Как найти параметр источник

На этой странице вы узнаете

  • Где самое большое сопротивление в теле человека?
  • Какой ученый променял бильярд на физику?
  • К чему может привести авария среди электронов?

Весь современный мир держится на электричестве. Наряду с глобальной интернет-сетью, наш мир «опутан» сетью электрических проводов. Что такого происходит в этих тоненьких проводах, что от них зависит жизнь целого города? Давайте поближе познакомимся с электрическим током и узнаем, откуда он появляется.

Мы с вами уже познакомились с электрическими схемами в теме «Законы постоянного тока», где  выяснили, какие приборы существуют и как используются в схемах. В этой статье мы поговорим о том, как в элементарных электрических цепях появляется ток. Начало положено, сопротивление бесполезно.  

Источник тока

Как мы уже выяснили, электрические схемы не могут работать просто так. Представим, что вы хотите поехать на машине, в которой нет бензина. Конечно, машина не заведется, так как ее нужно заправить. Электрические схемы работают по такому же принципу. Если их не подпитывать током, то они не будут работать.

Электрический ток — это направленное, упорядоченное движение электрических зарядов. Поэтому, чтобы поддерживать в цепи ток длительное время, в нем должен быть участок, на котором будет происходить перенос зарядов против сил электростатического поля (поля, создаваемого неподвижными зарядами). То есть, то место, где электроны будут принудительно приходить в движение. 

Источник тока — элемент электрической цепи, в котором на заряды действует сторонняя сила, задающая направление движения зарядов (тока). 

Перемещение зарядов на этом участке возможно лишь с помощью сил неэлектростатического происхождения, называемых сторонними силами. Эти силы приводят заряды в движение. Благодаря этому поддерживается ток в цепи. Действие сторонних сил характеризуется величиной, называемой электродвижущей силой источника тока (ЭДС), о которой поговорим чуть позднее.

Примером источника тока может служить обычная батарейка. Вы наверняка замечали, что на пальчиковых батарейках с одной стороны пишется «плюс», а с другой — «минус». Это означает, что электрический ток пойдет от положительной части батарейки к отрицательной. А почему ток выходит из одной части, но заходит в другую?

Для объяснения этого явления рассмотрим картинку ниже. Главным критерием рабочей электрической цепи является ее замкнутость, то есть вся цепь неразрывно связана. Подключим нашу батарейку (источник тока) к электрической цепи, которую также называют внешней электрической цепью.

Как мы видим на этом рисунке, на заряды внутри источника тока действует сторонняя сила ((F_{ст})), от плюса к плюсу) и сила электростатического поля ((F)), которая направлена от плюса к минусу. Без действия сторонних сил внутри источника положительный заряд будет двигаться от «+» к «-» (по направлению силы (F)). 

Мы действуем сторонними силами так, чтобы он стал двигаться к «+» (по направлению (F_{ст})), то есть против сил электростатического поля. Тогда заряды вылетают из источника тока и далее по внешней цепи, уже под действием обычного электростатического поля, движутся по стандартным законам от «+» к «-». Это и есть наш долгожданный электрический ток – движущиеся заряды. Если бы мы не действовали сторонними силами, все заряды бы просто сидели на месте («+» окружили бы «-», и наоборот). То есть, сама сторонняя сила задает направление движения заряда. 

После того как заряд выходит из источника тока, на него действует только одна сила F. Поэтому он обходит всю цепь и возвращается в этот же источник тока. Там на него вновь действует сторонняя сила, ну а дальше вы уже знаете.

Если бы в источнике тока не было сторонних сил, то все положительные заряды застряли бы у минуса.

Основные параметры источника тока

Как и любой другой элемент электрической цепи, источник тока обладает своими характеристиками, которые могут меняться в зависимости от условий использования. Главными характеристиками являются ЭДС источника тока (электродвижущая сила) и его внутреннее сопротивление. 

ЭДС источника тока (ε) — это физический параметр, который характеризует работу сторонних сил ((А_{ст})), затраченную на перемещение зарядов (q) внутри источника.

(ε =frac{А_{ст}}{q}), где

(ε) – ЭДС источника тока (В);
(А_{ст})– работа сторонних сил (Дж);
(q) – заряд, помещенный внутри источника (Кл).

Внутреннее сопротивление определяет количество потерь энергии при прохождении тока через источник тока. 

Стоит понимать, что внутреннее сопротивление появляется из-за неидеальности реальных предметов. Только у идеальных источников тока отсутствует внутреннее сопротивление. 

Однако при расчете характеристик электрических схем никакой сложности не возникает, так как мы просто представляем, что в цепи появляется дополнительный резистор (на схемах обозначается прямоугольником и буквой R), сопротивление которого будет равняться внутреннему сопротивлению источника тока.

Раз уж мы затронули расчеты электрических схем, то пора вплотную к ним приблизиться.

Закон Ома для участка цепи

Какой ученый променял бильярд на физику?

Георг Ом рос в небогатой семье. Также он был довольно азартным человеком, любил играть в бильярд в компании друзей. В университетские годы Ом был лучшим игроком в бильярд среди студенческой молодежи, показывал прекрасные результаты в конькобежном спорте.

Но его очень манили точные науки: физика и математика. Однажды он смог собрать всю свою волю «в кулак» и начать проводить опыты в лаборатории обычной школы, где работал учителем. И так он окончательно вжился в статус ученого-физика. После этого он играл в бильярд только для получения удовольствия, а не использовал его как способ заработка.

Дальше мы с вами поговорим о напряжении на элементах электрической цепи, и, в частности, на источнике тока. Поэтому вспомним, что такое напряжение из темы «Законы постоянного тока». Напряжение – физическая величина, которая показывает, какую работу сторонние силы должны приложить, чтобы перенести заряд от одной точки до другой.

Так как у источника тока имеется внутреннее сопротивление, значит, внутри него также будет и напряжение. Чтобы найти его, воспользуемся законом Ома — умножим внутреннее сопротивление источника тока r на сам ток I и получим:

Ur = Ir.

Также мы можем найти напряжение, которое будет выделяться на внешней цепи. Для этого снова умножим ток I на общее сопротивление цепи R:

UR = IR.

Оказывается, что не вся энергия источника тока уходит в цепь. Как раз таки та часть энергии, которая уходит на преодоление внутреннего сопротивления, и будет характеризовать потери. Тогда мы можем записать еще одну формулу для нахождения ЭДС источника тока:

ε = UR+ Ur , где

ε – ЭДС источника тока (В);
UR – напряжение на самой электрической цепи (В);
Ur – напряжение внутри источника тока (В). 

Теперь давайте подставим вместо напряжений полученные формулы через токи и сопротивления и выразим силу тока. Так мы получим закон Ома для полной цепи: 

(I=frac{ε}{R + r}) , где

I – ток в цепи (А);
ε – ЭДС источника тока (В);
R – сопротивление в цепи (Ом);
r – внутреннее сопротивление источника (Ом).

