Как найти параллельные прямые у равнобедренных треугольников

Равнобедренный треугольник: свойства, признаки и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Планиметрия. Страница 2

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

1.Параллельность прямых

Теорема: если две прямые параллельны третьей прямой, то они параллельны.

Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.

Рис.1 Теорема. Параллельность прямых.

2.Признаки параллельности прямых

Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.

Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)

Отложим равный треугольник ABC1 в другой полуплоскости с вершиной С1 так, чтобы угол А треугольника АВС совпал с углом В треугольника АВС1. Так как по условию задачи сумма внутренних односторонних углов равна 180 градусов, то сторона АС1 ляжет на прямую а, ВС1 – на прямую b. Тогда точка С1 принадлежит двум прямым: а и b. Т.е. две точки С и С1 одновременно принадлежат двум прямым. А это невозможно. Следовательно прямые a и b не пересекаются, они параллельны.

8. Пример 1

Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)

Доказательство:

Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.

Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.

Рис.8 Задача. Даны прямая а и точка С .

Пример 2

Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)

Доказательство:

Так как прямые а и b параллельны, то углы α и β, образованные этими параллельными прямыми и секущей с, равны как внутренние накрест лежащие, т.е. ∠α = ∠β. Согласно определению, биссектриса – это луч, исходящий из вершины угла между его сторонами, который делит этот угол пополам. Следовательно, биссектрисы d1 и d2 делят углы α и β пополам.

Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.

Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.

Пример 3

Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.

Решение:

Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.

Отсюда следует, что можно составить соотношение:

Ответ: углы равнобедренного треугольника составляют: 100°, 40°, 40°.

Рис.10 Задача. Найти углы треугольника.

Пример 4

Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.

Решение:

Так как сумма углов α + β + α1 + β1 = 360°, а

α1 + β1 = 240° по условию задачи, то

А так как сумма углов треугольника составляет 180°, то

α + β + γ = 180°, т.е.

И следовательно, γ = 60°

Ответ: угол при вершине С = 60°.

Рис.11 Задача. Найти угол треугольника.

Пример 5

В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.

Доказательство:

Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:

α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.

Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.

Теперь рассмотрим треугольник ADC. Угол λ равен:

λ = 180° – (α / 2 + α)

Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.

Рис.12 Задача. В равнобедренном треугольнике АВС .

Равнобедренный треугольник

Равнобедренный треугольник – треугольник, у которого две стороны равны между собой.

Равные стороны называются боковыми , третья сторона называется основанием .

Свойства равнобедренного треугольника

1. Углы при основании равны

2. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой

3. Углы при основании равнобедренного треугольника вычисляются по следующей формуле:

,

где – угол напротив основания.

4. Биссектрисы, медианы и высоты, проведённые из углов при основании равны между собой

5. Центры вписанной и описанной окружностей лежат на медиане=высоте=биссектрисе, проведенной к основанию

Признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то он равнобедренный.

2. Если в треугольнике медиана является и высотой (биссектрисой), то такой треугольник равнобедренный.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

[spoiler title=”источники:”]

http://www.mathtask.ru/0050-planimetry.php

[/spoiler]

Главная > Учебные материалы > Математика: Планиметрия. Страница 2
1 2 3 4 5 6 7 8 9 10 11 12

Рис.2 Теорема. Признаки параллельности прямых.

3.Свойство углов при пересечении параллельных прямых

Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.

Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)

Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.

Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.

4.Сумма углов треугольника

Теорема. Сумма углов треугольника равна 180 градусов.

Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).

Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.

Рис.4 Теорема. Сумма углов треугольника.

5.Единственность перпендикуляра к прямой

Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.

Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)

Теперь проведем через точку А прямую, параллельную нашей перпендикулярной прямой. Она также будет перпендикулярна прямой а. Так как прямая а, перпендикулярна одной из параллельных прямых, перпендикулярна и второй прямой. Отрезок АВ и есть перпендикуляр. Если допустить, что существует другой перпендикуляр, допустим в точке С. То в треугольнике АВС образуются два угла 90 градусов, а это невозможно. Следовательно отрезок АВ – это единственный перпендикуляр, проходящий через точку А.

Рис.5 Теорема. Единственность перпендикуляра к прямой.

6. Высота, биссектриса и медиана треугольника

Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.

Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)

Рис.6 Высота, биссектриса и медиана треугольника.

7. Свойство медианы равнобедренного треугольника

Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.

Доказательство:

Пусть АВС – данный равнобедренный треугольник с основанием АС. Боковые стороны АВ и ВС равны, ВD – медиана. Необходимо доказать, что BD является биссектрисой и высотой.

Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.

Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.

Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.

Рис.7 Свойство медианы равнобедренного треугольника.

