Как найти парциальное давление насыщенного водяного пара

Калькулятор определяет парциальное давления водяного пара в зависимости от температуры.

Определение парциального давления водяного пара.

Примечание.

Расчет выполнен на основании п.8.6. СП 50.13330.2012 «Тепловая защита зданий». Парциальное давление насыщенного водяного пара  по данной формуле определяется в пределах температур от минус 40 °С  до плюс 45 °С.

Для внутреннего воздух помещения парциальное давления рассчитывается с учетом относительной влажности:

Расчет парциального давления насыщенного водяного пара внутреннего воздуха.

Для наружного воздух парциальное давление определяется согласно таблицы 7 СП 131.13330.2018 «Строительная климатология. Актуализированная редакция СНиП 23-01-99*»:

Строительная климатология онлайн. Данные из СП 131.13330.2018 (СП 131.13330.2012).

В комментарии приветствуются пожелания, замечания и рекомендации по улучшению программы.

Поделиться ссылкой:

Давление в любой емкости складывается из суммы всех действующих в ней сил (движения молекул, отталкивания вещества и сопротивления стенок резервуара). Наибольшая сила движения атомов проявляется в газовом состоянии, в нем они активны и несут в себе больше тепловой энергии.

В процессе перемещения в ограниченном объеме такие частицы образуют давление, которое называется парциальным – им обладают все вещества в газовом состоянии, в т.ч. и водяной пар.

Содержание

  • Что это такое, когда применимо это понятие?
  • Как влияет температура воздуха?
  • С какими параметрами и как именно связано?
  • Каково среднее ПД наружного воздуха?
  • Чему равно ПД насыщенного пара?
  • Как определить?
    • Формула и основные правила расчета
    • Несколько примеров
  • Таблица
  • Применение знаний на практике
  • Заключение

Что это такое, когда применимо это понятие?

Парциальное давление — это величина, характеризующая давление одного какого-либо компонента в газовой смеси.

Оно применяется для определения доли этого самого компонента в общем объеме. Наибольшее применение находит для водяного пара, чтобы определять влажности воздушных масс.

Парциальное часто путают с идеальным давлением (идеальный газ), но это не одно и то же. Идеальным называют состояние, при котором молекулы заполняют весь объем и находятся в равновесии, т.е. сумма всех действующих сил равна нулю.

Следовательно, парциальное и идеальное давление совпадает, но только в одной точке с конкретной температурой.

Соотношение фактического и парциального (текущего атмосферного) давления называется относительной влажностью воздуха. Именно она имеет практическую важность во многих отраслях, но для вычисления требуется знать парциальное значение.

Как влияет температура воздуха?

Повышение температуры приводит к росту парциального давления. И наоборот, оно слабеет при остывании воздуха.

foto47387-2

Парциальное давление начинает меняться с нагревом сразу после испарения жидкости — при температуре от 273.15 K или 0 °C при 1 атм. (10 кПа). В вакууме процесс начинается с 214 К (-79 °C).

Также увеличение температуры повышает влажность воздуха. Чем она выше, тем интенсивнее он насыщается водяным паром.

С какими параметрами и как именно связано?

Парциальное давление — термодинамическая (т.е. зависимая от температуры) характеристика. Поэтому она влияет и на другие параметры водяного пара:

  1. Энтальпия. С ростом давления у молекул больше кинетической энергии, которую можно преобразовать в тепло.
  2. Плотность. С ростом температуры молекулы сильнее разбегаются, и снижается средняя плотность вещества.
  3. Точка росы. С падением температуры молекулярная структура сжимается, что приводит к полному насыщению на ограниченном пространстве и образованию конденсата.
  4. Энергообмен. При высоком давлении молекулы сильнее разгоняются и частыми столкновениями передают больше кинетической энергии.
  5. Относительная влажность воздуха. С интенсивностью испарения водоема (насыщения атмосферы) зависит скорость обогащения воздушных масс водяным паром.

Каково среднее ПД наружного воздуха?

Очевидно, что из-за разницы температур каждый сезон состояние атмосферы меняется, поэтому принято выполнять замеры в течение длительного периода, и из них получать среднемесячный показатель.

По информации Строительных норм и правил (далее — СП) 23-101-2004, парциальное среднемесячное давление воздуха в РФ равно 767 Па.

Чему равно ПД насыщенного пара?

Парциальное давление равно такому значению, при котором в газовой смеси не может поместиться водяной пар объемом, больше фактического. Если проще — это фактическое давление водяного пара в однородной среде, которая заполнена молекулами воды и больше не может их вмещать.

На практике значение зависит не только от характеристик самого воздуха, но и внешних факторов:

  1. Плотность молекул. В одном и том же объеме с разной температурой количество молекул отличается.
  2. Наличие водоемов. Естественные резервуары служат источником накопления молекул в определенном пространстве.

Как определить?

Получить значение возможно, когда известна одна из двух характеристик — температура насыщенного пара или относительная влажность воздуха.

Формула и основные правила расчета

В пункте 6.8 строительных правил СП 50.13330.2012 содержатся данные, на основании которых получается формула расчета парциального давления:

foto47387-3

где T0 — температура водяного пара. Формула актуальна для среды с температурой от -40 °C до +45 °C.

Более простой расчет можно провести, когда известна относительная влажность воздуха (ω):

foto47387-4

где Pф — фактическое давление.

Как найти парциальное давление водяного пара:

foto47387-5

Несколько примеров

Взятые пробы воздуха при температуре +14 градусов показали, что его давление составляет 1.1 кПа. Водяной пар в нем насыщен? Достаточно обратиться к формуле расчета по температуре. Получается 1.6—1.7 кПа. Следовательно, он не насыщен.

Еще пример с закрытой емкостью объемом 3 л, в которой содержится 50 мг водяного пара. Он насыщен, если внутри температура +18 градусов?

Сначала нужно найти плотность, вещества по формуле m/V:

  • 50 мг = 0.05 г;
  • 3 л = 0.003 г3.

0.05/0.003 = 16.7 г/м3 = 0.0167 кг/м3.

Плотность насыщенного пара при +18 °C составляет 0.015 кг/м3. Следовательно, в резервуаре он не насыщен, но близок к этому состоянию.