Сила тока в цепи с заданным источником тока (при неизменной ЭДС и с постоянным внутренним сопротивлением) зависит только от сопротивления внешней цепи R.

Где самое большое сопротивление в теле человека?

Самое большое электрическое сопротивление на теле человека — поверхность верхнего рогового слоя кожи человека. Оно может достигать 40000–100000 Ом. Но это не значит, что можно хвататься за оголенные провода голыми руками! Этого сопротивления далеко не достаточно, чтобы защитить человека от опасного электрического тока.

Резко уменьшают сопротивление человека потливость кожного покрова, переутомление, нервное возбуждение. Значение снижается до 800–1000 Ом. Поэтому даже самое небольшое напряжение может вызвать ожог кожи.

Задачи на данную тему встречаются в №12 ЕГЭ. Давайте рассмотрим один пример.

Задача. Найдите внутреннее сопротивление источника ЭДС, если сопротивление в цепи R = 4 Ом, а ЭДС ε=10 В. Сила тока в цепи 2 А.

Решение.Воспользуемся законом Ома для полной цепи и выразим из него внутреннее сопротивление источника ЭДС:

(I=frac{ε}{R + r}),
(r=frac{ε}{I}-R=frac{10}{2}-4=1) (Ом).

Ответ: 1 Ом

Короткозамкнутая цепь

Рассмотрим частный случай электрической цепи, в котором источник тока будет подключен сам на себя. Иначе говоря, он будет короткозамкнутым.

В этом случае отсутствует сопротивление внешней цепи и закон Ома для цепи будет выглядеть так:

(I_{кз}=frac{ε}{r}) , где

(I_{кз}) – ток короткого замыкания (А);
(ε) – ЭДС источника тока (В);
(r) – сопротивление источника ЭДС (Ом).

Короткое замыкание — это такой случай соединения проводов, при котором практически весь ток проходит по пустому проводу и возвращается в источник тока. 

Короткое замыкание приводит к сильному нагреву, расплавлению металлов, а иногда и к пожарам. 

К чему может привести авария среди электронов?

Если сравнить поток электронов с потоком машин, то ток короткого замыкания – это авария на автодороге. Один поток машин решил влезть в другой. В результате на дороге образовалась авария. Но машины продолжают налетать одна на другую (как в метель в Норильске). 

При коротком замыкании сила тока будет увеличиваться до тех пор, пока отключающие механизмы не прекратят поступление силы тока.

Теперь, когда мы уже рассмотрели основные характеристики источника тока, можем перейти к мощности и КПД источника тока.

Мощность и КПД источника тока

Мы уже не раз говорили о том, что при протекании тока выделяется энергия. Источники тока не исключение. При подключении их к цепи на них выделяется энергия. При этом энергия выделяется и в самой цепи.

Чтобы найти мощность передачи энергии (P), выделяемой источником тока, необходимо умножить силу тока на ЭДС этого источника тока. Тогда получим:

(P_{ист}=εI), где

(P_{ист}) – мощность источника тока (Вт);
(ε) – ЭДС источника тока (В);
(I)сила тока (А).

При этом часть этой мощности уходит на элементы внешней цепи, а другая часть – на преодоление внутреннего сопротивления источника тока:

(εI = I^2R + I^2r).

Тогда мощность, выделяемая на внешней цепи:

(P_R=I^2R).

А мощность, которая теряется на внутреннее сопротивление источника тока:

(P_r=I^2r).

Теперь давайте рассмотрим коэффициент полезного действия (КПД, ) источника тока. Как мы уже говорили ранее, часть ЭДС источника тока уходит на внутреннее сопротивление, а часть – на внешнюю цепь. При этом вспомним, что КПД – это отношение полезной мощности к затраченной.

Запишем формулы для мощности:

(P_{ист}=εI=I^2(R+r)),
(P_R=IU =I^2R).

Тогда КПД:

(eta=frac{IU}{εI}*100%=frac{U}{ε}*100%=frac{R}{R+r}*100%), где

(eta) – КПД источника тока;
(ε) – ЭДС источника тока (В);
(U) – напряжение на внешней цепи (В);
(I) – сила тока (А):
(R) – сопротивление на внешней цепи (Ом);
(r) – сопротивление источника тока (Ом).

Также задачи на тему ЭДС встречаются и в №16 ЕГЭ. Сложность данных задач заключается в установлении правильной зависимости величин друг от друга.

Задача.Определите, как изменятся сила тока (А) в цепи и сопротивление резистора (Б), если ЭДС источника тока заменить на такую же ЭДС, но с большим внутренним сопротивлением.
1) увеличится
2) уменьшится
3) не изменится

Решение.
Б) Внешнее сопротивление никак не зависит от источника тока. Поэтому оно не изменится — выбираем ответ 3.

А) Запишем закон Ома для полной цепи:
(I=frac{ε}{R + r})
При увеличении внутреннего сопротивления знаменатель увеличится. Следовательно, сила тока уменьшится, так что вариант 2 тоже нам подходит.

Ответ: 23

Мы с вами выяснили, что источники тока – элементы электрической цепи, без которых самой цепи не существовало бы. Хотя, конечно, она бы существовала, но была бы бесполезной. Однако и они «не без греха», так как существует опасное внутреннее сопротивление, которое является головной болью для многих инженеров. А все потому, что оно снижает КПД источников тока. Дальше вы можете ознакомиться с полноценными электрическими схемами и посмотреть, как ток ведет себя за пределами источника тока.

Термины

Напряжение – произведение сопротивления элемента и протекающего через него тока.

Резистор (или резистивный элемент) – элемент электрической цепи, который может только потреблять энергию и не может ее создавать.

Сторонние силы — это все внешние силы, воздействующие на заряд.

Электростатическое поле — невидимое поле, создаваемое постоянными электрическими зарядами.

Фактчек

  • ЭДС источника тока (ε) — это физический параметр, который характеризует работу, затраченную на перемещение зарядов внутри источника сторонними силами: (ε =frac{А_{cт}}{q}).
  • Внутреннее сопротивление (r) — определяет количество потерь энергии при прохождении тока через источник тока.
  • Закон Ома для полной цепи: Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению: (I =frac{ε}{R + r}).
  • Предельное значение силы тока для данного источника тока называется током короткого замыкания: (I_{кз} =frac{ε}{r}).
  • Полная мощность цепи — это есть мощность источника тока: (P_ист=εI).

Проверь себя

Задание 1.
Как рассчитывается ЭДС источника тока?

  1. (ε =frac{А_{ст}}{q})
  2. (ε =frac{U}{q})
  3. (ε =frac{А_{ст}}{I})
  4. (ε =frac{А_{ст}}{qt})

Задание 2.
Короткое замыкание — это:

  1. Соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи. 
  2. Соединение концов участка цепи проводником, сопротивление которого очень велико по сравнению с сопротивлением участка цепи. 
  3. Соединение концов участка цепи проводником, сопротивление которого не зависит от сопротивления участка цепи. 
  4. Отсутствие электрического тока в цепи.

Задание 3.
Чему равно ЭДС источника тока?

