схема используется для снижения напряжения как в постоянных, так и переменных цепях. Суть процесса заключается в следующем.

  • На резистивную схему от источника питания подаётся напряжение U.
  • Через резисторы последовательного участка цепи, образованного резисторами R1 и R2, начинает протекать ток.
  • В результате на каждом из них выделяется какое-то количество энергии, т. е. возникает падение напряжения.

Сумма напряжений на всём размахе линии равняется значению разности потенциалов источника питания. В соответствии с формулой: U = I*R падение напряжения прямо пропорционально силе тока и величине сопротивления. Учитывая, что ток, протекающий через резисторы, одинаковый, справедливыми будут формулы U1 = I*R1 и U2= I*R2.

Тогда общее падение напряжение на участке будет равно U = I *(R1+ R2). Исходя из этого можно найти силу тока: I = U /(R1+ R2). Используя эти два выражения, можно получить окончательные формулы для расчёта падения напряжения на каждом элементе:

  • U1 = R1*U/(R1+R2);
  • U2 = R2*U/(R1+R2).

Практическое применение такого делителя очень распространено из-за несложности реализации понижения напряжения. Например, пусть источник питания выдаёт 12 В, а на нагрузку необходимо подать 6 В, при этом её сопротивление составляет 10 кОм. Для решения такой задачи рекомендуется использовать резисторы, сопротивление которых в десять раз меньше нагрузочного значения, поэтому, приняв R 1 = 1 кОм и подставив все известные значения в формулу напряжения на резисторе, получится, что 6 = R 2*12 (1000+ R 2) отсюда R 2 = 1 кОм.

Теперь, зная все величины, можно проверить верность расчёта. Падение разности потенциалов на первом элементе высчитывается как U 1 = 1000*12/(1000+1000) = 6 В, а общее напряжение — Uобщ = U 1+ U 2 = 12 В, что соответствует значению источника питания.

Следует отметить, что использование резисторов для понижения используется только при маломощных нагрузках, так как часть энергии превращается в тепло, а коэффициент полезного действия (КПД) очень низкий.

Определение силы тока на резисторе при разных типах соединения

Самым простым способом определить силу тока в резисторе можно воспользовавшись мультиметром. Измерение проводятся в разрыве цепи после резистора. На тестере выставляется максимальный диапазон величин, а щупы прибора подсоединяются к месту разъединения проводника. На дисплее мультиметра будут отображены результаты измерения силы тока в резисторе.
I = U/R, где у нас I – сила тока, U – напряжение, R – сопротивление.

В системе СИ эти величины измеряются в амперах (А), вольтах (В), омах (Ом) соответственно.

Подставляя необходимые значения в формулу можно определить сопротивление, напряжение и силу тока на резисторе или любом участке, или элементе электрической цепи.

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

delitel napryazheniya2

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвых= (Uвх*R2)/(R1+R2), где

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

everycircuit

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

и другие.

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Какое напряжение после резистора

Как рассчитать падение напряжения на резисторе?

Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.

Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

Для человека, который знаком с электрооборудованием на уровне простого пользователя (знает, где и как включить/выключить), многие используемые электриками термины кажутся какой-то бессмыслицей. Например, чего только стоит «падение напряжения» или «сборка схемы». Куда и что падает? Кто разобрал схему на детали? На самом же деле, физический смысл происходящих процессов, скрывающийся за большинством этих слов, вполне доступен для понимания даже со школьными знаниями физики.

Чтобы объяснить, что такое падение напряжения, необходимо вспомнить, какие вообще напряжения бывают в (имеется в виду глобальная классификация). Их всего два вида. Первый — это напряжение который подключен к рассматриваемому контуру. Оно может также называться приложенным ко всей цепи. А второй вид — это именно падение напряжения. Может быть рассмотрено как в отношении всего контура, так и любого отдельно взятого элемента.

На практике это выглядит следующим образом. Например, если взять обычную вкрутить ее в патрон, а провода от него подключить в домашнюю сетевую розетку, то приложенное к цепи (источник питания — проводники — нагрузка) напряжение составит 220 Вольт. Но стоит нам с помощью вольтметра замерять его значение на лампе, как станет очевидно, что оно немного меньше, чем 220. Так произошло потому, что возникло падение напряжения на которым обладает лампа.

Пожалуй, нет человека, который не слышал бы о законе Ома. В общем случае формулировка его выглядит так:

где R — активное сопротивление цепи или ее элемента, измеряется в Омах; U — электрическое напряжение, в Вольтах; и, наконец, I — ток в Амперах. Как видно, все три величины непосредственно связаны между собой. Поэтому, зная любые две, можно довольно просто вычислить третью. Конечно, в каждом конкретном случае придется учесть род тока (переменный или постоянный) и некоторые другие уточняющие характеристики, но основа — вышеуказанная формула.

Электрическая энергия — это, фактически, движение по проводнику отрицательно заряженных частиц (электронов). В нашем примере спираль лампы обладает высоким сопротивлением, то есть замедляет перемещающиеся электроны.

Благодаря этому возникает видимое свечение, но общая энергия потока частиц снижается. Как видно из формулы, с уменьшением тока уменьшается и напряжение. Именно поэтому результаты замеров у розетки и на лампе различаются. Эта разница и является падением напряжения.

Данная величина всегда учитывается, чтобы предотвратить слишком большое снижение на элементах в конце схемы.

Падение напряжения на резисторе зависит от его и силы протекающего по нему тока. Также косвенное влияние оказывают температура и характеристики тока. Если в рассматриваемую цепь включить амперметр, то падение можно определить умножением значения тока на сопротивление лампы.

Но далеко не всегда удается вот так просто с помощью простейшей формулы и измерительного прибора выполнить расчет падения напряжения. В случае параллельно подключенных сопротивлений нахождение величины усложняется. На приходится дополнительно учитывать реактивную составляющую.

Рассмотрим пример с двумя параллельно включенными резисторами R1 и R2. Известно сопротивление провода R3 и источника питания R0. Также дано значение ЭДС — E.

Приводим параллельные ветки к одному числу. Для этой ситуации применяется формула:

R = (R1*R2) / (R1+R2)

Определяем сопротивление всей цепи через сумму R4 = R+R3.

Рассчитываем ток:

Остается узнать значение падение напряжения на выбраном элементе:

Здесь множитель «R5» может быть любым R — от 1 до 4, в зависимости от того, какой именно элемент схемы нужно рассчитать.

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А.

Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт.

На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В.

На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Единица измерения сопротивления резистора

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Закон Ома для электрической цепи

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.

V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом

Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Характеристика мощности резистора

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Расчет мощности резистора

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А.

Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощностьтока через резистор равна P=I*V=0,2А*5В=1Вт.

Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Источники

  • https://math-nttt.ru/teoriya/raschet-padeniya-napryazheniya-na-rezistore.html
  • https://ugstroialyans.ru/podbor-rezistora-dlya-ponizheniya-napryazheniya/
  • https://strop-snab.ru/teoriya/ponizhenie-napryazheniya-rezistorom.html
  • https://1000eletric.com/kak-rasschitat-padenie-napryazheniya-na-rezistore/

Как вам статья?

Павел

Павел

Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Добавить комментарий