Если фактическое давление и плотность ниже расчетного — присутствуют более легкие атомы (очевидно, для воздуха это азот). Завышенные параметры указывают на наличие тяжелых частиц металлов, которые часто возникают от выбросов и других техногенных процессов.

Влажность воздуха определяется отношением фактического к парциальному значению давления воздуха. Т.к. атомы кислорода и азота всегда легче молекул воды, влажность не может превышать 100%.

Таблица

Свойства насыщенного водяного пара на разной высоте над водоемом отличаются. Это объясняется тем, что на молекулы действует сила сопротивления воды. Поэтому в более низких слоях значение уменьшается.

Ниже таблица показывает парциальное давление (в Паскалях) на различной высоте от водоема:

t, °С|H, м 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 612 616 621 625 630 634 640 644 649 653
1 658 662 668 672 677 682 688 692 697 702
2 706 712 717 722 728 733 738 744 749 754
3 760 765 770 776 781 786 792 797 804 809
4 812 820 826 832 837 844 849 856 861 868
5 873 880 886 892 898 905 910 917 924 931
6 936 942 949 957 962 969 976 982 989 996
7 1002 1010 1017 1024 1030 1038 1045 1052 1060 1066
8 1073 1081 1089 1096 1104 1110 1118 1126 1133 1141
9 1149 1157 1165 1173 1181 1189 1191 1205 1214 1221
10 1229 1237 1245 1254 1262 1270 1280 1288 1287 1305
И 1313 1322 1332 1340 1349 1356 1366 1377 1386 1324
12 1404 1413 1422 1432 1441 1450 1460 1469 1476 1489
13 1498 1509 1518 1528 1538 1548 1558 1569 1578 1589
14 1600 1610 1620 1630 1641 1652 1662 1673 1685 1696
15 1706 1717 1728 1740 1759 1762 1773 1785 1796 1808
16 1818 1830 1842 1854 1866 1878 1890 1902 1914 1926
17 1938 1950 1963 1975 1987 2001 2014 2027 2038 2051
18 2065 2078 2090 2103 2116 2130 2143 2157 2170 2183
19 2198 2211 2226 2239 2253 2267 2282 2295 2311 2325
20 2339 2353 2367 2382 2397 2413 2427 2442 2457 2472
21 2489 2503 2518 2539 2543 2565 2581 2597 2613 2629
22 2645 2661 2671 2692 2710 2726 2743 2759 2777 2793
23 2810 2827 2843 2861 2878 2895 2915 2931 2949 2966
24 2985 3002 3021 3039 3057 3075 3094 3113 3131 3151
25 3169 3187 3206 3227 3245 3263 3284 3302 3322 3342

Применение знаний на практике

Общая влажность воздуха влияет на разреженность и плотность окружающей среды. От ее состояния зависят многие параметры:

  1. foto47387-6Скорость распространения. Среда вносит свои коррективы, влияющие на распространение фотонов (света) и иных частиц, а также звуковых и радиоволн.
  2. Макроклимат. Для многих растительных культур и посевных существует допустимая доля влажности воздуха.
  3. Строительство. Влажность негативно влияет на сыпучие материалы, которые используются для возведения сооружений. Действует акт по строительным нормативам, учитывающим влажность — СП 23-101-2004 и СП 50.13330.2012.
  4. Микробиология. От влажности зависит распространение микроорганизмов, учет которых важен в медицине и санитарии.

Вычисления в разные периоды помогает оценить среднюю влажность воздушных масс, которая применяется для разработки актов и нормативов для строителей, фермеров и т.д. А уже с учетом ее предпринимаются нужные шаги в разных отраслях.

Парциальное давление важно для здоровья в повседневной жизни. Чем сильнее насыщен воздух, тем выше его влияние на артериальное давление человека.

При гипертонии тяжело переносятся резкие перепады атмосферного давления, которое часто меняется в прибрежных регионах.

Людям, страдающим гипертонией, рекомендуются горные районы вдалеке от моря или океана. Во-первых, на больших высотах воздух более разреженный и испытывается меньшая тяжесть. А во-вторых, отсутствуют объекты, способные быстро насытить атмосферу водяным паром.

Заключение

Вычисление парциального давления водяного пара определяет влажность воздуха, которая влияет на разные факторы. Оно важно для многих отраслей и помогает определить, насколько благоприятны условия окружающей среды для проживания или иных целей.

Немного теории. Откуда вообще берутся эти данные (плотность и давление насыщенного пара).

(В принципе, этот раздел можно не читать, считайте, что это мелкими буквами для любопытных).

Данные дают метеорологи. Это результаты замеров, а формулу получают экспоненциальной аппроксимацией (подбором формулы). Периодически, формулу пересматривают. С 2008-го года и по сей день, на планете Земля, она вот такая:

Формула парциального давления насыщенного водяного пара. Общемировой стандарт.
Формула парциального давления насыщенного водяного пара. Общемировой стандарт.

Полученную формулу парциального давления насыщенного пара, публикуют в специальном документе, едином для всей планеты: Guide to Meteorological Instruments and Methods of Observation

В СП 50.13330.2012 Тепловая защита зданий — предложена своя аппроксимация:

 Формула парциального давления насыщенного водяного пара предложенная в СП Телозащита..
Формула парциального давления насыщенного водяного пара предложенная в СП Телозащита..

Мы видим, что в уравнении уже нет атмосферного давления (включено стандартное), формула упрощена.

Таблица давлений и плотностей насыщенного пара воды. Давление и плотность с литерой «сп» - вычислено по формуле СП Теплозащита. Без литеры — точное давление и плотность.
Таблица давлений и плотностей насыщенного пара воды. Давление и плотность с литерой «сп» – вычислено по формуле СП Теплозащита. Без литеры — точное давление и плотность.

Как видим, аппроксимация довольно качественная, погрешности:

– при -30С 4% (в СП завышают давление).

– при +30, погрешность -0,8% (в СП занижают).

Цель своей аппроксимации понятна, не хотят грузить проектировщиков более сложными вычислениями, хотя сегодня, при наличии массы программ…

При этом возникают проблемы, этой формулой нельзя пользоваться в высокогорье (не учтено влияние давления), а нарушать СП — нельзя. И как проектировщики выкручиваются — можно только гадать. Скорее всего никак. Тупо считают по СП.

Зачем эти извраты и вообще, почему в 21-ом веке СП насыщенные расчетами до сих пор выпускают на бумаге, а не в виде сайта с наборами онлайн-расчетов — мне лично не понятно.