  1. (ε = U_R- U_r)
  2. (ε = U_R+ U_r)
  3. (ε = U_R U_r)
  4. (ε = U_R)

Задание 4.
От чего зависит сила тока в цепи с заданным источником тока?

  1. от внутреннего сопротивления цепи
  2. от внутреннего сопротивления источника тока
  3. от внешнего сопротивления цепи
  4. не зависит ни от каких величин

Задание 5.
Где самое большое сопротивление в человеке?

  1. в сердце
  2. в пищеварительной системе
  3. на коже
  4. в голове

Ответы: 1. 1; 2. — 1; 3. 2; 4. 3; 5. 3.

Содержание:

Идеализированные активные элементы:

Идеальный источник напряжения

Идеальные источники тока и напряжения представляют собой идеализированные источники энергии. Они обладают способностью отдавать энергию подключенным к ним участкам электрической цепи, другими словами, потребляемая ими энергия может быть отрицательной. Таким образом, идеальные источники тока и напряжения относятся к идеализированным активным элементам.

Идеальный источник напряжения (источник напряжения, источник э. д. с. ) представляет собой идеализированный активный элемент, напряжение на зажимах которого не зависит от протекающего через него тока. Напряжение и на зажимах источника напряжения равно электродвижущей силе е (t) и может быть произвольной функцией времени. В частном случае е (t) = Е_ может не зависеть от времени. Источник такого типа называется источником постоянного напряжения (источником постоянной э. д. с.). Условное графическое обозначение источника напряжения приведено на рис. 1.12, а. Стрелка внутри кружка на рисунке указывает направление э. д. с. Для источников постоянного напряжения она направлена от зажима с меньшим потенциалом к зажиму с более высоким потенциалом, в то время как напряжение на внешних зажимах источника направлено от зажима с более высоким потенциалом к зажиму с меньшим потенциалом.

Внешней характеристикой любого источника электрической энергии называется зависимость напряжения на его зажимах 01 тока источника. Внешняя характеристика источника постоянного напряжения является прямой линией, параллельной оси токов (Рис. 1.12, б). 

Идеализированные активные элементы

Если подключить к зажимам источника э. д. с. сопротивление нагрузки Идеализированные активные элементы

Идеализированные активные элементы

С уменьшением Идеализированные активные элементыток нагрузки и выделяемая в ней мощность неограниченно возрастают. Вследствие этого источник напряжения иногда называют источником бесконечной мощности.

Идеальный источник тока

Идеальный источник тока (источник тока) — это идеализированный активный элемент, ток которого не зависит от напряжения на его зажимах. Ток источника i=j(t) может быть произвольной функцией времени, в частном случае он может не зависеть от времени i(t) = J_ (источник постоянного тока). Внешняя характеристика источника постоянного тока показана на рис. 1.14, б.

Условное графическое обозначение источника тока приведено на рис. 1.14, а. Двойная стрелка на рисунке показывает направление тока внутри источника. У источников постоянного тока это направление совпадает с направлением перемещения положительных зарядов внутри источника, т. е. с направлением от зажима с меньшим потенциалом к зажиму с большим потенциалом.

Ток источника тока и напряжение источника напряжения являются параметрами идеализированных активных элементов подобно тому, как сопротивление, емкость и индуктивность являются параметрами одноименных идеализированных пассивных элементов.

Идеализированные активные элементы

Если подключить к внешним выводам источника тока сопротивление нагрузки Идеализированные активные элементы (рис. 1.15), то согласно (1.9), (1.11) напряжение на сопротивлении нагрузки и выделяемая в нагрузке мощность будут равны соответственно:

Идеализированные активные элементы

С увеличением Идеализированные активные элементы напряжение на нагрузке и выделяемая в ней мощность неограниченно увеличиваются, поэтому источник тока, так же как и источник напряжения, является источником бесконечной мощности).

Зависимость тока источника тока от напряжения имеет такой же вид, как и зависимость напряжения источника напряжения от тока, поэтому эти источники являются дуальными элементами.

Схемы замещения реальных источников

Идеализированные источники тока и напряжения можно рассматривать как упрощенные модели реальных источников энергии. При определенных условиях, в достаточно узком диапазоне токов и напряжений, внешние характеристики ряда реальных источников энергии могут приближаться к характеристикам идеализированных активных элементов. Так, внешняя характеристика гальванического элемента в области малых токов имеет вид, близкий к внешней характеристике источника напряжения (см. рис. 1.12,6), а внешняя характеристика выходного каскада на транзисторе в определенном диапазоне напряжений приближается к внешней характеристике источника тока (см рис. 1.14,6).

В то же время свойства реальных источников энергии значительно отличаются от свойств идеализированных активных элементов. Реальные источники энергии обладают конечной мощностью; их внешняя характеристика, как правило, не параллельна оси токов или оси напряжений, а пересекает эти оси в двух характерных точках, соответствующих режимам холостого хода и короткого замыкания (иногда в источниках энергии применяют специальные виды защиты, исключающие работу в предельных режимах или в одном из них).

Идеализированные активные элементы

С достаточной для практики точностью внешние характеристики большинства реальных источников энергии могут быть приближенно представлены прямой линией, пересекающей оси токов и напряжений в точках 1 и 2 (рис. 1.16, а):

Идеализированные активные элементы

соответствующих режимам холостого хода и короткого замыкания источника. Источники, имеющие линейную внешнюю характеристику, в дальнейшем будем называть линеаризованными источниками энергии (реальными).

Покажем, что линеаризованный источник энергии может быть представлен моделирующей цепью, состоящей из идеализированного источника напряжения Е и внутреннего сопротивления Идеализированные активные элементы или идеализированного источника тока J и внутренней проводимости Идеализированные активные элементы Действительно, уравнение прямой, проходящей через две точки с координатами Идеализированные активные элементы имеет вид

Идеализированные активные элементы

Подставляя (1.28), (1.29) в (1.30) и представляя напряжение u как функцию тока i, находим аналитическое выражение для внешней характеристики линеаризованного источника

Идеализированные активные элементы

В соответствии с (1.31) напряжение линеаризованного источника состоит из двух составляющих. Первая их имеет размерность напряжения и не зависит от тока, протекающего через источник. Ее можно интерпретировать как напряжение некоторого идеального источника напряжения с э. д. с. Идеализированные активные элементы Вторая составляющая напряжения источника Идеализированные активные элементы прямо пропорциональна току. Ее можно рассматривать как падение напряжения на некотором сопротивлении Идеализированные активные элементыИдеализированные активные элементы через которое протекает ток источника i (это сопротивление в дальнейшем будем называть внутренним сопротивлением источника). Итак, уравнению (1.31) может быть поставлена в соответствие схема замещения линеаризованного источника, изображенная на рис. 1.16,б. Такая схема замещения получила название

Идеализированные активные элементы

последовательной. Можно убедиться, что зависимость напряжения на зажимах этой цепи от тока определяется уравнением

Идеализированные активные элементы

равносильным уравнению (1.31) и, следовательно, внешняя характеристика цепи имеет вид, показанный на рис. 1.16, а.