Параллельность прямых

60dc255a054d2112664326

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

60dc255a91c1c790702551

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

60dc255a9ddef150487628

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

60dc255aaa882793746871

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Источник

Параллельные прямые, признаки и условия параллельности прямых

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

image001 YzG10FG

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

image002

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

image003

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

image004

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

image005

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

image006

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

A 1 = t · A 2 B 1 = t · B 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

a x = t · b x a y = t · b y

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Решение

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Решение

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник

Геометрия. 7 класс

Конспект урока

Признаки параллельности прямых

Перечень рассматриваемых вопросов:

Две прямые на плоскости называются параллельными, если они не пересекаются.

Признаки параллельности двух прямых:

1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

Теоретический материал для самостоятельного изучения.

Вы уже знаете, что при пересечении двух прямых секущей образуются углы:

Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.

Рассмотрим и докажем признаки параллельности прямых.

Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.

608bf194 b0ff 44d4 8f0f 8a8a506457de

В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.

ab18f39b f514 4f19 9b4a c1fbe0661e91

2 случай: ∠ 1= ∠ 2 ≠ 90°

18042d45 4300 42df 88b6 1e9102d0cfb3

1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.

2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.

Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.

3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.

4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.

Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

8f787136 b677 4be3 b162 2cc9ccaca1db

Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.

∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.

Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

c45d9d27 ad57 4eec b2e0 3c4866dd0fe4

Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.

∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.

∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.

Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Разбор заданий тренировочного модуля.

edd89742 8d77 4512 8636 fa6cd76f98d8

Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.

Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.

201e1fbc 4900 439d 9803 804c0f7fcadc

Ответ: AB║CD по 2 признаку параллельности прямых.

Источник

Как можно доказать параллельность прямых в треугольниках

Наглядная геометрия 7 класс. Опорный конспект № 3 Параллельные прямые.

%D0%B4%D0%BB%D1%8F %D0%BA3

В геометрии нельзя «на глазок» определить, параллельны прямые или нет. Это может быть либо дано, либо доказано. Вы уже знаете, что на плоскости справедлива теорема: «Две прямые, перпендикулярные третьей, параллельны между собой».

Есть еще три признака параллельности прямых, которые можно объединить в одну теорему, она так и называется: «Признаки параллельности прямых». Данные признаки связаны с углами, которые образуются при пересечении двух прямых третьей прямой. Это так называемые накрест лежащие углы, соответственные углы и односторонние углы.

Оказывается, что если накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые будут параллельны.

Справедливы и обратные утверждения. Если даны две заведомо параллельные прямые, которые пересечены третьей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°.

Ранее мы доказали, что через точку вне прямой можно провести единственную прямую, перпендикулярную данной. Можно также доказать, что через точку, не лежащую на прямой, можно провести прямую, параллельную данной. А вот доказать, что такая прямая — единственная, нельзя! Утверждение «Через точку, не лежащую на прямой, можно провести ЕДИНСТВЕННУЮ прямую, параллельную данной» называется аксиомой параллельных прямых. У Евклида эта аксиома называлась пятым постулатом.2019 09 04 21 55 02

На протяжении двух тысячелетий это утверждение вызывало захватывающие и драматичные споры между такими знаменитыми учеными, как Лобачевский, Гаусс и другие. Споры состояли в том, можно или нельзя доказать этот пятый постулат Евклида на основании уже известных теорем. В конце концов работы в этом направлении привели к полному пересмотру научных представлений о геометрии Вселенной.

%D0%BA3

При пересечении двух прямых третьей, которая называется секущей, образуется 4 пары накрест лежащих углов, 4 пары соответственных и 4 пары односторонних.

3 и 5; 4 и 6 — внутренние накрест лежащие углы;
1 и 7; 2 и 8 — внешние накрест лежащие углы;
1 и 5; 2 и 6; 4 и 8; 3 и 7 — соответственные углы;
3 и 6; 4 и 5 — внутренние односторонние углы;
2 и 7; 1 и 8 — внешние односторонние углы.

Признаки параллельности прямых. Если накрест лежащие углы равны, ши соответственные углы равны, ши сумма односторонних углов равна 180°, то прямые параллельны. В первую очередь нужно доказать, что если накрест лежащие углы равны, то прямые параллельны. Доказательство опирается на уже доказанное нами свойство: две прямые, перпендикулярные третьей, параллельны между собой. Из середины отрезка секущей опускают перпендикуляр на одну из параллельных прямых. Затем перпендикуляр продляют до пересечения со второй прямой. Из равенства полученных треугольников следует, что прямая, проходящая через перпендикуляр, будет перпендикулярна и второй прямой. Дальнейшее просто.

Через точку, не лежащую на данной прямой, МОЖНО провести прямую, параллельную данной. Опустив перпендикуляр из точки на прямую, а затем, восставив перпендикуляр к проведенной прямой, получим две прямые, перпендикулярные третьей, которые будут параллельны. А вот доказать, что такая прямая единственная, нельзя. Поэтому справедлива АКСИОМА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ: «Через точку, не лежащую на данной прямой, проходит ЕДИНСТВЕННАЯ прямая, параллельная данной».