Какой смысл, доблесть, крутизна… — в демонстрации проектировщиком владения калькулятором? Тем более, что огромное количество народа в этой области — давно уже не понимает, что и зачем. Складывают «зеленые мячики в красные корзинки». И не дай Бог перепутать, чего в числитель, чего в знаменатель. Чему немало способствуют разработчики совр. СП (ну, вот злой я на НИИ СФ, что делать…).

Как все это работает, откуда пар в воздухе.

Работает просто. Если взять сосуд, заполнить его абсолютно сухим воздухом, потом налить воды на дно и закрыть герметично, произойдут два события:

– уровень воды в сосуде начнет падать, со временем — падение остановится

– давление в сосуде повысится. Для комнатных условий — немного около 2%.

Что произошло? Часть воды из жидкого состояния, перешла в газообразное. В водяной пар. Конкретно, при температуре 20С, в куб воздуха перейдет 18,6 грамм воды, а его давление повысится на 2344 Па (см. таблицу насыщенного пара).

Если мы поднимем температуру в сосуде, то оба явления повторятся. Уровень жидкости еще упадет, а давление в сосуде возрастет сверх вызванного подъемом температуры. Для 30 градусов, давление подрастет на 4254 Па, а в куб воздуха перейдет 33.75 грамм воды.

Почему так? В смысле почему именно 33,75 грамм? Ответ простой — так устроен наш мир. Никто не знает, почему постоянная Планка такая. И почему при +30, куб воздуха не может содержать больше 33.75 грамм воды.

Дума очевидно почему, когда вода перестала испарятся, воздух над этой водой, считают 100% влажности. Это означает, что не изменив температуры, никаким образом ни миллиграмма пара в этот воздух не добавить. Такой пар, называют насыщенным.

При этом, воздух еще прозрачен. Пар это газ. «Пар» изо рта, туман — это не газ, не пар, это аэрозоль, мельчайшие капельки жидкой воды.

А что произойдет, если остудить воздух с влажностью 100%. Скажем с +20С, до +19С? А очень просто, при +20С в кубе может содержаться не более 18.6 грамм пара, а при -19С, всего 17.47. Т.е. в воду вернется 18,6-17,47=1.13 грамм пара и мы увидим повышение уровня воды в сосуде на эту величину. Либо 1.13 грамма конденсата на стенках сосуда.

Каким образом, в комнате можно достичь 100% влажности? Тоже просто, закрыть комнату герметично, налить на пол лужу и подливать, пока не перестанет сохнуть. Как перестало — имеем 100% влажности. И если такую комнату остудить хотя бы на десятую градуса — выпадет конденсат. На поверхности того, чем остужали.

А если у меня на полу нет лужи и комната не герметична (форточка открыта) — откуда в ней вообще возьмется пар?

Источник пара — сами люди и их деятельность.

В медицине, это называют скрытыми, или невидимыми потерями (воды), т.е. не через ЖКТ, не через почки.

Альвеолярный путь. Около 400-500 грамм воды в сутки мы теряем с дыханием, на каждый куб выдыхаемого воздуха, теряется около 9 грамм воды.

Кстати, интересный момент: посмотрите в таблицу, 9 грамм пара в кубе становится насыщенным при температуре около 8 градусов, при этом, часть пара, переходит в жидкость, в капельки тумана. И люди говорят — «пар изо рта», т.е. на улице около +8С.

Трансэпидермальный (через кожу) путь. Не путать с потовыделением. У людей с ангидрозом (отсутствием потовых желез) — эти потери точно такие же. При обширных раневых, ожоговых повреждениях кожи, потери могут достигать 5 литров в сутки. В норме те же 400-500 грамм пара в сутки. При этом, у детей близко к взрослым (тонкая кожа).

Человек в сутки, продуцирует до килограмма пара. Так устроен.

К этому, полили цветочки (практически вся вода перейдет в пар), помыли посуду, чайник, кастрюльки, белье сушится…

В среднем, до 1,5 — 2 кг пара в сутки, человек и его деятельность.

Ладно, пар в воздухе есть. А с чего ему идти в стену, если есть форточка, откуда проблема влагонакопления ограждений?

А он и идет «в форточку» (вентиляцию). Но не успевает.

Давайте прикинем. Человек произвел в сутки 1800 грамм пара. Вентиляция 30 м3/ч на человека, в сутки 720 м3. Пусть на улице -5С с влажностью 70%, куб уличного воздуха (смотрим в таблицу) содержит 3,36*0,7=2,4 грамма. 720 кубов уличного воздуха, принесут с собой 1693 грамма пара.

Т.е. суммарный приток пара 1.800+1.693= 3.5 кг. Этот пар распределится на 750 м3, доведя содержание пара в кубе до 4,9 грамм, при +20С, это влажность 26%

И тут — важный вывод.

К пару уличного воздуха, в помещении, ВСЕГДА добавляется пар продуцируемый людьми. Количество пара внутри помещений — всегда больше.

Далее, почему пар «попрет» в стенку. или о парциальных давлениях. Но вначале, про:

Диффузия газов.

Вот, если честно, не хотел писать этот раздел. Но не хочется оставлять лазеек авторам доморощенной и самопальной физики (пар легче, он соберется под потолком, внизу влажности не будет, пароизоляция полов не нужна).

Этот раздел тоже будем считать написанным «мелкими буквами» (как и все главное в банковских договорах), т.е. «можно пропустить».

На самом деле, действие малых парциальных — загадка. Такая же, как почему постоянная Планка именно такая. Или почему на планете Земля, при +20 в куб воздуха нельзя впихнуть больше 18,6 грамм пара. Ответ один — вот так устроен наш мир, мы всего лишь наблюдаем, замеряем и пытаемся найти закономерности.

Загадка в распределении одного газа в среде другого. Средние скорости молекул при нормальных условиях — сотни метров в секунду, но их настолько много, что средний путь между соударениями — сотые микрона. В результате, скорость диффузии газов — сантиметры в минуту.

Это хорошо подтверждается прямым наблюдением, например по диффузии углекислоты в воздухе. Про наблюдаем — в прямом смысле. Глазами. В сосуд наливают (газообразную углекислоту, можно именно налить) углекислоту, далее смотрят, как она диффундирует (смешивается) с воздухом.