Из анализа выражения (1.32) видно, что с уменьшением внутреннего сопротивления источника внешняя Идеализированные активные элементы характеристика линеаризованного источника приближается к внешней характеристике идеального источника напряжения (рис. 1.17, а). При Идеализированные активные элементы = 0 источник с линейной внешней характеристикой вырождается в идеальный источник напряжения. Таким образом, идеальный источник напряжения можно рассматривать как источник энергии, внутреннее сопротивление которого равно нулю.

Рассмотрим другую схему замещения линеаризованного источника, в которой содержится идеальный источник тока. Для этого, используя (1.31), выразим ток i как функцию напряжения на зажимах источника:

Идеализированные активные элементы

Как видно из выражения (1.33), ток линеаризованного источника состоит из двух составляющих. Первая Идеализированные активные элементы не зависит от напряжения на зажимах источника. Ее можно рассматривать как ток некоторого идеального источника тока Идеализированные активные элементы Вторая составляющая тока Идеализированные активные элементы и прямо пропорциональна напряжению на зажимах источника, поэтому ее можно интерпретировать как ток, текущий через некоторую (внутреннюю) проводимость Идеализированные активные элементы к которой приложено напряжение u. Итак, выражению (1.33) можно поставить в соответствие схему замещения, изображенную на рис. 1.16, в. Такая схема замещения называется параллельной.

Зависимость между током и напряжением на зажимах соответствующей моделирующей цепи определяется уравнением, равносильным уравнению (1.33):

Идеализированные активные элементы

Из уравнения (1.34) видно, что с уменьшением внутренней проводимости источника Идеализированные активные элементы внешняя характеристика линеаризованного источника приближается к внешней характеристике идеального источника тока (рис. 1.17, б). В пределе, при Идеализированные активные элементы = 0, линеаризованный источник энергии вырождается в идеальный источник тока. Таким образом, идеальный источник тока можно рассматривать как источник энергии с бесконечно малой внутренней проводимостью (бесконечно большим внутренним сопротивлением).

Обе рассмотренные схемы замещения линеаризованного источника были получены из одного уравнения (1.30), имеют одну и ту же внешнюю характеристику и, следовательно, их поведение относительно внешних зажимов совершенно одинаково. Выбор той или иной схемы замещения может быть сделан совершенно произвольно, однако в процессе исследования цепи может возникнуть необходимость перехода от одной схемы к другой. Используя выражения (1.31)—(1.34), можно найти формулы перехода от последовательной схемы замещения к параллельной

Идеализированные активные элементы

и от параллельной схемы к последовательной

Идеализированные активные элементы

Необходимо обратить внимание на то, что переход от одной схемы замещения к другой возможен только для источников, внутреннее сопротивление которых имеет конечное значение Идеализированные активные элементы

Соотношения для взаимного преобразования схем замещения источников энергии (1.35) и (1.36) применимы для источников постоянного тока и напряжения. Аналогичные соотношения могут быть получены и для источников, в которых напряжение u и ток i являются произвольными функциями времени.

Анализируя выражения (1 32), (1.34), можно установить, что цепь, составленная из источника напряжения с последовательно включенным сопротивлением Идеализированные активные элементы и цепь, представляющая собой параллельное соединение источника тока и проводимости Идеализированные активные элементы являются дуальными.

Управляемые источники тока и напряжения

Идеальные источники тока и напряжения могут быть либо неуправляемыми (независимыми) либо управляемыми (зависимыми). Неуправляемый источник представляет собой идеализированный элемент с одной парой выводов, параметр которого (ток или напряжение) не зависит ни от каких других гоков или напряжений, действующих в цепи. Управляемый источник тока или напряжения — это идеализированный активный элемент, параметр которого является определенной функцией тока или напряжения некоторого участка цепи. В общем случае управляемый источник — это идеализированный элемент с двумя парами выводов. К одной паре выводов (выводы источника) присоединяют идеализированный источник, параметр которого является заданной функцией напряжения или тока другой пары выводов (управляющие выводы). Как и для неуправляемых

Идеализированные активные элементы

источников, внутреннее сопротивление управляемого источника напряжения равно нулю, а внутреннее сопротивление управляемого источника тока равно бесконечности.

Различают четыре типа управляемых источников:

В теории цепей к управляемым источникам относят только те, параметр которых зависит от действующих в цепи токов и напряжений. Источники, параметр которых зависит от какой-либо неэлектрической величины, не связанной с токами или напряжениями рассматриваемой цепи, относят к неуправляемым.

Вид функциональной зависимости между током или напряжением управляемого источника и управляющим воздействием в принципе может быть произвольным, однако в теории цепей и во всех ее приложениях наибольшее распространение получили линейно управляемые источники, параметр которых у прямо пропорций^ лен управляющему воздействию х:

Идеализированные активные элементы

Коэффициент пропорциональности между параметром источника е или j и внешним воздействием называется коэффициентом управления Идеализированные активные элементы В зависимости от типа источника этот коэффициент может иметь размерность сопротивления (источник напряжения, управляемый током), проводимости (источник тока, управляемый напряжением) или быть безразмерной величиной (источник напряжения,

Идеализированные активные элементы

управляемый напряжением, и источник тока, управляемый током). Если управляющее воздействие линейно управляемого источника равно нулю, то параметр источника также будет равен нулю. Таким образом, линейно управляемые источники не могут отдавать энергию в отсутствие управляющего воздействия.

Управляемые источники тока и напряжения широко используют при построении эквивалентных схем различных электровакуумных и полупроводниковых приборов (рис. 1.19).

  • Топологии электрических цепей
  • Уравнения электрического равновесия цепей
  • Линейные цепи при гармоническом воздействии
  • Нелинейные резистивные цепи
  • Однофазные цепи синусоидального тока
  • Законы и правила Кирхгофа для электрических цепей
  • Линии с распределенными параметрами
  • Идеализированные пассивные элементы

Представим
простейшую электрическую цепь схемой
рис.1.1, на которой указан реальный
источник ЭДС, например аккумулятор.

Существуют
следующие режимы работы источника
электрической
энергии постоянного тока: номинальный
режим, рабочий режим, режим холостого
хода, режим короткого замыкания.

Режимы
работы источника электрической энергии
определяет вольт-амперная характеристика
(рис.1.4) – зависимость напряжения U
от
тока
.

Номинальный
режим источника характеризуется
номинальными параметрами источника,
соответствующими расчётным паспортным
значениям завода-изготовителя, к которым
относятся параметры: Iном,Uном
и Рном, где Рном номинальная мощность
источника. По Uном
рассчитывается сопротивление изоляции
проводов, по Iном
рассчитываются условия нагрева проводов
по допустимому току.

Рис.1.4.
Вольт-амперая характеристика источника
ЭДС

Точка

=
соответствует режиму холостого хода,
точка Iк

режиму короткого замыкания реального
источника ЭДС.