Теорема о двух прямых, параллельных третьей. Две прямые, параллельные третьей, параллельны между собой. Если бы они пересекались, то через одну точку проходили бы две прямые, параллельные третьей.

Теорема о пересечении параллельных прямых. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую. Если бы эта прямая не пересекала вторую прямую, то она была бы ей параллельна. Но тогда через одну точку проходили бы две прямые, параллельные третьей. А это невозможно.

Свойства углов при параллельных прямых и секущей. Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°. В первую очередь нужно доказать, что если прямые параллельны, то накрест лежащие углы равны. Пусть прямые параллельны, а накрест лежащие углы 1 и 2 не равны. Отложим угол, равный углу 2, как показано на рисунке. Получим еще одну прямую, параллельную нижней прямой (если накрест лежащие углы равны, то прямые параллельны). Но через точку нельзя провести две прямые, параллельные третьей. Значит, наше предположение неверно, и накрест лежащие углы равны. Остальное несложно.

Из указанных свойств параллельных прямых вытекает важное следствие: перпендикуляр к одной из параллельных прямых будет перпендикуляром и к другой. Доказательство следует из равенства соответственных углов.

Теорема об углах с соответственно параллельными сторонами. Углы с соответственно параллельными сторонами равны, если они одновременно острые ши одновременно тупые, и в сумме составляют 180°, если один из них острый, а другой — тупой. Продлив стороны данных углов, получим две пары равных соответственных углов, откуда ∠1 = ∠2. Продлив сторону угла 1 за его вершину, получим доказательство второй части теоремы.

Теорема об углах с соответственно перпендикулярными сторонами. Углы с соответственно перпендикулярными сторонами равны, если они одновременно острые или одновременно тупые, и в сумме составляют 180°, если один из них острый, а другой — тупой. Проведя перпендикулярные лучи из вершины угла 1, получим, что углы 2 и 3 равны и углы 3 и 1 дополняют один и тот же угол 4 до 90°. Значит, ∠1 = ∠3, ∠1 = ∠2. Продлив сторону угла 2 за его вершину, получим доказательство второй части теоремы.

Это опорный конспект № 3 по геометрии в 7 классе «Параллельные прямые (опорный конспект)». Выберите дальнейшие действия:

Источник

Признаки и свойства параллельных прямых

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

priz pryam

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

priz pryam2

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

priz pryam3

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

priz pryam4

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

priz pryam5

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

priz pryam3

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

priz pryam4

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

priz pryam5

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

priz pryam2

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Источник

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Геометрия ЕГЭ ГИА

Рис.1

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD — биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD — общая сторона, ∠ 1 = ∠ 2, так как AD — биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Геометрия подготовка ЕГЭ ГИА

Рис.2

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.


Обучение по геометрии


Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Геометрия ЕГЭ обучение ГИА

Рис.3

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.


Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р — серединный перпендикуляр к отрезку АВ и точка О — середина отрезка АВ (см. рис. 3).

Геометрия ЕГЭ обучение ГИА

Рис.3

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.


Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Справочник Геометрия ЕГЭ ГИА

Рис.4

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).


Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Геометрия ЕГЭ ГИА справочник

Рис.5

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС — общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.


Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC .


Обучение по геометрии


Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ Параллельные прямые - определение и вычисление с примерами решения). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF Параллельные прямые - определение и вычисление с примерами решения

Параллельные прямые - определение и вычисление с примерами решения

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Определения параллельных прямых

На рисунке 10 прямые Параллельные прямые - определение и вычисление с примерами решения имеют общую точку М. Точка А принадлежит прямой Параллельные прямые - определение и вычисление с примерами решения, но не принадлежит прямой Параллельные прямые - определение и вычисление с примерами решения. Говорят, что прямые Параллельные прямые - определение и вычисление с примерами решения пересекаются в точке М.
Параллельные прямые - определение и вычисление с примерами решения

Это можно записать так: Параллельные прямые - определение и вычисление с примерами решения — знак принадлежности точки прямой, «Параллельные прямые - определение и вычисление с примерами решения» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые Параллельные прямые - определение и вычисление с примерами решения параллельны (рис. 11, с. 11), то пишут Параллельные прямые - определение и вычисление с примерами решения

Параллельные прямые - определение и вычисление с примерами решения

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые Параллельные прямые - определение и вычисление с примерами решения перпендикулярны (рис. 12), то пишут Параллельные прямые - определение и вычисление с примерами решения

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

  1. углы 3 и 5, 4 и 6 называются внутренними накрест лежащими;
  2. углы 4 и 5, 3 и 6 называются внутренними односторонними;
  3. углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными.