Для этого используют мыльные пузыри, наполненные воздухом и углекислотой. Одни опускаются до границы углекислоты, другие уходят ниже. Физики они такие, хлебом не корми дай поиграться, «лишь бы не работать» 🙂

При этом, простейший эксперимент со стыренными у жены (в строго научных целях) и разлитыми духами — четко показывает, что ни о каким сантиметрах в минуту речь не идет. Метры в секунду. Молекулы летят пулями, так, как будто они в комнате одни, как будто за каждой молекулой этих духОв сидит Шумахер и лихо огибает все молекулы воздуха.

Как они это делают, как можно лететь по встречке в час пик, как по пустому шоссе — никто не знает, но каждый газ ведет себя так, как будто кроме него в смеси никого нет.

Собственно и современная теория газовой диффузии — исходит из этого. Давно уже сформулирован закон Фика, замерены коэффициенты диффузии (для водяного пара в НУ 0,25 м2/с, тут, как именно это делают), давно известны количественные характеристики потока распространения пара в воздухе. Скажем после выдоха человека — получим поток до 0,03 гр/м2*с, при том, что человек в секунду не может продуцировать более 0.01 грамма пара в секунду. Вот если бы в одну точку ухитрились бы дышать семеро людей, то сферу с площадью в квадратный метр — можно надышать до насыщения.

Ну, а то, что именно так устроен наш мир — в целом радует. Не приходится отползать во сне через каждые десяток вдохов из зоны, где полностью «выдышали» кислород, заменив его на углекислоту. Диффузия спасает.

Парциальное давление

Воздух — смесь газов. Их суммарное давление близко к 100 кПа (одна атмосфера). При этом, каждый из газов, вносит в это давление свою долю, свое парциальное давление, не исключение и водяной пар.

График давлений насыщенного пара
График давлений насыщенного пара

Вот так выглядит график столь печально знаменитой (невежественными толкованиями) точки росы. Выше графика — условия для перехода пара в воду. Ниже — останется газом.

«Точка росы», это точка этого графика. Одновременно, это может быть некой пространственной точкой, зоной. Скажем, если некое место в стене имеет температуру -10С и в этом месте присутствует пар с парциальным давлением 300 Па — в этом месте будет конденсат.

В принципе, можно сказать и «в этом месте будет точка росы», т.е. сочетание температуры и парциального давления пара, выше, чем на графике.

Статья выходит слишком большой, поэтому про процессы в ограждениях, про пироги стен, их расчеты и оптимальную влажность в помещении — будет во второй части.

ФинЪ

Гуру

(4903)


15 лет назад

Если не ошибаюсь надо умножить влажность на давление пара при данной температуре. Если влажность кг/кг там посложнее.

P.S. Относительная влажность вохдуха равна:
φ=рп/Рнас (рп – парциальное давление, Рнас – давление насыщенного водяного пара при данной температуре) .
Паросодержание в кг водяного пара на кг сухого воздуха (кг/кг) :
х=(Мп/Мг) *рп/(П-рп) (Мп и Мг – молекулярные массы пара и воздуха, П – общее давление парогазовой смеси).

Владимир Смольский

Мудрец

(10145)


15 лет назад

По определению –
АБСОЛЮТНАЯ ВЛАЖНОСТЬ – парциальное даление паров воды
ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ = (парциальное давление пара) / (давление насыщенного пара) * 100%
В задаче, по-видимому, приведена относительная влажность в %.
Надо посмотреть в таблице давление насыщенных паров при заданной тем-ре, и умножить на эти проценты.

Аяктолды

Гуру

(4184)


15 лет назад

Исходим из формулы вычисления абсолютной влажности газа.
Абсолютная влажность газа А (г/м3) связана с его относительной влажностью Ψ (%) следующей зависимостью:
A = 6,2198Ψ· ps /(10000(Т+273,16)),
где
ps – парциальное давление насыщенного водяного пара при температуре Т (Па) ;
Т – температура газа (ºС) .
Отсюда:
ps = A*(10000(Т+273,16))/ 6,2198Ψ
Т. е. иначе говоря, чтобы решить задачу, кроме температуры газа нужно знать как абсолютную, так и относительную его влажность. Желаю Вам удачи!

что и вся смесь. Пар находится под своим парциальным давлением, которое определяют по уравнению Клайперона:

ei

Mi

RT

,

(2.33)

V

i

где Mi – масса i-го газа, в данном случае водяного пара, кг;

R – универсальная газовая постоянная, равная 8 314,41 Дж/(кмоль.К); Т – температура смеси в абсолютной шкале, К;

V – объем, занимаемый смесью газов, м3;

μi – молекулярный вес газа, кг/моль. Для водяного пара μп= 18,01528 кг/кмоль.

По закону Дальтона сумма парциальных давлений газовых компонентов смеси равна полному давлению смеси. Влажный воздух принято рассматривать как бинарную смесь, состоящую из водяного пара и сухой части атмосферного воздуха, эффективный молекулярный вес которого равен μв ≈ 29

кг/моль. Барометрическое давление влажного воздуха Рб, Па, складывается из парциального давления сухого воздуха ев, Па, и парциального давления пара еп, Па:

Парциальное давление водяных паров называют также упругостью водяного пара.

Для характеристики меры увлажнения воздуха пользуются понятием

относительной влажности воздуха φв, которая показывает степень насыщенности воздуха водяным паром в % или долях единицы полного насыщения при одинаковых температуре и давлении.

При относительной влажности 100% воздух полностью насыщен водяным паром и называется насыщенным. Парциальное давление насыщенного водяного пара называют также давлением насыщения воздуха водяным паром или максимальной упругостью водяных паров и обозначают Е. Величина относительной влажности φв равна отношению парциального давления водяного пара еп во влажном воздухе при определенных атмосферном давлении и температуре к давлению насыщения Е при тех же условиях:

en

,

(2.35)

E

или φ, %

en

100 .