.
(1.11)

При


= 0 идеализированный источник электрической
энергии называется идеальным источником
ЭДС, а вольт-амперная характеристика
(рис.1.5) определяется выражением:

.
(1.12)

Такой
источник называется также источником
напряжения. На этом же рисунке приведено
условное схемное изображение источника
напряжения.

Рис.1.5.
Идеальный источник ЭДС

В
электрических цепях с полупроводниковыми
приборами и электронными лампами

значительно превышает
.
Источник электрической энергии, у
которого
,
называется идеальным источником тока
с параметром:

.
(1.13)

Такому
источнику соответствует характеристика
рис.1.6:

Рис.1.6.
Идеальный источник тока

На
этом же рисунке приведено условное
схемное изображение источника тока.

Если
все слагаемые формулы (1.11) разделить на
внутреннее сопротивление

источника, то получим выражение:

.
(1.14)

Откуда
следует, что ток источника тока J
складывается из тока
I
(во внутреннем участке цепи) и тока I
(во
внешнем участке цепи). Схема с источником
тока J
приведена на рис.1.7:

Рис.1.7.
Электрическая схема цепи с источником
тока

1.3. Законы Кирхгофа

Электрические
цепи делятся на неразветвленные и
разветвленные цепи. Неразветвленные
цепи представляют собой последовательно
соединенные источники и приёмники
электрической энергии. При этом источники
электрической энергии могут иметь либо
согласное включение (одинаковое
направление), либо встречное включение
(направление разное).

Разветвленными
называются цепи, в которых источники и
приемники электрической энергии
соединены параллельно или имеют смешанное
соединение. Такие цепи являются сложными,
и для их расчета используются либо
законы Кирхгофа, либо другие методы
расчёта цепей постоянного тока.

Первый
закон Кирхгофа: алгебраическая сумма
токов в любом узле электрической цепи
равна нулю:

.
(1.15)

На
схеме рис.1.8 показано параллельное
соединение трёх приемников электрической
энергии, указано направление токов для
узла ‘‘а’’.

Рис.1.8.
Электрическая цепь с параллельным
соединением приемников

Будем
считать направление тока к узлу
положительным, а от узла отрицательным.
Тогда, используя выражение (1.15), для узла
“а” напишем:

или

.

Второй
закон Кирхгофа: во всяком замкнутом
контуре электрической цепи алгебраическая
сумма ЭДС равна алгебраической сумме
падений напряжений на резистивных
элементах:

,
(1.16)

где
m
– число резистивных элементов, n
– число ЭДС в контуре.

При
этом необходимо задаться направлением
обхода контура, а также направлениями
токов в ветвях контура и источников
ЭДС.

На
схеме рис.1.9. рассмотрим один из контуров
сложной электрической цепи с указанным
направлением обхода контура. По второму
закону Кирхгофа запишем:

Рис.1.9.
Пример схемы расчёта по второму закону
Кирхгофа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

    15.02.20154.06 Mб15jvc_kd-sx995.pdf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прежде
чем мы приступим к рассмотрению новой темы, давайте вспомним, что вообще
называют источником электрической энергии.

Все
электромагнитные процессы, которые протекают в электротехнических устройствах,
как правило, достаточно сложны. Однако во многих случаях, их основные параметры
можно описать с помощью таких понятий, как: ток, напряжение, сопротивление,
мощность и электродвижущая сила.

Вообще
совокупность электротехнических устройств, состоящая из соответствующим образом
соединённых источников и приёмников электрической энергии, предназначенных для
генерации, передачи, распределения и преобразования электрической энергии
принято рассматривать, как электрическую цепь.

Электрическая
цепь состоит из отдельных частей (устройств), которые выполняют определённые
функции и называются элементами цепи.

Понятно,
что основные элементы цепи – это источники и приёмники
электрической энергии.

Электротехнические
устройства, которые производят электрическую энергию, называют источниками
или генераторами электрической энергии, а устройства, которые
потребляют её – потребителями или приёмниками
электрической энергии.

Итак,
вспомним определение: устройство, которое преобразует какую-либо энергию
(механическую, химическую, тепловую или световую) в электрическую, называют источником.

Примерами
источников электроэнергии служат гальванические элементы, аккумуляторы,
генераторы и многие другие устройства.

Можно
даже сказать, что в быту (то есть дома) источниками электрической энергии
являются обыкновенные розетки, куда мы подключаем чайники, компьютеры,
стиральные машинки и так далее.

Понятно,
что основное назначение источников – это питание потребителей
электроэнергией
.

Все
источники энергии называют активными элементами. Они бывают постоянного
и переменного тока. Однако их параметры аналогичны.

Как
мы уже знаем, источник вырабатывает электрическую энергию за счёт действия
каких-либо внешних сил.

При
этом в результате действия внешней силы каждый единичный электрический заряд
при движении внутри источника получает некоторое количество энергии.

Величина
энергии, которую приобретает единичный электрический заряд внутри источника от
внешних сил, называется электродвижущей силой источника (или
коротко ЭДС). Единица измерения электродвижущей силы источника – вольт.

Рабочее
напряжение и мощность электрогенераторов, как правило, указывают на их корпусе.
Так, например, на корпусе гальванических элементов обозначают их начальную
электродвижущую силу.

Если
получается так, что для питания нагрузки необходимо напряжение или ток, которые
превышают соответствующие величины одного гальванического элемента, то из них
собирают батарею. Причём, элементы, соединённые в батарею, должны иметь
одинаковые типы, электродвижущую силу и внутреннее сопротивление.

Наверняка
вы слышали такое словосочетание, как короткое замыкание. Все,
конечно, представляют себе, что это за явление, но не каждый может объяснить.

Давайте
попробуем разобраться.

Итак,
если соединить проводом электроды источника тока, получим как раз-таки то, что
и называется режимом короткого замыкания.

При
большой мощности источника сила тока в режиме короткого замыкания достигает
очень большой величины, что приводит к выделению большого количества тепла
внутри электромеханического генератора и разрушению в нём обмоток. Причём сила
тока может стать настолько велика, что провод, который замыкает электроды
источника, начнёт раскаляться и даже плавиться.

Ток
короткого замыкания очень опасен, так как может повредить всё: и источник
электрической энергии, и потребитель, и даже соединительные провода.

В
свою очередь, перегрев соединительных проводов может привести к их возгоранию и
пожару.

Поэтому
при питании устройств от мощных источников в потребителе почти всегда вводят
защиту от короткого замыкания. Которое, кстати, может произойти внезапно,
например, из-за аварий устройств, ошибок людей и ударов молний.

Самая
простая защита от разрушительных последствий короткого замыкания — это плавкий
предохранитель
. Как правило, такое устройство устанавливают для защиты
квартирной электропроводки и бытовых электроприборов.

Плавкий
предохранитель
представляет собой тонкую проволоку из
легкоплавкого металла, которая вставлена в стеклянную либо керамическую трубку.
При малейших отклонениях в работе электрической цепи, например, увеличение силы
тока выше допустимого значения, проволока нагревается и расплавляется. При этом
происходит размыкание электрической цепи.