Параллельные прямые - определение и вычисление с примерами решения

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые  параллельны.

Доказательство.

  1. Пусть при пересечении прямых а и b секущей АВ внутренние накрест лежащие углы 1 и 2 равны (рис. 86, б). Докажем, что аПараллельные прямые - определение и вычисление с примерами решенияb.
  2. Если Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения= 90°, то а Параллельные прямые - определение и вычисление с примерами решенияАВ иПараллельные прямые - определение и вычисление с примерами решенияАВ. Отсюда в силу теоремы 1 (глава 3, § 2) следует, что аПараллельные прямые - определение и вычисление с примерами решенияb.
  3. Если Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения 90°, то из середины О отрезка АВ проведем отрезок ОПараллельные прямые - определение и вычисление с примерами решенияa.
  4. На прямой b отложим отрезок ВF1 = АF и проведем отрезок ОF1.
  5. Заметим, что Параллельные прямые - определение и вычисление с примерами решенияОFА = Параллельные прямые - определение и вычисление с примерами решенияОF1В по двум сторонам и углу между ними (АО = ВО, АF= BF1 и Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2). Из равенства этих треугольников следует, что Параллельные прямые - определение и вычисление с примерами решенияЗ = Параллельные прямые - определение и вычисление с примерами решения4 и Параллельные прямые - определение и вычисление с примерами решения5 = Параллельные прямые - определение и вычисление с примерами решения6.
  6. Так как Параллельные прямые - определение и вычисление с примерами решения3 = Параллельные прямые - определение и вычисление с примерами решения4, а точки А, В и О лежат на одной прямой, то точки F1, F и О также лежат на одной прямой.
  7. Из равенства Параллельные прямые - определение и вычисление с примерами решения5 = Параллельные прямые - определение и вычисление с примерами решения6 следует, что Параллельные прямые - определение и вычисление с примерами решения6 = 90°. Получаем, что а Параллельные прямые - определение и вычисление с примерами решенияFF1 и b Параллельные прямые - определение и вычисление с примерами решенияFF1, а  аПараллельные прямые - определение и вычисление с примерами решенияb.

Теорема доказана.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что Параллельные прямые - определение и вычисление с примерами решения1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Доказательство.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2. Докажем, что прямые a и b параллельны (рис. 87, а).

Параллельные прямые - определение и вычисление с примерами решения
2) Заметим, что Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения3 как вертикальные углы.

3) Из равенств Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2  и Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения3 следует, что Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что аПараллельные прямые - определение и вычисление с примерами решенияb.

Теорема доказана.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и Параллельные прямые - определение и вычисление с примерами решенияAOF = Параллельные прямые - определение и вычисление с примерами решенияABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

Доказательство.

  1. Пусть при пересечении двух прямых а и b секущей с сумма градусных мер внутренних односторонних углов равна 180°, например Параллельные прямые - определение и вычисление с примерами решения1 + Параллельные прямые - определение и вычисление с примерами решения2 = 180° (рис. 87, в).
  2. Заметим, что Параллельные прямые - определение и вычисление с примерами решения+ Параллельные прямые - определение и вычисление с примерами решения2 = 180°, так как углы 3 и 2 являются смежными.
  3. Из равенств Параллельные прямые - определение и вычисление с примерами решенияl + Параллельные прямые - определение и вычисление с примерами решения2 = 180° и Параллельные прямые - определение и вычисление с примерами решения+ Параллельные прямые - определение и вычисление с примерами решения2 = 180°  следует, что Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения3.
  4. Поскольку равны внутренние накрест лежащие углы 1 и 3, то прямые а и b параллельны.

Теорема доказана.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a,  затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку Параллельные прямые - определение и вычисление с примерами решения a проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

Параллельные прямые - определение и вычисление с примерами решения

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Доказательство.

Пусть прямые а и b параллельны прямой с. Докажем, что аПараллельные прямые - определение и вычисление с примерами решенияb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

Теорема доказана.

Параллельные прямые - определение и вычисление с примерами решения

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решенияF  и Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения(рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, аПараллельные прямые - определение и вычисление с примерами решенияb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Доказательство.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

Теорема доказана.

Параллельные прямые - определение и вычисление с примерами решения

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Доказательство.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

Параллельные прямые - определение и вычисление с примерами решения

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и Параллельные прямые - определение и вычисление с примерами решения2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и Параллельные прямые - определение и вычисление с примерами решения2 равны, поэтому по признаку параллельности прямых следует, что AQ Параллельные прямые - определение и вычисление с примерами решенияb. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2.

Теорема доказана.

Например, пусть прямая l  параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда Параллельные прямые - определение и вычисление с примерами решения3 = Параллельные прямые - определение и вычисление с примерами решения как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Доказательство.