(2.36)

E

Парциальное давление насыщенного водяного пара – максимаьная упругость водяных паров – при заданном барометрическом давлении является функцией только температуры t:

Его значения определяют экспериментальным путем и приводят в специальных таблицах [2]. Кроме того, имеется ряд формул, аппроксимирующих зависимость Е от температуры. Например, формулы, приводимые в [7]:

– над поверхностью льда при температуре от -60 оС до 0 оС

E exp

18,74t 115,72

,

(2.38)

233,77 0,881t

– над поверхностью чистой воды при температуре от 0 оС до 83 оС

23

E exp

16,57t 115,72

,

(2.39)

233,77 0,997t

Нормальным для пребывания человека гигиенистами считается диапазон относительной влажности от 30% до 60%. При относительной влажности воздуха выше 60% испарение влаги с кожи человека затруднено и его самочувствие ухудшается. При более низкой относительной влажности воздуха, чем 30% испарение с поверхности кожи и слизистых оболочек человека усиливается, что вызывает сухость кожи, першение в горле, способствующие простудным заболеваниям.

При повышении температуры воздуха заданной абсолютной влажности его относительная влажность понижается, так как в соответствии с формулой (2.36) величина парциального давления водяного пара останется без изменения, а давление насыщения возрастет из-за увеличения температуры. Наоборот, при охлаждении воздуха относительная влажность возрастет вследствие снижения величины давления насыщения Е. По мере остывания воздуха при некоторой его температуре, когда еп станет равно Е, относительная влажность воздуха станет равной 100%, то есть воздух достигнет полного насыщения водяным паром. Температура tр, оС, при которой воздух с определенной абсолютной влажностью находится в состоянии полного насыщения, называется точкой росы. Если воздух будет охлаждаться ниже точки росы, то, часть влаги начнет конденсироваться из воздуха. Воздух при этом будет оставаться насыщенным водяным паром, а давление насыщения воздуха Е соответственно достигнутой температуре будет снижаться. Причем температура воздуха в каждый момент времени будет точкой росы для сформировавшейся абсолютной влажности воздуха.

При соприкосновении влажного воздуха с внутренней поверхностью наружного ограждения, имеющей температуру τв ниже точки росы воздуха tр, на этой поверхности будет конденсироваться водяной пар. Таким образом, условиями отсутствия выпадения конденсата на внутренней поверхности ограждения и в его толще является поддержание температуры выше точки росы, а это означает, что парциальное давление водяных паров в каждой точке сечения ограждения должно быть меньше давления насыщения.

2.2.5. Влажность материала

В капиллярно-пористых материалах в естественной воздушной среде всегда находится некоторое количество химически несвязанной влаги. Если образец материала, находящегося в естественных условиях, подвергнуть сушке, то его масса уменьшится. Весовая влажность материала ωв, %, определяется

отношением массы влаги, содержащейся в образце, к массе образца в сухом состоянии:

в M2

где М1 – масса влажного образца, кг, М2 – масса сухого образца, кг.

Объемная влажность ωо, %, определяется отношением объема влаги, содержащейся в образце, к объему образца:

о V1 100 , (2.41)

V2

где V1 – объем влаги в образце, м3,

24

V2 – объем самого образца, м3.

Между весовой ωв и объемной влажностью ωо материала существует соотношение:

о

в

100 ,

(2.42)

1000

где ρ – плотность материала в сухом состоянии, кг/м3. В расчетах чаще используется весовая влажность.

2.2.6. Сорбция и десорбция

При длительном нахождении образца материала во влажном воздухе с постоянными температурой и относительной влажностью, масса влаги, содержащейся в образце станет неизменной – равновесной. При повышении относительной влажности воздуха масса влаги в материале увеличивается, а при увеличении температуры – уменьшается. Это равновесное влагосодержание материала, соответствующее тепловлажностному состоянию воздушной среды, в зависимости от химического состава, пористости и некоторых других свойств материала может быть больше или меньше. Процесс увлажнения сухого материала, помещенного в среду влажного воздуха, называется сорбцией, а процесс уменьшения влагосодержания избыточно влажного материала в среде влажного воздуха – десорбцией.

Закономерность изменения равновесного влагосодержания материала в воздушной среде с постоянной температурой и возрастающей относительной влажностью выражается изотермой сорбции.

Для подавляющего числа строительных материалов изотермы сорбции и десорбции не совпадают. Разность весовых влажностей строительного материала при одной и той же относительной влажности воздуха φ называется сорбционным гистерезисом. На рис. 8 представлены изотермы сорбции и десорбции водяного пара для пеносиликата. по [2]. Из рис.8 видно, что, например, для φ = 40% при сорбции пеносиликат имеет весовую влажность ωв=1,75%, а при

десорбции ωв=4%, следовательно, сорбционный гистерезис равен 4-1,75=3,25%.

Рис. 8. Весовая влажность пеносиликата при сорбции (1) и десорбции (2)

Значения сорбционных влажностей строительных материалов приведены в различных литературных источниках, например, в [8].

2.2.7. Паропроницаемость ограждений

Исключение конденсации водяных паров на внутренней поверхности ограждения не

может гарантировать отсутствия конденсации влаги в толще ограждения.

Влага в строительном материале может находиться в трех различных фазах: твердой, жидкой и парообразной. Каждая фаза распространяется по своему закону. В климатических условиях России наиболее актуальна задача движения водяного пара в зимний период. Из экспериментальных исследований известно, что потенциалом переноса пара – его движущей силой – служит парциальное давление водяных паров в воздухе е. Внутри строительных материалов ограждения влажный воздух находится в порах материала. Пар перемещается от большего парциального давления к меньшему.

25

В холодный период года в помещении температура воздуха значительно выше, чем на улице. Более высокой температуре соответствует более высокое давление насыщения водяным паром Е. Не смотря на то, что относительная влажность внутреннего воздуха меньше относительной влажности наружного, парциальное давление водяных паров во внутреннем воздухе ев значительно превышает парциальное давление водяных паров в наружном воздухе ен. Поэтому поток пара направлен из помещения наружу. Процесс проникновения пара через ограждение относится к процессам диффузии. Иначе говоря, водяной пар диффундирует сквозь ограждение. Диффузия есть чисто молекулярное явление, представляющее собой замену молекул одного газа молекулами другого, в данном случае замену молекул сухого воздуха в порах строительных материалов молекулами водяного пара. А процесс диффузии водяного пара через ограждения носит название паропроницания.

Во избежание путаницы в терминологии сразу оговорим, что паропроницаемость – это свойство материалов и конструкции, выполненной из них, пропускать сквозь себя водяной пар, а паропроницание – это процесс проникания пара через материал или ограждение.