Более
сложной защитой от разрушительных последствий короткого замыкания является
использование различных автоматов защиты сети. Примером таких
автоматов служит автоматический выключатель.

Главная
функция автоматического выключателя
– защита проводов и
кабелей от перегрузки и короткого замыкания.

Данный
прибор представляет собой устройство, которое регулирует подачу тока в цепи.
Действует автоматический выключатель при помощи встроенного прибора,
фиксирующего изменение напряжения, частоты и силы тока. Так, например, если
сеть перегружается, срабатывает тепловое реле, и автомат выключается. Скорость,
с которой это происходит – минимальна. Поэтому применение автоматического
выключателя гарантирует безопасное использование нескольких бытовых
электроприборов одновременно и сложного оборудования на производстве.

В
отличие от плавкого предохранителя, который можно использовать только
однократно, автоматические выключатели предназначены для многоразовой защиты
электрических установок от перегрузок и коротких замыканий.

Параметром
устройств защиты является максимально допустимая мощность, которая в этом
случае задаётся в виде допустимой силы рабочего тока. Величину силы тока, как
правило, указывают на корпусе или контактах предохранителей.

В
случае перегорания плавкой вставки в предохранителе, её следует заменить на
аналогичную с точно такой же величиной допустимого тока.

Заменять
плавкую вставку на вставку с большей силой тока очень опасно, так как это может
привести к перегрузке электрической сети и возгоранию проводов и других
элементов.

Мы
с вами уже выяснили, что источник электроэнергии предоставляет потребителю
энергию с определёнными параметрами. Эти параметры обязательно должны
соответствовать параметрам потребителя, иначе потребитель не будет работать и в
скором времени выйдет из строя.

Это
говорит о том, что рабочее напряжение потребителя должно соответствовать
рабочему напряжению источника, а мощность, потребляемая потребителем, не должна
превышать его допустимой мощности.

Например,
если подключить электроприбор, который рассчитан на напряжение 220 В, в
электрическую сеть с напряжением 127 В, то он не сможет работать из-за
недостатка энергии.

И
наоборот, если в электрическую сеть с напряжением 220 В подключить
электроприбор, который рассчитан на 127 В, то он также не сможет работать. Но
уже по другой причине: электроприбор будет получать от источника слишком
большую энергию, что может привести к его поломке.

В
лучшем случае сработают предохранители, защищающие его от возникшей перегрузки,
однако электроприбор при этом всё равно не сможет работать.

Итоги
урока

На
этом уроке мы с вами обсудили некоторые из параметров источников
электроэнергии. Узнали, что называют электродвижущей силой источника.
Поговорили о таком опасном явлении, как короткое замыкание. Узнали, в
результате чего оно возникает, и какие устройства помогают с ним
бороться. 

Внешняя характеристика источника ЭДС

Внешняя характеристика источника ЭДС – это график, который показывает, как меняется напряжение на нагрузке в зависимости от тока нагрузки. На рис.8 показан график с числовыми значениями, соответствующими примеру 4, рассмотренному ниже.

Рис.8. График внешней характеристики источника ЭДС

Из графика видно, что с ростом тока, потребляемого от источника, напряжение на нагрузке падает. Чтобы понять причину этого явления преобразуем формулу закона Ома для полной цепи:

Рассмотрим последнюю формулу. Видно, что напряжение Uн на нагрузке источника (и на его клеммах) меньше чем величина ЭДС источника на величину потери напряжения внутри источника.

Уменьшение напряжения с ростом тока объясняется тем, что при увеличении тока растет произведение . Это произведение – потеря напряжения на внутреннем сопротивлении источника ЭДС.

Правила построения графиков

1. Размер осей не менее 5 на 6 см.

2. Оси должны быть обозначены соответствующей буквой, должно быть ясно, какая величина отложена вдоль оси. Необходимо указать размерность величин, отображаемых по осям См. рис. 8. В данном случае по вертикальной оси отложено напряжение U, измеряемое в вольтах, а по горизонтальной оси – ток I, измеряемый в амперах.

3. Масштаб следует выбирать так, чтобы график использовал всю площадь, ограниченную осями. Отметки масштаба ставятся через каждый сантиметр (не через клетку). Цифра масштаба выбирается произвольно, но должна быть «круглой», например 20 Вольт в см. Недопустимы отметки масштаба с нецелыми числами.

4. Под графиком должна быть подпись, поясняющая его назначение, в данном случае: “Внешняя характеристика источника ЭДС”.

Любой график, в частности этот, обеспечивает наглядность характера изменения величины и позволяет без вычислений получить массу промежуточных значений исходной величины.

Пример 4. Построение графика внешней характеристики

Построить внешнюю характеристику для источника с параметрами: ,

График внешней характеристики является прямой линией. Её можно построить по двум точкам. Определим координаты этих точек:

1) холостой ход = 0,

Таким образом, координаты этой точки: 3 вольта по вертикальной оси и ноль ампер – по горизонтальной.

2) короткое замыкание ,

Координаты второй точки: ток равен 3А, напряжение равно нулю.

Отметив на осях координат точки, соответствующие полученным значениям и соединим их прямой линией. График, построенный по результатам вычислений, показан на рис.8.

Источник эдс. идеальный и реальный источники

История

Электричество как источник энергии было известно ещё с древних времён, ведь сама природа генерирует его в огромных объёмах. Яркий пример — молния или электрический скат. Несмотря на такую близость к человеку, обуздать эту энергию удалось лишь в середине семнадцатого века: Отто фон Герике, бургомистр из Магдебурга, создал машину, позволяющую генерировать электростатический заряд. В середине восемнадцатого века Питер фон Мушенбрук — учёный из Голландии — создаёт первый в мире электрический конденсатор, названный Лейденской банкой в честь университета, где он работал.

Пожалуй, отсчёт эпохи настоящих открытий, посвящённых электричеству, принято начинать с работ Луиджи Гальвани и Алессандро Вольта, изучивших соответственно электрические токи в мышцах и возникновение тока в так называемых гальванических элементах. Дальнейшие исследования открыли нам глаза на связь электричества и магнетизма, а также на несколько очень полезных явлений (таких как электромагнитная индукция), без которых сегодня невозможно представить нашу жизнь.

Но мы не будем углубляться в магнитные явления и остановимся только на электрических. Итак, разберём, как же возникает электричество в гальванических элементах и что это вообще такое.

Идеальный источник тока (генератор)

Для начала рассмотрим абстрактный вариант: сила тока, созданная в этом устройстве, всегда одинаковая. Опираясь на закон Ома, можно легко сделать заключение, что напряжение находится в зависимости лишь от сопротивления подключенной нагрузки. Внутреннее сопротивление такого элемента питания имеет бесконечную величину, поэтому не воздействует на основной параметр. Вследствие того, что сила тока значение постоянное, то на значение мощности теоретического агрегата влияет только сопротивление подключенной нагрузки. В устройстве, при возникновении короткого замыкания, также сохраняется основное свойство источника.

Такой идеальный элемент можно создать лишь в теории, его применяют при моделировании электромагнитных процессов. На практике такой системы достичь невозможно, поэтому рассмотрим материальную вариацию.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Аккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Батарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Механический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройство

Важно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Применение

Рисунок 2. Генератор тока типа «токовое зеркало», собранный на биполярных транзисторах

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (ИТУН). Применяется в основном для полевых транзисторов и электронных ламп.
  • Источник тока, управляемый током (ИТУТ). Применяется, как правило, для биполярных транзисторов.

В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени (t≪LR<displaystyle tll L/R>) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.

Определение полюсов

Чтобы определить, который полюс источника постоянного напряжения является положительным, а какой — отрицательным, используются специальные «полюсоискатели», действие которых основано на явлении электролиза. Полюсоискатель представляет собой стеклянную ампулу, заполненную раствором поваренной соли с добавкой фенолфталеина. В ампулу снаружи введены электроды. При подключении к электродам источника напряжения начинается электролиз: на отрицательном полюсе идёт выделение водорода и образуется щелочная среда. Из-за наличия щёлочи фенолфталеин меняет свою окраску — краснеет, по красной окраске у электрода и судят о том, что он соединён с отрицательным полюсом источника напряжения.

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Свойства

Идеальный источник тока

Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:

Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R <displaystyle R>подключенной к нему нагрузки:

Мощность, отдаваемая источником тока в нагрузку:

Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.

Реальный источник

В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (т. е. идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E<displaystyle <mathcal >> источника напряжения (или силы тока I <displaystyle I>источника тока) и внутреннего сопротивления r <displaystyle r>(или внутренней проводимости y=1r<displaystyle y=1/r>).

Можно показать, что реальный источник тока с внутренним сопротивлением r <displaystyle r>эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r <displaystyle r>и ЭДС E=I⋅r<displaystyle <mathcal >=Icdot r>.

Напряжение на клеммах реального источника тока равно

Мощность, отдаваемая реальным источником тока в сеть, равна

Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источник ЭДС и его характеристика.

Электродвижущей
силой источника
(ЭДС) называется скалярная величина, численно равная
работе сторонних сил при перемещении единицы положительного заряда; ЭДС
источника числено равна разности потенциалов на концах разомкнутого элемента (без
нарузки
). Электродвижущая сила измеряется в тех же единицах, что и
напряжение. = / = Дж/Кл = В×А×с/А×с
= В (вольт). Тогда разность потенциалов (напряжение)
1 вольта равна 1 джоулю энергии необходимому для перемещения заряда в 1 кулон
из одной точки проводника в другую.

ЭДС
возникает при диффузии ионов в электролитах, при электромагнитной индукции, при
электромагнитной индукции, при освещении светом полупроводниковых элементов и
т.д.

Источник
электродвижущей силы
– это источники электромагнитной энергии,
характеризирующейся электродвижущей силой E и
внутренним электрическим сопротивлением Rвт.

Принципы
работы независимого источника ЭДС рассмотрим на примере простейшей цепи,
состоящей из этого источника ЭДС и резистивного элемента-приемника с переменным
сопротивлением R (сопротивлением проводов
пренебрегаем). На схеме замещения источник ЭДС представляют в виде двух
элементов: идеального источника ЭДС E,
внутреннее сопротивление которого равно нулю, и последовательного соединенного
с ним резистора, сопротивление которого Rвт.

Электродвижущая
сила E численно равна разности потенциалов или
напряжению U12X
между положительным 1 и отрицательным 2 зажимами источника энергии при
отсутствии в нем тока ( I=0 ), т.е. в режиме холостого
хода
(ХХ),

и
действует в источнике от зажима с меньшим потенциалом ( 2 ) к зажиму с большим
потенциалом (1). Направление действия ЭДС указывается в кружочке стрелкой. При
подключении к выводам 1 и 2 нагрузки R в замкнутом контуре
цепи возникает ток I; при этом напряжение на зажимах 1
и 2 уже не будет равно ЭДС E вследствие падения
напряжения на внутреннем сопротивлении Rвт источника ЭДС:

Зависимость напряжения на зажимах источника ЭДС от
тока в нем носит название внешней характеристики источника, т.е. U12 = f (I).
При увеличении тока от нуля до номинального значения I = I1 напряжение на зажимах источника ЭДС убывает
практически по прямолинейному закону. При дальнейшем увеличении тока (при
уменьшении сопротивления R) эта пропорциональность нарушается (кривая 1) при
этом величена ЭДС E
у некоторых источников уменьшается и возрастает значение внутреннего
сопротивления Rвт.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Прибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Материалы по теме:

  • Чем отличается трансформатор от автотрансформатора
  • Разница между контактором и пускателем
  • Как узнать, есть ли напряжение в розетке

Опубликовано:
15.08.2019
Обновлено: 15.08.2019

Внешняя (рабочая) характеристика источника тока

Введение

Для существования тока в цепи необходим источник электрической энергии (источник тока). Всякое устройство, в котором действуют сторонние силы, называют источником тока. В источниках тока электрическая энергия получается за счет других видов энергии. Мощные электро­машинные генераторы преобразуют механическую энергию в электрическую. Энер­гия химических процессов преобразуется в менее мощных источниках – гальванических элементах и аккумуляторах. В термо- и фотоэлементах тепловая и световая энергии не­посредственно превращаются в электрическую и т.д. Источниками тока называют также всякого рода преобразователи тока по напряжению (трансформаторы), по форме (выпрямители), по частоте (частотные преобразователи).

В лабораторной практике наиболее часто встречаются химические источники тока и выпрямители. Химические источники применяются для получения небольших количеств электрической энергии малой мощности. Из известных типов гальванических элементов наибольшее применение находят элементы Даниэля и Лекланше.

В элементе Даниэля цинковый катод находится в растворе сернокислого цинка, ZnSO4 , в пористом сосуде из слабо обожженной глины. Анодом служит медь, находящаяся в растворе сернокислой меди CuSO4 , который одновременно служит и деполяризатором. Пористый сосуд с раствором ZnSO4 опущен в стеклянный сосуд, где находится раствор CuSO4 . Во время работы элемента выделившийся водород диффундирует через стенки пористого сосуда и замещает медь в растворе, которая осаждается на медном аноде. ЭДС элемента Даниэля равна 1.1 В. При замыкании цепи его ЭДС остается достаточно постоянной. Элементы Даниэля применяется только в учебных лабораториях.

Элемент Лекланше, или элемент марганцовой деполяризации состоит из цинкового катода и угольного анода, опущенных в 20% раствор хлористого аммония NH4Cl . Деполяризатором служит перекись мар­ганца MnO2 . Она окружает катод и связывает выделяющийся на этой пластине водород. ЭДС элемента Лекланше равна 1.5 В . С нагрузкой ЭДС элемента падает и восстанавливается при размыкании цепи. Этот источник тока находит широкое практическое применение.