  1. Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (рис. 96, а).
  2. Так как прямые а и b параллельны, то по теореме 3 данного параграфа накрест лежащие углы 1 и 3 равны, т. е. Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения3.  Кроме того, Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения3,  так как они вертикальные.
  3. Из равенств Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решенияи Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения3   следует, что Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2.

Теорема доказана.

Параллельные прямые - определение и вычисление с примерами решения

Например, пусть прямая l  параллельна биссектрисе AF  треугольника ABC (рис. 96, б), тогда Параллельные прямые - определение и вычисление с примерами решения4 = Параллельные прямые - определение и вычисление с примерами решенияBAF. Действительно, Параллельные прямые - определение и вычисление с примерами решения4 и Параллельные прямые - определение и вычисление с примерами решенияFAC  равны как соответственные углы, a Параллельные прямые - определение и вычисление с примерами решенияFAC = Параллельные прямые - определение и вычисление с примерами решенияBAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

Доказательство.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что Параллельные прямые - определение и вычисление с примерами решения1 + Параллельные прямые - определение и вычисление с примерами решения2 = 180° (рис. 97, а).

Параллельные прямые - определение и вычисление с примерами решения

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения3.

3) Углы 2 и 3 смежные, следовательно, Параллельные прямые - определение и вычисление с примерами решения2 + Параллельные прямые - определение и вычисление с примерами решения3= 180°.

4) Из равенств Параллельные прямые - определение и вычисление с примерами решения= Параллельные прямые - определение и вычисление с примерами решения3 и Параллельные прямые - определение и вычисление с примерами решения2 + Параллельные прямые - определение и вычисление с примерами решения3 = 180° следует, что Параллельные прямые - определение и вычисление с примерами решения1 + Параллельные прямые - определение и вычисление с примерами решения2 = 180°.

Теорема доказана.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда Параллельные прямые - определение и вычисление с примерами решенияBAF + Параллельные прямые - определение и вычисление с примерами решенияTFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

Доказательство.

1) Пусть прямые а и b параллельны и сПараллельные прямые - определение и вычисление с примерами решенияа (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

Параллельные прямые - определение и вычисление с примерами решения

Так как Параллельные прямые - определение и вычисление с примерами решения1 = 90°, то и Параллельные прямые - определение и вычисление с примерами решения2 = Параллельные прямые - определение и вычисление с примерами решения1 = 90°, а, значит, сПараллельные прямые - определение и вычисление с примерами решенияb.

Что и требовалось доказать.

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения параллельны, то есть Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения (рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая Параллельные прямые - определение и вычисление с примерами решения, лучи АВ и КМ.

Параллельные прямые - определение и вычисление с примерами решения

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, то Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения (рис. 161).

Параллельные прямые - определение и вычисление с примерами решения

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая Параллельные прямые - определение и вычисление с примерами решения (рис. 162). При помощи чертежного треугольника строят прямую Параллельные прямые - определение и вычисление с примерами решения, перпендикулярную прямой Параллельные прямые - определение и вычисление с примерами решения. Затем сдвигают треугольник вдоль прямой Параллельные прямые - определение и вычисление с примерами решения и строят другую перпендикулярную прямую Параллельные прямые - определение и вычисление с примерами решения, затем — третью прямую Параллельные прямые - определение и вычисление с примерами решения и т. д. Поскольку прямые Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения перпендикулярны одной прямой Параллельные прямые - определение и вычисление с примерами решения, то из указанной теоремы следует, что Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения.

Параллельные прямые - определение и вычисление с примерами решения

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

Параллельные прямые - определение и вычисление с примерами решения

По рисунку 163 объясните процесс проведения прямой Параллельные прямые - определение и вычисление с примерами решения, параллельной прямой Параллельные прямые - определение и вычисление с примерами решения и проходящей через точку К.

Из построения следует: так как Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, то Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения. Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения третьей прямой Параллельные прямые - определение и вычисление с примерами решения, которая называется секущей, образуется 8 углов (рис. 164).

Параллельные прямые - определение и вычисление с примерами решения

Некоторые пары этих углов имеют специальные названия:

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD. 
Параллельные прямые - определение и вычисление с примерами решения

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения — данные прямые, АВ — секущая, Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2 (рис. 166).

Параллельные прямые - определение и вычисление с примерами решения

Доказать: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения.

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую Параллельные прямые - определение и вычисление с примерами решения и продлим его до пересечения с прямой Параллельные прямые - определение и вычисление с примерами решения в точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, Параллельные прямые - определение и вычисление с примерами решения1 = Параллельные прямые - определение и вычисление с примерами решения2 по условию, Параллельные прямые - определение и вычисление с примерами решенияBMK =Параллельные прямые - определение и вычисление с примерами решенияAMN как вертикальные). Из равенства треугольников следует, что Параллельные прямые - определение и вычисление с примерами решенияANM =Параллельные прямые - определение и вычисление с примерами решенияBKM = 90°. Тогда прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения перпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения.

Теорема доказана.

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2 (рис. 167).

Параллельные прямые - определение и вычисление с примерами решения

Доказать: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения.

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения и секущей Параллельные прямые - определение и вычисление с примерами решения. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения. Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: Параллельные прямые - определение и вычисление с примерами решенияl +Параллельные прямые - определение и вычисление с примерами решения2 = 180° (рис. 168).

Параллельные прямые - определение и вычисление с примерами решения

Доказать: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения.

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения и секущей Параллельные прямые - определение и вычисление с примерами решения. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения. Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

Параллельные прямые - определение и вычисление с примерами решения

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (Параллельные прямые - определение и вычисление с примерами решенияAOB = Параллельные прямые - определение и вычисление с примерами решенияDOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что Параллельные прямые - определение и вычисление с примерами решенияBAO=Параллельные прямые - определение и вычисление с примерами решенияCDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D,           Параллельные прямые - определение и вычисление с примерами решенияBAK = 26°, Параллельные прямые - определение и вычисление с примерами решенияADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

Параллельные прямые - определение и вычисление с примерами решения

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

Параллельные прямые - определение и вычисление с примерами решенияBAC = 2 •Параллельные прямые - определение и вычисление с примерами решенияBAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку Параллельные прямые - определение и вычисление с примерами решенияADK +Параллельные прямые - определение и вычисление с примерами решенияBAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

Параллельные прямые - определение и вычисление с примерами решения

Доказательство:

Так как ВС — биссектриса угла ABD, то Параллельные прямые - определение и вычисление с примерами решения1=Параллельные прямые - определение и вычисление с примерами решения2. Так как Параллельные прямые - определение и вычисление с примерами решенияBAC равнобедренный (АВ=АС по условию), то Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения3 как углы при основании равнобедренного треугольника. Тогда Параллельные прямые - определение и вычисление с примерами решения2 =Параллельные прямые - определение и вычисление с примерами решения3. Но углы 2 и 3 являются накрест лежащими при прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения и секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения.

Реальная геометрия

Параллельные прямые - определение и вычисление с примерами решения

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

Параллельные прямые - определение и вычисление с примерами решения

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая Параллельные прямые - определение и вычисление с примерами решения проходит через точку М и параллельна прямой Параллельные прямые - определение и вычисление с примерами решения (рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой Параллельные прямые - определение и вычисление с примерами решения в некоторой точке, пусть и достаточно удаленной.

Параллельные прямые - определение и вычисление с примерами решения

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения (рис. 187).

Параллельные прямые - определение и вычисление с примерами решения

Доказать: Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения.

Доказательство:

Предположим, что прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения не параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения, параллельные третьей прямой Параллельные прямые - определение и вычисление с примерами решения. А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2,Параллельные прямые - определение и вычисление с примерами решения3 =Параллельные прямые - определение и вычисление с примерами решения4. Доказать, что Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения.

Параллельные прямые - определение и вычисление с примерами решения

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения по признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения. Так как Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения, то Параллельные прямые - определение и вычисление с примерами решения|| Параллельные прямые - определение и вычисление с примерами решения по теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения — данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

Параллельные прямые - определение и вычисление с примерами решения

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим  прямую Параллельные прямые - определение и вычисление с примерами решения, которая параллельна прямой Параллельные прямые - определение и вычисление с примерами решения по признаку параллельности прямых. Если предположить, что прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения не пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения, которые параллельны прямой Параллельные прямые - определение и вычисление с примерами решения. Это противоречит аксиоме параллельных прямых. Следовательно, прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения пересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, АВ — секущая,Параллельные прямые - определение и вычисление с примерами решения1 иПараллельные прямые - определение и вычисление с примерами решения2 — внутренние накрест лежащие (рис. 195).

Параллельные прямые - определение и вычисление с примерами решения

Доказать: Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2.

Доказательство:

Предположим, чтоПараллельные прямые - определение и вычисление с примерами решения1 Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения по признаку параллельности прямых. Получили, что через точку В проходят две прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения, параллельные прямой Параллельные прямые - определение и вычисление с примерами решения. А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно иПараллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения — секущая,Параллельные прямые - определение и вычисление с примерами решения1 иПараллельные прямые - определение и вычисление с примерами решения2 — соответственные (рис. 196).

Параллельные прямые - определение и вычисление с примерами решения

Доказать:Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения. Углы 2 и 3 равны как вертикальные. Следовательно,Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, Параллельные прямые - определение и вычисление с примерами решения — секущая,Параллельные прямые - определение и вычисление с примерами решения1 иПараллельные прямые - определение и вычисление с примерами решения2 — внутренние односторонние (рис. 197).