Из физики известно, что имеется полная аналогия между процессами паропроницания и теплопроводности. Более того, соблюдается аналогоя в процессах теплоотдачи и влагоотдачи на поверхностях ограждения. Поэтому можно рассматривать аналогию между сложными процессами теплопередачи и влагопередачи через ограждение. В табл. 3представлены прямые аналоги в этих процессах.

Таблица 3

Аналогия между процессами теплопередачи и влагопередачи

при диффузии пара

Тепловое поле

Влажностное поле

Температура

Парциальное давление водяных

– внутреннего ворздуха tв, оС;

паров

– внутренней поверхности τв, оС ;

– во внутреннем ворздухе ев, Па;

– на стыках слоев ti, оС ;

– на внутренней поверхности евп,

– наружной поверхности τн, оС ;

Па;

– наружного воздуха tн, оС .

– на стыках слоев еi, Па;

– наружной поверхности енп, Па;

– в наружном воздухе ен, Па.

Теплопроводность материала

Паропроницаемость материала

λ, Вт/(мС)

μ, мг/(ч.м.Па)

Термическое сопротивление слоя

Сопротивление

толщиной δ, м,

паропроницанию слоя толщиной δ, м,

RТ=δ/ λ, м2.оС/Вт

Rп=δ/ μ, м2.ч.Па /мг

(2.43)

Коэффициены теплоотдачи

Коэффициены влагоотдачи

– на внутренней поверхности αв,

– на внутренней поверхности βв,

Вт/(м2.оС);

мг/(ч.м2.Па);

– на наружной поверхности αн,

– на наружной поверхности βн,

Вт/(м2.оС).

мг/(ч.м2.Па).

Сопротивление теплоотдаче на

Сопротивление влагоотдаче на

поверхностях ограждения

поверхностях ограждения

– на внутренней Rв=1/αв, м2.оС/Вт;

– на внутренней Rп.в=1/βв, м2.ч.Па/мг;

– на наружной Rн=1/αн, м2.оС/Вт;

(2.44)

– на наружной Rп.н=1/βн, м2.ч.Па/мг. (2.45)

26

Общее сопротивление

Общее сопротивление

теплопередаче ограждения

паропроницанию ограждения

Ro=Rв+Σδ/ λ+Rн, м2.оС/Вт

Rо.п=Rп.в+Σδ/ λ+Rп.н, м2.ч.Па/мг

(2.46)

Плотность теплового потока через

Плотность диффузионного

ограждение

потока влаги через ограждение

q=(tв-tн)/Ro, Вт/м2

g=(eвн)/Rо.п, мг/(ч.м2)

(2.47)

Паропроницаемость μ зависит от физических свойств материала и отражает его способность пропускать диффундирующий через себя водяной пар. Паропроницаемость материала μ количественно равна диффузионному потоку водяного пара, мг/ч, проходящего через м2 площади, перпендикулярной потоку, при градиенте парциального давления водяного пара вдоль потока, равному 1 Па/м.

Расчетные значения μ приведены в справочных таблицах [4]. Причем для изотропных материалов μ не зависит от направления потока влаги, а для анизотропных (древесины, других материалов, имеющих волокнистую структуру или прессованных) значения μ приводятся в зависимости от соотношения направлений потока пара и волокон.

Паропроницаемость для теплоизоляционных материалов, как правило, рыхлых и с открытыми порами имеет большие значения, например, для минераловатных плит на синтетическом связующем при плотности ρ=50 кг/м3 коэффициент паропроницаемости равен μ=0,60 мг/(ч.м.Па). Материалам большей плотности соответствует меньшее значение коэффициента паропроницаемости, например, тяжелый бетон на плотных заполнителях имеет μ=0,03 мг/(ч.м.Па). Вместе с тем бывают исключения. Экструдированный пенополистирол, утеплитель с закрытыми порами, при плотности ρ=25 – 45 кг/м3 имеет μ=0,003 – 0,018 мг/(ч.м.Па) и практически не пропускает через себя пар.

Материалы с минимальной паропроницаемостью используются в качестве пароизоляционных слоев. Для листовых материалов и тонких слоев пароизоляции ввиду очень малого значения μ в справочных таблицах [4] приводятся сопротивления паропроницанию и толщины этих слоев.

Паропроницаемость воздуха равна μ=0,0062 м2.ч.Па /мг при отсутствии конвекции и μ=0,01 м2.ч.Па/мг при конвекции [2]. Поэтому в расчетах сопротивления паропроницанию следует иметь в виду, что пароизоляционные слои ограждения, не обеспечивающие сплошности (имеющие щели) (пароизоляционная пленка, нарушенная внутренними связями ограждения, листовые пароизоляционные слои, проложенные даже внахлест, но без промазки швов пароизоляционной мастикой), будут иметь бόльшую паропроницаемость, чем без учета этого обстоятельства.

По своему физическому смыслу сопротивление паропроницанию слоя

ограждения – это разность упругостей водяного пара, которую нужно создать на поверхностях слоя, чтобы через 1 м2 его площади диффундировал поток пара, равный 1 мг/ч.

Общее сопротивление паропроницанию ограждающей конструкции

(при диффузии пара) складывается из сопротивлений паропроницанию всех его слоев и сопротивлений влагообмену на его поверхностях, как это следует из выражения (2.41).

Коэффициент влагоотдачи, как правило, в инженерных расчетах общего сопротивления паропроницанию не применяется, в расчетах используют

непосредственно сопротивления влагоотдаче на поверхностях, принимая их значения равными Rп.в= 0,0267 м2.ч.Па/мг, Rп.н,= 0,0052 м2.ч.Па/мг.

27

Упругость водяного пара, диффундирующего через ограждение, по мере прохождения через его толщу будет изменяться между значениями ев и ен. Для нахождения парциального давления водяного пара ех в любом сечении ограждения (рис. 9) пользуются формулой, аналогичной формуле (2.30) для определения распределения температуры по сечению ограждения:

ex eв

Rп.в х

х

eв eн eн

Rп.н х

х

eв eн ,

(2.48)

Rо.п

Rо.п

где Rп.в-х, Rп.н-х – сопротивления паропроницанию, от точки х до соотвенственно внутреннего и наружного воздуха, м2.ч.Па/мг.

Рис. 9. Распреднление парциального давления и давления насыщения водяных паров по сечению ограждения.