В гальванических элементах – химических источниках одноразового пользования, содержится определенный запас реагирующих веществ, после израсходования которого (разрядки) элементы становятся неработоспособными. Химические источники многоразового пользования (аккумуляторы) после разрядки (но не полной) могут быть возвращены в исходное состояние, т.е. заряжены, пропусканием через них электрического тока от внешнего источника постоянного тока. По мере разрядки аккумулятора его электродвижущая сила уменьшается. Для нормальной эксплуатации недопустима разрядка до напряжения ниже, так называемого, конечного напряжения. Кислотные (свинцовые) аккумуляторы нельзя разряжать ниже конечного напряжения равного 1.85 В (начальное напряжение 2.2 В), а щелочные (или железно-никелевые) – ниже 0.8 В (при начальном – 1.4 В).

Количество электричества, которое химический источник может отдать при разрядке до конечного напряжения, называется емкостью источника и измеряется в ампер-часах. Емкость определяется, в основном, общим количеством активных веществ в источнике. Источники одного типа, имеющие большие размеры, обладают и большей емкостью.

В условиях лаборатории источниками постоянного тока чаще всего служат выпрямители. Простейшие схемы выпрямителей приведены на рис. 1. Переменное напряжение, полученное от сети, повышается или понижается с помощью трансформатора (Тр) или автотрансформатора (Атр) до необходимого, а затем выпрямляется с помощью вентилей D (кремниевых полупроводниковых диодов). На рис. 1а приведена схема простейшего однополупериодного выпрямителя.

На рис. 1б приведена широко используемая мостовая схема двухполупериодного выпрямителя. В этой схеме плечами являются диоды. В одну диагональ включен источник переменного тока, в другую – потребитель постоянного тока. В первый полупериод ток проходит через диоды 1 и 2, во второй – через диоды 3 и 4. Таким образом, через нагрузку ток проходит оба полупериода в одном и том же направлении. При двухполупериодном выпрямлении напряжение на потребите­ле меняется от нуля до амплитудного. Для сглаживания этих пульсаций на выходе выпрямителя устанавливают сглаживающие фильтры, состоящие из конденсаторов и катушек индуктивности.

Величину выпрямленного напряжения (рис. 1б) можно регулировать с помощью автотрансформатора (Атр), подавая на выпрямительный мост различноепеременное напряжение.

Внешняя (рабочая) характеристика источника тока

Основной характеристикой источника тока является его электродвижущая сила (ЭДС). Однако на зажимах (концах) источника тока разность потенциалов равна ЭДС только при разомкнутой цепи. Если к источнику подключить какое-либо внешнее сопротивление RХ , разность потенциалов (напряжение) U на его зажимах станет меньше ЭДС (E) на величину падения напряжения внутри источника:

U = E – I×r , (1а)

где r – внутреннее сопротивление источника, а I – ток, отдаваемый источником во внешнюю цепь. Величина этого тока для данного источника зависит только от сопротивления внешней цепи R и от внутреннего сопротивления источника:

Из формулы (1а) видно, что с увеличением тока величина I·r растет прямо пропорционально силе тока, а напряжение U на зажимах источника будет уменьшаться. Это справедливо для любого источника, причем, если ЭДС и внутреннее сопротивление источника постоянны, то уменьшение напряжения будет происходить по линейному закону. Зависимость напряжения на зажимах источника U от величины тока, отдаваемого источником, называется внешней или рабочей характеристикой. Наклон этой характеристики определяется величиной внутреннего сопротивления.

При внешнем сопротивлении равном нулю (R = 0), напряжение на зажимах источника также равно нулю. Такой режим работы источника называется коротким замыканием. Величина тока короткого замыкания IКЗ зависит от ЭДС и внутреннего сопротивления источника r. При малых внутренних сопротивлениях (r

0.01 Ом) токи короткого замыкания достигают сотен и тысяч ампер. Такие токи могут мгновенно вывести источник из строя. Обычно для каждого источника известен наибольший допустимый ток при длительной работе (номинальный ток). Поэтому прежде, чем использовать источник тока, следует узнать, на какой номинальный ток он рассчитан, и в процессе эксплуатации не превышать его. В аккумуляторах номинальный ток численно равен 0.1 от его емкости, измеренной в ампер-часах. Например, при емкости в 22 А·ч разрядный ток не должен превышать 2.2 А.

Мощность источника

Мощность источника тока измеряется работой, которую этот источник совершает за одну секунду. При силе тока I полная мощность (W0), развиваемая источником, будет равна

W0 = I·E = E 2 /(R + r) = I 2 ·(R + r) ,(2)

Часть этой мощности W1= I 2 ·r , выделяющуюся внутри источника на его внутреннем сопротивлении в виде джоулева тепла, называют потерянной мощностью. Другая часть полной мощности выделяется во внешней цепи и может быть использована для практических целей. Ее называют полезной мошностью. Величина полезной мощности равна:

W = I·U = I 2 ·R . (3)

Поскольку напряжение U зависит от тока, то зависимость полезной мощности от тока получается нелинейной. Подставляя (1) в (3), получим

W = I·(E – I×r) = I·E – I 2 ·r . (4a)

Если же в выражение (3) подставить значение тока из закона Ома для полной цепи (1б), то получим зависимость полезной мощности W от внешнего сопротивления R:

W = E 2 . (4б)

Поскольку E и r – постоянные величины, полезная мощность является функцией только внешнего сопротивления W = f(R).При коротком замыкании (R = 0) и при разомкнутой цепи (R = ) полезная мощность обращается в нуль.

Зависимость полезной мощности от тока представляет собой параболу с ветвями, направленными вниз. W обращается в нуль в двух случаях: при токе I равном нулю и при условии: E – I×r = 0(I = E / r), т.е. при коротком замыкании.

Чтобы определить, при каком токе полезная мощность максимальна (WMAX), необходимо приравнять нулю первую производную полезной мощности по току:

dW/dI = E – 2I×r = 0,

I = E / (2r) . (5)

Следовательно, полезная мощность достигает максимального значения при токе равном половине тока короткого замыкания.

Сравнивая знаменатели формулы (5) и закон Ома для полной цепи, содержащей ЭДС (1б), получим еще одно условие, характерное для максимальной полезной мощности (WMAX): 2r = R + r или R = r. Это условие называется согласованием нагрузки, и часто используют в радиотехнике для получения в устройствах максимальной мощности во внешней цепи. Однако для большинства источников тока такой режим не является желательным (см. рис. 2). На рис. 2 приведены графики зависимости полной, полезной, потерянной мощностей, а также кпд в зависимости от соотношения R / r .

Потери мощности из-за несогласованности нагрузки и внутреннего сопротивления источника характеризуются величиной DW = WMAXW , а относительные потери мощности оп­ределяются выражением:

. (6)

[spoiler title=”источники:”]

http://oooevna.ru/istocniki-eds-i-toka-osnovnye-harakteristiki-i-otlicia/

http://allrefrs.ru/5-6523.html

[/spoiler]

Добавить комментарий