Параллельные прямые - определение и вычисление с примерами решения

Доказать:Параллельные прямые - определение и вычисление с примерами решенияl +Параллельные прямые - определение и вычисление с примерами решения2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов Параллельные прямые - определение и вычисление с примерами решения2 +Параллельные прямые - определение и вычисление с примерами решения3 = 180°. По свойству параллельных прямыхПараллельные прямые - определение и вычисление с примерами решенияl =Параллельные прямые - определение и вычисление с примерами решения3 как накрест лежащие. Следовательно,Параллельные прямые - определение и вычисление с примерами решенияl +Параллельные прямые - определение и вычисление с примерами решения2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, т. е.Параллельные прямые - определение и вычисление с примерами решения1 = 90°. Согласно следствию Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, т. е.Параллельные прямые - определение и вычисление с примерами решения2 = 90°.

Параллельные прямые - определение и вычисление с примерами решения

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

  • а) если ссылаются на признак параллельности прямых, то требуется доказать параллельность некоторых прямых;
  • б) если ссылаются на свойство параллельных прямых, то параллельные прямые даны, и нужно воспользоваться каким-то их свойством.

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

Параллельные прямые - определение и вычисление с примерами решения

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда Параллельные прямые - определение и вычисление с примерами решенияАОВ =Параллельные прямые - определение и вычисление с примерами решенияDOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

Параллельные прямые - определение и вычисление с примерами решения

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,Параллельные прямые - определение и вычисление с примерами решенияABD =Параллельные прямые - определение и вычисление с примерами решенияCDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,Параллельные прямые - определение и вычисление с примерами решенияADB =Параллельные прямые - определение и вычисление с примерами решенияCBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения параллельны, то пишут: Параллельные прямые - определение и вычисление с примерами решения||Параллельные прямые - определение и вычисление с примерами решения (рис. 211).

Параллельные прямые - определение и вычисление с примерами решения

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

Параллельные прямые - определение и вычисление с примерами решения

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней. 

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1)    Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

Параллельные прямые - определение и вычисление с примерами решения

2)    Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теоремеПараллельные прямые - определение и вычисление с примерами решения2 =Параллельные прямые - определение и вычисление с примерами решения3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, тоПараллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения3. Значит,Параллельные прямые - определение и вычисление с примерами решения1 =Параллельные прямые - определение и вычисление с примерами решения2.

Параллельные прямые - определение и вычисление с примерами решения

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

  1. Признаки параллельности прямых: «Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны».
  2. Свойства параллельных прямых: «Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°».
  3. На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
  4. На плоскости две прямые, параллельные третьей, параллельны между собой.
  5. Прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и другой прямой.
  6. Углы с соответственно параллельными сторонами или равны, или в сумме составляют 180°.
  7. Углы с соответственно перпендикулярными сторонами или равны, или в сумме составляют 180°.

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения и АВПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, то расстояние между прямыми Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения равно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой Параллельные прямые - определение и вычисление с примерами решения. Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

Параллельные прямые - определение и вычисление с примерами решения

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: Параллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения, А Параллельные прямые - определение и вычисление с примерами решения Параллельные прямые - определение и вычисление с примерами решения, С Параллельные прямые - определение и вычисление с примерами решения Параллельные прямые - определение и вычисление с примерами решения, АВПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения, CDПараллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения.

Доказать: АВ = CD (рис. 285).

Параллельные прямые - определение и вычисление с примерами решения

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения и секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (Параллельные прямые - определение и вычисление с примерами решенияCAD =Параллельные прямые - определение и вычисление с примерами решенияBDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой Параллельные прямые - определение и вычисление с примерами решения равны (см. рис. 285). Прямая Параллельные прямые - определение и вычисление с примерами решения, проходящая через точку А параллельно прямой Параллельные прямые - определение и вычисление с примерами решения, будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой Параллельные прямые - определение и вычисление с примерами решения, которая параллельна прямой Параллельные прямые - определение и вычисление с примерами решения. Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой Параллельные прямые - определение и вычисление с примерами решения будет перпендикуляром и к прямой Параллельные прямые - определение и вычисление с примерами решения (см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, Параллельные прямые - определение и вычисление с примерами решенияADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

Параллельные прямые - определение и вычисление с примерами решенияBAD +Параллельные прямые - определение и вычисление с примерами решенияADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

Параллельные прямые - определение и вычисление с примерами решения

Тогда Параллельные прямые - определение и вычисление с примерами решенияBAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =Параллельные прямые - определение и вычисление с примерами решенияАВ = 16 см.

Ответ: 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения — данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую Параллельные прямые - определение и вычисление с примерами решения, параллельную прямой Параллельные прямые - определение и вычисление с примерами решения.

Параллельные прямые - определение и вычисление с примерами решения

ТогдаПараллельные прямые - определение и вычисление с примерами решения || Параллельные прямые - определение и вычисление с примерами решения. По теореме о расстоянии между параллельными прямыми все точки прямой Параллельные прямые - определение и вычисление с примерами решения равноудалены от прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения на расстояние Параллельные прямые - определение и вычисление с примерами решенияАВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения, то есть расстояние от точки М до прямой Параллельные прямые - определение и вычисление с примерами решения равно Параллельные прямые - определение и вычисление с примерами решенияАВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой Параллельные прямые - определение и вычисление с примерами решения. Но через точку К проходит единственная прямая Параллельные прямые - определение и вычисление с примерами решения, параллельная Параллельные прямые - определение и вычисление с примерами решения. Значит, точка М принадлежит прямой Параллельные прямые - определение и вычисление с примерами решения.

Таким образом, все точки прямой Параллельные прямые - определение и вычисление с примерами решения равноудалены от прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения. И любая равноудаленная от них точка лежит на прямой Параллельные прямые - определение и вычисление с примерами решения. Прямая Параллельные прямые - определение и вычисление с примерами решения, проходящая через середину общего перпендикуляра прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения, — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

Параллельные прямые - определение и вычисление с примерами решения

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

Параллельные прямые - определение и вычисление с примерами решенияПараллельные прямые - определение и вычисление с примерами решения

Запомнить:

  1. Сумма углов треугольника равна 180°.
  2. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
  3. Катет меньше гипотенузы. Перпендикуляр меньше наклонной, проведенной из той же точки к одной прямой.
  4. Прямоугольные треугольники могут быть равны: 1) по двум катетам; 2) по катету и прилежащему острому углу; 3) по катету и противолежащему острому углу; 4) по гипотенузе и острому углу; 5) по катету и гипотенузе.
  5. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Если катет равен половине гипотенузы, то он лежит против угла в 30°.
  6. В треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.
  7. В треугольнике любая сторона меньше суммы двух других его сторон (неравенство треугольника).
  8. Любая точка биссектрисы равноудалена от сторон угла. Если точка внутри угла равноудалена от сторон угла, то она лежит на биссектрисе этого угла.
  9. Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Если в треугольнике медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
  10. Биссектрисы треугольника пересекаются в одной точке (2-я замечательная точка).
  11. Расстояние от любой точки одной из параллельных прямых до другой прямой есть величина постоянная.

Справочный материал по параллельным прямым

Параллельные прямые

  • ✓ Две прямые называют параллельными, если они не пересекаются.
  • ✓ Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • ✓ Две прямые, перпендикулярные третьей прямой, параллельны.
  • ✓ Если две прямые параллельны третьей прямой, то они параллельны.
  • ✓ Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Признаки параллельности двух прямых

  • ✓ Если две прямые а и b пересечь третьей прямой с, то образуется восемь углов (рис. 246). Прямую с называют секущей прямых а и b.  
  • Углы 3 и 6, 4 и 5 называют односторонними.    
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.    
  • Углы 6 и 2, 5 и 1, 3 и 7, 4и 8 называют соответственными.

Параллельные прямые - определение и вычисление с примерами решения

  • ✓ Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.
  • ✓ Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.
  • ✓ Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Свойства параллельных прямых

  • ✓ Если две параллельные прямые пересекаются секущей, то:
  • • углы, образующие пару накрест лежащих углов, равны;
  • • углы, образующие пару соответственных углов, равны;
  • • сумма углов, образующих пару односторонних углов, равна 180°.
  • ✓ Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения – перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения – параллельны.

Параллельные прямые - определение и вычисление с примерами решения

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых Параллельные прямые - определение и вычисление с примерами решения и Параллельные прямые - определение и вычисление с примерами решения если она пересекает их в двух точках (рис. 266).

Параллельные прямые - определение и вычисление с примерами решения

Пары углов 4 и 5; 3 и 6 называют внутренними односторонними; пары углов 4 и 6; 3 и 5внутренними накрест лежащими; пары углов 1 и 5; 2 и 6; 3 и 7; 4 и 8соответственными углами.

Признаки параллельности прямых:

  1. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  4. Две прямые, перпендикулярные третьей, параллельны.

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника – определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников

ndeac

ndeac

Вопрос по геометрии:

треугольники ABC и ABD равные равнобедренные треугольники с общим основанием ab докажите что прямые AC и BD параллельны……ПОМОГИТЕ!!!!!

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1

ldremoumat

ldremoumat

углы САВ, АВD равны как соответственные элементы равных треугольников (в равнобедренных углы при основании равны) следоватально АС парадельна ВD при равенстве накрест лежащих углов САВ, АВD и секущей АВ

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Добавить комментарий