Вопросы для самоконтроля

1.Причины выпадения влаги на поверхности или в толще ограждения. 2.Отрицательные последствия выпадения влаги на поверхности или в толще

ограждения.

3.Чем отличаются гидрофильные строительные материалы от гидрофобных?

4.Какова структура большинства строительных материалов?

5.Какие три формы видов связи влаги со строительным материалом по природе энергии связывания и величине энергетическиого уровня Вы знаете?

6.Что такое влажный воздух?

7.Что такое парциальное давление водяных паров во влажном воздухе?

8.Из чего складывается барометрическое давление влажного воздуха?

9.Что такое относительная влажность воздуха?

10.Какой воздух называется насыщенным водяным паром?

11.Какая температура носит название точки росы?

12.Каковы условия отсутствия конденсата в какой-либо точке сечения ограждающей конструкции?

13.Как определяется весовая влажность материала?

14. Как определяется объемная влажность материала?

15. Что такое равновесная влажность материала?

16. Что такое сорбция и десорбция?*

17. В чем проявляется сорбционный гистерезис?

18. Что является потенциалом переноса водяного пара в ограждающих конструкциях?

19. В чем состоит диффузия пара сквозь ограждение? 20. Что такое паропроницание?

21. Что такое паропроницаемость?

22. Чему количественно равна паропроницаемость материала μ?

23. Что такое пароизоляция?

24. Физический смысл сопротивления паропроницанию слоя?

25. Что такое общее сопротивление паропроницанию ограждающей конструкции?

28

26.Напишите формулу общего сопротивления паропроницанию ограждения. 27.Как определить парциальное давление водяных паров в воздухе при известных

его температуре tв и относительной влажности φв? 28.Чем определяется давление насыщенных водяных паров?

29.Начертите качественную картинку распределения парциального давления водяных паров в двухслойной стенке при известных давлениях в окружающих

средах eв и eн, если μ1> μ 2 .

30.Начертите качественную картинку распределения парциального давления водяных паров в двухслойной стенке при известных давлениях в окружающих

средах eв и eн, если μ1< μ 2 .

31.Напишите формулу для определения парциального давления водяных паров на внутренней поверхности двухслойной стенки eвн. пов при известных давлениях в средах eв и eн, толщинах слоев δ1 и δ2, паропроницаниемостях μ1

и μ 2.

32.Напишите формулу для определения парциального давления водяных паров на наружной поверхности двухслойной стенки eн. пов при известных давлениях в средах eв и eн, толщинах слоев δ1 и δ2, паропроницаниемостях μ1 и μ2.

33.Напишите формулу для определения парциального давления водяных паров между слоями двухслойной стенки e при известных давлениях в средах eв и eн, толщинах слоев δ1 и δ2, паропроницаниемостях μ1 и μ2.

34.Напишите формулу для определения парциального давления водяных паров ex в любом сечении многослойной стенки при известных давлениях в средах eв и eн, толщинах слоев δi, паропроницаниемостях μi.

3.Защитные свойства наружных ограждений

3.1.Расчетные параметры наружной среды для теплотехнических

расчетов

3.1.1. Холодный период года и отопительный период

Уровень теплозащиты ограждающих конструкций в различных местностях должен быть различным. Наружная среда на различных территориях воздействует на ограждающие конструкции по-разному. Параметры наружной среды постоянно меняются. Совокупность непрерывно меняющихся значений метеорологических элементов и атмосферных явлений, наблюдаемых в данный момент времени в определенном месте, называется погодой. Понятие «погода» относится к текущему состоянию атмосферы. Статистический многолетний режим погоды на определенной территории называется климатом. Зная, в каком климате находится местность, можно с уверенностью сказать, какой погоды в этой местности принципиально быть не может. Для выбора информации о наружной среде опираются на климатические данные.

Проектные показатели теплозащиты здания должны отвечать нормируемым уровням наружных климатических параметров в холодный период года, которым в соответствии с [9] считается отрезок времени со среднесуточной температурой наружного воздуха, равной 8оС и ниже. По [1] для основной массы зданий понятие отопительного периода совпадает с понятием холодного периода года и только для лечебно-профилактических, детских учреждений и домов-интернатов для престарелых считается периодом со средней суточной температурой наружного воздуха не менее 10 оС.

Параметрами наружного климата, учитываемыми в теплотехнических расчетах, являются: температура наружного воздуха, скорость ветра, зона влажности района строительства. Одни значения параметров климата

29

описывают наиболее холодный расчетный период и называются расчетными, определяющими обычно установленные мощности оборудования. Другие – средние уровни в пределах какого-либо периода, как правило, используются в расчетах эксплуатационных характеристик за весь этот период. При выборе теплозащиты периодом эксплуатации считается отопительный период, эксплуатационной характеристикой, интересующей специалистов за этот период, являются, например, энергозатраты на возмещение теплопотерь через наружные ограждения за отопительный период. Значения климатических параметров холодного периода года принимаются по табл. 1* СНиП “Строительная климатология” [9], где в алфавитном порядке расположены областные и краевые центры, все остальные пункты даны внутри области или края.

3.1.2. Расчетная температура наружного воздуха

Самые холодные погодные условия в пределах отопительного периода года описываются расчетными значениями климатических параметров. Они не являются абсолютными экстремумами для района строительства. Дело в том, что экстремальные, наиболее суровые условия, бывают очень редко – раз в сотни лет. Ориентация на эти значения приводит к значительному удорожанию строительства. Поэтому расчетные уровни принимаются с некоторой обеспеченностью, под которой понимается суммарная вероятность того, что данный параметр не превзойдет (в холодный период года по суровости) расчетного значения.

Наиболее значимым параметром холодного периода года для выбора теплозащитных качеств наружных ограждений считается температура. Так как ограждения и помещения обладают тепловой инерцией, иначе говоря, требуют времени для охлаждения или нагрева до изменившейся температуры окружающего воздуха, принято в качестве расчетной tн принимать среднюю температуру наиболее холодной пятидневки – среднюю температуру пяти последовательных суток с самой низкой средней температурой за год.

До 1994 года расчетная температура наружного воздуха для проектирования ограждения увязывалась с его тепловой инерцией. Для «легких» ограждений, быстро остывающих при понижении температуры наружного воздуха, за расчетную температуру принималась средняя температура наиболее холодных суток, а для «массивных» – средняя температура наиболее холодной пятидневки. Пятидневка, как расчетный период усреднения температуры наружного воздуха, в 1946 году была предложена К.Ф.Фокиным [10]. К.Ф.Фокин, во-первых, сделал анализ многолетних данных об изменении температуры наружного воздуха в период похолодания и дал предложения по «нормализации» расчетных кривых изменения температуры наружного воздухи. Во-вторых, он экспериментально установил, что стена из полнотелого кирпича толщиной 64 см, какие в то время были наиболее распространены, имеет теплопотери за 5 суток при переменной температуре наружного воздуха такие же, как если бы температура наружного воздуха держалась постоянной и равной средней за эти 5 суток.

После 1994 года, когда теплозащита зданий была значительно усилена, посчитали, что все ограждения можно отнести к числу «массивных» и расчетной температурой для теплотехнического расчета ограждающих конструкций была принята средняя температура наиболее холодной пятидневки.

Но за расчетную температуру наружного воздуха tн принимается не самая низкая средняя температура наиболее холодной пятидневки, а с

обеспеченностью 0,92.

Для получения этого значения выбиралась наиболее холодная пятидневка в каждый год рассматриваемого отрезка n лет (в [11] период с 1925 по 1980 годы).

30

Выделенные значения температуры наиболее холодной пятидневки t5 ранжировались в порядке убывания. Каждому значению присваивался номер m. Обеспеченность каждого m-го члена ряда из n компонентов Коб в общем случае вычисляется по формуле:

3.1.3. Средние температура и продолжительность отопительного периода

Для характеристики отопительного периода служат средняя температура tо.п., оС, и продолжительность zо.п., сут., этого периода. Причем они относятся к отрезку времени с устойчивыми значениями граничной температуры отопительного периода. Отдельные дни со средней суточной температурой, равной или ниже соответственно 8оС или 10оС, не учитываются. Эти данные приведены в СНиП 23-01-99* «Строительная климатология» [9].

Средняя температура tо.п. и продолжительность zо.п. отопительного периода рассчитаны по следующей методике. Сначала строилась гистограмма годового хода температуры воздуха: наносился прямоугольник, у которого основание равно числу дней месяца, а высота – средней температуре воздуха за данный месяц (рис 10). Кривая годового хода проводилась так, чтобы участок, отсекаемый от прямоугольника, был равен по площади участку, который эта кривая прибавляет к нему с другой стороны. Затем, с графика снимались даты устойчивого перехода средних суточных температур воздуха через соответственно 8оС или 10оС. По разнице между этими датами определяется продолжительность отопительного периода.

3.1.4. Расчетный и среднесезонный ветер

За расчетную скорость ветра v принимается максимальная из средних скоростей ветра в январе по румбам (направлениям) ветра. Но учитывается только ветер, повторяемость румба которого составляет 16% и более. В случае, когда средняя скорость ветра по румбу повторяемостью 12-15% превышает на 1 м/с и более наибольшую из

Рис. 10. Расчет продолжительности и средней температуры ворздуха периода со среднесуточной температурой воздуха +8 оС: цифра в кружке – средняя температура воздуха за неполный месяц; 30.IX, 23.IV – даты начала и конца периода со среднесуточной температурой воздуха, равной и ниже +8 оС (отопительный период)

31

средних скоростей ветра по румбу повторяемостью 16%, максимальная скорость ветра принимается по румбу повторяемостью 12-15%.

Ветровой режим отопительного периода характеризуется средней скоростью vо.п., м/с, за этот период.

3.1.5. Влажностные условия района строительства

Для описания влажностных условий района строительства СНиП «Тепловая защита зданий» [1] выделяет три климатических зоны влажности: 1 – влажная, 2 – нормальная, 3 – сухая, которые обозначены на географической карте России. Она составлена В.М.Ильинским [12] на основе значений комплексного показателя, который рассчитан по соотношению среднего за месяц для безморозного периода количества осадков на горизонтальную поверхность, относительной влажности воздуха в 15 ч самого теплого месяца, среднегодовой суммарной солнечной радиации на горизонтальную поверхность, годового размаха среднемесячных значений (января и июля) температуры воздуха.

3.2.Расчетные значения параметров внутреннего микроклимата

ВГОСТ 30494-96 [13] приведены расчетные значения параметров внутреннего микроклимата жилых и общественных зданий в оптимальных для пребывания человека и в допустимых диапазонах. Причем для жилых зданий и зданий детских дошкольных учреждений эти данные выделены в самостоятельные таблицы. Помещения общественных зданий разделены на 6 категорий. При определении теплозащиты общественных зданий следует определить категорию основных функциональных помещений здания. Например,

вадминистративном здании основными являются кабинеты и рабочие комнаты, в школе – классы. Иногда одно здание делится на отдельные функциональные зоны, для которых принимаются свои расчетные параметры.

Втеплотехнических расчетах сопротивления теплопередаче ограждений жилых и общественных зданий за расчетную температуру внутреннего

воздуха tв принимается [1] минимальное значение оптимальной температуры.

Расчетную относительную влажность внутреннего воздуха в

теплотехнических расчетах принимают для исключения выпадения конденсата в местах теплопроводных включений ограждающих конструкций, в углах и оконных откосах, откосах зенитных фонарей. Эта относительная влажность несколько завышена по отношению к поддерживаемой для комфортного пребывания людей, так как выбирается максимально возможной в расчетном помещении. Для теплотехнических расчетов следует принимать: для помещений жилых зданий, больничных учреждений, диспансеров, амбулаторно-поликлинических учреждений, родильных домов, домов-интернатов для престарелых и инвалидов, общеобразовательных детских школ, детских садов, яслей, яслей-садов (комбинатов) и детских домов – 55%, для помещений кухонь – 60%, для ванных комнат – 65%, для подвалов и подполий с коммуникациями – 75%; для теплых чердаков жилых зданий – 55%; для помещений общественных зданий (кроме вышеуказанных) – 50% [1].

Взависимости от сочетания расчетной температуры и расчетной относительной влажности внутреннего воздуха, принимаемых для теплотехнических расчетов, внутренний режим по влажностным условиям делят

[1] на сухой, нормальный, влажный и мокрый. Например, при температуре внутреннего воздуха от 12 оС до 24 оС, то есть для диапазона температур,

32

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий