Как найти пары сонаправленных векторов

Материал
урока.

Вы
уже знакомы с векторами из курса планиметрии. Но, так как мы приступили к изучению
стереометрии, то теперь из плоскости выходим в пространство. Сразу стоит
отметить, что понятие вектора в пространстве вводится также как и на плоскости.

Отрезок,
для которого указано, какой из его концов является началом, а какой — концом,
называется вектором. При этом направление отрезка указывается
стрелкой.

Есть
два способа обозначения векторов: двумя заглавными латинскими буквами со
стрелкой над ними, где первая буква указывает на начало вектора, а вторая на
конец; а так же одной строчной латинской буквой со стрелкой над ней.

Любая
точка пространства также является вектором. Такой вектор называют нулевым. Так
как у него начало совпадает с концом, то он не имеет конкретного направления.

В
данном случае изображен нулевой вектор ММ.

Длина
ненулевого вектора АB равна длине
отрезка АB. А длина нулевого
вектора всегда равна нулю.

 

Точно
также как и на плоскости, векторы, лежащие на одной прямой или на параллельных
прямых, называют коллинеарными. При этом нулевой вектор коллинеарен любому
вектору.

Если
коллинеарные векторы имеют одинаковое направление, то их называют сонаправленными.

 

Если
же векторы имеют противоположные направления, то их называют противоположно
направленными
.

Из-за
того что нулевой вектор не имеет определённого направления, он является
сонаправленным с любым вектором.

В
данном случае сонаправленными будут  и . А также
нулевой вектор будет сонаправлен каждому из данных векторов.

Сонаправленность
векторов обозначают таким символом  ↑↑.

Противоположно
направленными в нашем случае будут  и , а также  и . Противоположно
направленные векторы обозначают таким символом
↑↓.

Выполним
задание.
ABCDA1B1C1D1
— параллелепипед, в котором точки М и K
середины сторон B1C1
и A1D1
соответственно.

Среди
векторов, изображённых на рисунке, нам предстоит найти пары сонаправленных и
противоположно направленных векторов.

Итак,
перед нами параллелепипед. А это значит, что все грани данного многогранника
являются параллелограммами. И рёбра AA1,
BB1,
CC1
и DD1
параллельны. А на них изображены векторы  и . Не вызывает
сомнений, что они коллинеарны. И так как они направлены в противоположные
стороны, то являются противоположно направленными.

Так
же параллельными будут ребра AD,
BC, A1D1
и B1C1.
Среди векторов, проведённых на этих рёбрах, сонаправленными будут  

Вектор
 будет
противоположно направленным к векторам ,  и .

Параллельными
также будут рёбра AB, CD,
A1B1
и C1D1.
На них изображены векторы  и . По рисунку
понятно, что они противоположно направлены.

Среди
четырёх оставшихся векторов коллинеарными будут только векторы  и . Они же будут и
сонаправленными.

Так
мы с вами нашли 4 пары сонаправленных векторов и 5 пар противоположно
направленных векторов.

Задача.
 тетраэдр. Точки
,  и  являются
серединами сторон ,  и .

, , а . Определить
длины векторов:

а)
, , , , , ;

б)
, , , , .

Решение.

Запишем
ответ.

Выполним
последнее задание.

Задача.
Измерения прямоугольного параллелепипеда

равны
соответственно 8 см, 9 см и 12 см. Найти длины векторов:

а)
, , ;

б)
, , .

Решение.

Ответ.
12 см, 8 см, 9 см; 15 см,  см, 17 см.

Подведём
итоги нашего урока.

Сегодня,
основываясь на знаниях о векторах из курса планиметрии, мы ввели понятие
вектора в пространстве.

Отрезок,
для которого указано, какой из его концов является началом, а какой — концом,
называется вектором. Любая точка плоскости также является вектором, нулевым
вектором.

Длина
ненулевого вектора  AB
равна
длине отрезка AB. Длина нулевого
вектора равна нулю.

Векторы,
лежащие на одной прямой или на параллельных прямых, называют коллинеарными. При
этом, если они одинаково направлены, то их называют сонаправленными. Если же
коллинеарные векторы противоположно направлены, то их называют противоположно
направленными.

Все
эти знания мы с вами смогли применить при решении задач.

Равные вектора

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

a = b , если a ↑↑ b и | a | = | b |.

рис. 1

Примеры задач на равенство векторов

Примеры плоских задач на равенство векторов

a = b – так как их координаты равны,
a ≠ c – так как их координаты не равны,
b ≠ c – так как их координаты не равны.

Проверим равенство компонентов векторов
ax = bx = 1
ay = by => 8 = 2 n => n = 8/2 = 4

Ответ: при n = 4 вектора a и b равны.

Примеры пространственных задач на равенство векторов

a = c – так как их координаты равны,
a ≠ b – так как их координаты не равны,
b ≠ c – так как их координаты не равны.

Проверим равенство компонентов векторов
ax = bx = 1
ay = by = 2
az = bz => 4 = 2 n => n = 4/2 = 2

Ответ: при n = 2 вектора a и b равны.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти пару векторов

Найти пары элементов в векторе

У меня есть следующий вектор. V =
Я хочу найти все пары элементов. Всего у меня будет К (К-1) / 2 пары элементов.

Каким должен быть псевдокод этого алгоритма.

Спасибо dasblinkenlight за вашу помощь. Я написал код, он может помочь кому-то в будущем:

Решение

Вот общие мысли о том, как это сделать:

  • Есть N кандидаты в первый член пары
  • Когда участник k выбран первым членом пары, есть N-k Кандидаты на второго члена пары
  • Вы можете генерировать все пары, используя два вложенными петли
  • Вы можете доказать, что общее количество пар N*(N-1)/2 с использованием формула для суммы арифметической прогрессии с шагом 1 ,

Вот как вы можете сделать это с помощью двух циклов:

Примечание. Приведенный выше код использует математические обозначения для интервалов, где квадратные скобки обозначают включение соответствующего конца в интервал, а круглые скобки обозначают исключение соответствующего конца.

Коллинеарность векторов, условия коллинеарности векторов.

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = и b = . Найдем их векторное произведение

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

Вектора a и b коллинеарны т.к. 1 = 2 .
4 8
Вектора a и с не коллинеарны т.к. 1 2 .
5 9
Вектора с и b не коллинеарны т.к. 5 9 .
4 8

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n = by = 6 = 2
ay 3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

Решим это уравнение:

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax = ay = az .
bx by bz

Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12

Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12

Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n = by = 6 = 2
ay 3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax = ay = az .
bx by bz
3 = 2 = m
9 n 12

Из этого соотношения получим два уравнения:

Решим эти уравнения:

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Как найти вектор коллинеарный вектору

Формула

Примеры нахождения коллинеарного вектора

Подставим координаты заданных векторов в это равенство и найдем значение $m$:

По пропорции имеем:

$$2 cdot m=(-1) cdot(-3) Rightarrow 2 cdot m=3 Rightarrow m=frac =1,5$$

А тогда значения неизвестных параметров $m$ и $n$ находим из равенств

$$frac =2 Rightarrow m=6$$ $$frac =2 Rightarrow n=frac =0,5$$

Остались вопросы?

Здесь вы найдете ответы.

Поможем выполнить
любую работу

Все еще сложно?

Наши эксперты помогут разобраться

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

Равные векторы

В различных школьных учебниках определение равных векторов даётся по-разному.

В классическом учебнике Погорелова А. В. понятие равных векторов вводится с помощью параллельного переноса.

Два вектора называются равными, если они совмещаются параллельным переносом.

(то есть существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого).

Например, изображенные на рисунке

Равенство векторов обозначают так:

(Свойства равных векторов)

1) Равные векторы сонаправлены и имеют равные длины.

2) Равные векторы имеют равные координаты.

3) От любой точки можно отложить вектор, равный данному, и притом только один.

1) 1-е свойство вытекает непосредственно из определения равных векторов и свойств параллельного переноса.

2) Пусть дан вектор

с началом в точке A(x1; y1) и концом в точке B(x2; y2).

По определению равных векторов, вектор

равный данному, получен из

Если этот параллельный перенос задан формулами

Найдём координаты каждого из векторов:

То есть координаты равных векторов

Что и требовалось доказать.

Таким образом, координаты задают длину и направление вектора, но не фиксируют его.

3) Пусть даны вектор

и точка C.
Существует и притом единственный параллельный перенос, при котором точка A переходит в точку C — параллельный перенос на вектор

При таком параллельном переносе вектор

переходит в вектор

По определению равных векторов,

Что и требовалось доказать.

На практике, если требуется отложить от некоторой точки вектор, равный данному, удобно это делать с помощью параллелограмма (если точка, от которой откладывается вектор, не лежит на прямой, содержащей этот вектор).

Например,

отложенный от точки C, равен вектору

(Признаки равенства векторов)

1) Если векторы сонаправлены и имеют одинаковые длины, то они равны.

2) Если у векторов соответствующие координаты равны, то векторы равны.

1) Пусть векторы

сонаправлены и имеют одинаковые длины.

Параллельный перенос, который переводит точку A в точку C, совмещает луч CD с лучом AB (поскольку векторы одинаково направлены). А так как длины отрезков CD и AB равны, то точка D при этом совместится с точкой B. Таким образом, этот параллельный перенос вектор

переводит в вектор

По определению равных векторов,

Что и требовалось доказать.

2) Пусть векторы

Параллельный перенос, заданный формулами

переводит точку A в точку A′, точку B — в точку B′, то есть совмещает векторы

А это означает, что

Что и требовалось доказать.

В учебнике Атанасяна Л. С. и др. дано другое определение равных векторов.

Два вектора называются равными, если они сонаправлены и имеют одинаковую длину.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/kak-nayti-paru-vektorov

[/spoiler]

Для начала решим задачу, которая поможет повторить всё, что мы знаем о векторах.

Итак, ABCD — параллелограмм.

Нам предстоит назвать все векторы, которые изображены на рисунке, и указать среди них: равные по длине, коллинеарные, сонаправленные, противоположно направленные, равные и векторы сонаправленные вектору ОО.

Чтобы назвать векторы, изображённые на рисунке, повторим определение понятия вектора.

Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется направленным отрезком или вектором.

На рисунках вектор изображают в виде отрезка со стрелкой, показывающей направление вектора.

Называют векторы двумя заглавными буквами со стрелкой над ними. При этом первая буква обозначает начало вектора, а вторая — конец.

По порядку назовём изображённые векторы:  Далее среди них найдём равные по длине. Стоит вспомнить, что длиной ненулевого вектора  называется длина отрезка AB.

Пользуясь тем, что перед нами параллелограмм, можем сказать, что его противоположные стороны равны. А также диагонали точкой пересечения делятся пополам.

А значит, равны длины векторов .

Теперь укажем коллинеарные векторы. Ненулевые векторы называются коллинеарными, если они лежат на одной прямой либо на параллельных прямых.

Мы знаем, что противоположные стороны параллелограмма не только равны, а ещё и параллельны. Поэтому коллинеарными будут векторы  и .

Ну, а векторы  и  коллинеарны, так как лежат на одной прямой.

Далее нам предстоит отыскать сонаправленные и противоположно направленные векторы.

Сонаправленными называют ненулевые коллинеарные векторы с одинаковыми направлениями.

Противоположно направленными называют ненулевые коллинеарные векторы с противоположными направлениями.

В обоих случаях векторы должны быть коллинеарны.

Мы же с вами указали только две пары коллинеарных векторов. Из них сонаправленными будут векторы  и , а противоположно направленными — векторы  и .

Далее вспомним определение равных векторов. Векторы называют равными, если они сонаправлены и их длины равны.

Ранее нами указана только одна пара сонаправленных векторов, между тем их длины равны. Значит, вектор .

В последнем пункте укажем векторы сонаправленные вектору ОО.

Такой вектор на рисунке не изображён, но с прошлых уроков вам известно понятие нулевого вектора.

Любая точка плоскости является нулевым вектором. Длина любого нулевого вектора равна нулю.

Так как начало и конец у такого вектора совпадают, то у него нет определённого направления и его можно задать любым направлением. Поэтому нулевой вектор считается сонаправленным любому вектору.

Тогда мы можем сказать, что каждый из векторов  сонаправлен вектору ОО.

В ходе выполнения данного задания мы повторили всё, что знаем о векторах. Теперь приступим к изучению новой темы.

Если точка А является началом вектора А, то говорят что вектор А отложен от точки А.

Имеет место следующее утверждение. От любой точки  можно отложить вектор, равный данному вектору , и притом только один.

Доказательство.

Рассмотрим два случая.

1. , то искомым, равным ему, вектором будет вектор .

2. , а точки А и B — его начало и конец, то через точку М проведём прямую p параллельную AB:   .

Теперь отложим отрезки MN и MN’, равные отрезку AB:   .

Из построения видно, что такой вектор только один.

Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой.

Поэтому вектор  можно обозначить как вектор .

Про такие векторы можно сказать, что это один и тот же вектор, но отложенный от разных точек.

Отложить векторы, равные ненулевому вектору , от каждой из вершин .

Для этого через каждую вершину проведём прямые параллельные вектору .

По каждую сторону от точек А, B и C на этих прямых отложим отрезки равные длине вектора . Таким образом получим по два вектора у каждой из вершин.

Но один из них будет сонаправлен вектору , а другой — противоположно направлен.

Нам подойдут вектора сонаправленные вектору .

Так мы отложили от каждой вершины треугольника ABC векторы, равные вектору .

Задача. От точки  необходимо отложить вектор:

а) равный вектору ;

б) сонаправленный вектору ;

в) противоположно направленный вектору .

Отложим от К вектор равный вектору . Для этого через точку К проведём прямую a, параллельную вектору .

От точки К на данной прямой отложим отрезки, длины которых равны длине вектора . Получаем два вектора. Выберем тот, который сонаправлен с вектором .

Так мы отложили от точки К вектор, равный вектору . Можем его так же обозначить как вектор .

  

Далее отложим от точки К вектор сонаправленный с вектором .

  

.

Последним необходимо от точки К отложить вектор противоположно направленный вектору .

  

Перейдём к решению последней задачи.

Задача. Диаметр  и хорда  окружности образуют угол в , а радиус окружности равен . Внутри данной окружности выбрана точка  и от неё отложены векторы  и  равные векторам  и  соответственно. Найти .

Решение.

1. ()

()

2. ()

()

3. 

3. 

4. 

односторонние при 

односторонние при 

5. .

6. :

7. 

8. 

Подведём итоги нашего урока.

Сегодня вы узнали, что от любой точки М можно отложить вектор, равный данному вектору , и притом только один. Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой. Про такие векторы можно сказать, что это один и тот же вектор, но отложенный от разных точек.

План урока:

Понятие вектора

Равенство векторов

Сложение векторов

Свойства сложения

Вычитание векторов

Умножение вектора на число

Решение задач с помощью векторов

Понятие вектора

Рассмотрим простейшую задачу. Корабль, двигатель которого развивает скорость 20 км/ч, плывет по течению реки, при этом скорость течения составляет 2 км/ч. Какова скорость корабля относительно берега? Очевидно, в данном случае надо сложить скорость течения и собственную скорость корабля:

20 км/ч + 2 км/ч = 22 км/ч

Теперь посмотрим на почти такую же задачу, которая отличается лишь тем, что корабль плывет уже против течения. Для ее решения скорости уже придется вычитать:

20 км/ч – 2 км/ч = 18 км/ч

Получается, что ответ задачи во многом зависит не только от величин скоростей, но и от их направления. Возможны и более сложные случаи, когда корабль двигается на воде перпендикулярно течению или, например, под углом в 60°. Величины, при операции с которыми необходимо учитывать их направление, называют векторными величинами, или просто векторами.

Помимо скорости к ним относят ускорение, силу, импульс, напряженность магнитного и электрического поля и многие другие величины. Те же величины, для которых нельзя указать направление, называют скалярными величинами. Это масса, температура, плотность и т. п. Для выполнения действий с векторами необходимо разработать общие правила их сложения, вычитания, умножения, которые будут справедливы независимо от физической природы векторных величин. И разработать эти правила помогает как раз геометрия.

Для начала введем понятие вектора. Любой отрезок имеет два конца, которые обычно не отличают друг от друга. Однако если одну из этих точек считать началом отрезка, а другую – собственно концом, то у отрезка появится направление. В таком случае его можно считать вектором.

1 vectory

Часто вектора называют направленными отрезками. Обозначают их с помощью стрелок.

2 vectory

На этом рисунке показан вектор, начало которого находится в точке А, а конец – в точке В. При записи в формулах сначала пишут букву, означающую начало вектора, потом обозначение его конца, а над этими двумя буквами ставят стрелочку:

3 vectory

С практической точки зрения приходится вводить в рассмотрение особый нулевой вектор. У него начало и конец совпадают, то есть он представляет собой всего лишь одну точку:

4 vectory

Нулевой вектор необходим, так как нам необходимо научиться выполнять действия над векторами. Мы знаем, что в обычной алгебре используется число ноль. В векторной же алгебре аналогом нуля является как раз нулевой вектор.

Каждый вектор имеет свою длину, которая равна расстоянию между его началом и концом. То есть, если его начало находится в точке А, а конец в точке В, то длина вектора будет совпадать с длиной отрезка АВ. Обозначают длину с помощью вертикальных скобок:

5 vectory

Естественно, что длина нулевого вектора равна нулю.

Задание. Найдите модуль вектора, изображенного на рисунке:

6 vectory

Решение. Легко выполнить построение, при котором вектор окажется гипотенузой в прямоугольном треугольнике

7 vectory

Тогда длину вектора можно найти по теореме Пифагора:

8 vectory

Равенство векторов

Через начало и конец векторов можно провести прямую. В связи с этим можно ввести понятие коллинеарных векторов.

9 vectory

На рисунке коллинеарны вектора а и b, так как они лежат на одной прямой. Также коллинеарны с и d, так как они лежат на параллельных прямых. А вот вектора и неколлинеарны, так как они лежат на пересекающихся прямых.

Для пары коллинеарных векторов можно определить, являются ли они сонаправленными или противоположно направленными.

10 vectory

Для обозначения сонаправленных векторов используется символ «⇈», а для противоположно направленных «⇅». Можно сформулировать две очевидных теоремы о коллинеарных векторах.

11 vectory

Проиллюстрируем эти правила с помощью рисунка:

12 vectory

Особняком стоит нулевой вектор. Он представляет собой точку, а потому не имеет определенного направления. Поэтому условно его считают сонаправленным с любым другим вектором.

Теперь мы можем дать определение равенству векторов.

13 vectory

Задание. Найдите на картинке равные вектора.

14 vectory

Решение. Здесь равны вектора а, и e. Они сонаправлены и имеют длину 6. Вектор с сонаправлен с ними, но его длина составляет только 5 клеток. Длина вектора d составляет 6 клеток, но он не сонаправлен с другими векторами. Наконец, вектор m также не сонаправлен с другими векторами и даже не коллинеарен им.

Ответ: a, и e.

Если началом вектора является некоторая точка А, то можно сказать, что вектор отложен от точки А. Докажем важное утверждение:

15 vectory

Доказать его можно построением. Пусть есть вектор а и точка М. Проведем через М прямую p, параллельную вектору а. Такая прямая будет единственной. Если точка М и вектор лежат на одной прямой, то в качестве прямой p возьмем именно эту прямую. Далее от точки М можно отложить отрезки МN и МN’, длина которых будет совпадать с длиной вектора а. В результате получится два вектора,MN и MN’, один из которых будет сонаправлен с а, а другой – противоположно направленный.

16 vectory

Часто равные вектора, отложенные от разных точек, обозначают одной буквой. Можно считать, что это один и тот же вектор, просто приложенный к разным точкам.

17 vectory

Задание. АВСD – параллелограмм, диагонали которого пересекаются в точке О. Определите, равны ли вектора:

18 vectory

Решение.

а) Отрезки АВ и DC равны, ведь это противоположные стороны параллелограмма, по той же причине эти отрезки параллельны. Видно, что они сонаправлены, значит, вектора равны.

б) Отрезки ВС и DA параллельны и равны, но эти вектора противоположно направлены, поэтому вектора НЕ равны друг другу.

в) Точка пересечения диагоналей параллелограмма делит их пополам, поэтому длины отрезков АО и ОС одинаковы. Вектора АО и ОС лежат на одной прямой, то есть они коллинеарны. При этом они ещё и сонаправлены, поэтому АО и ОС – равные векторы.

г) Вектора АС и BD лежат на пересекающихся прямых, то есть они не коллинеарны. Этого уже достаточно, чтобы считать их НЕ равными друг другу.

Ответ: а) д; б) нет; в) да; г) нет.

Сложение векторов

Пусть некоторый объект сначала находился в точке А, а потом переместился в точку В. Тогда его перемещение удобно обозначить с помощью вектора АВ. Далее пусть этот объект из точки В переместился в другую точку С.

19 vectory

С одной точки зрения, объект совершил сразу два перемещения, из А в В и из В в С, которые можно представить векторами:

20 vectory

Этот пример подсказывает нам универсальное правило, с помощью которого можно складывать вектора. Его называют правилом треугольника.

21 vectory

С помощью правила треугольника удобно складывать вектора, если конец одного из них совпадает с началом другого. Но что делать, если это не так? В этом случае достаточно от конца одного вектора отложить вектор, равный второму:

22 vectory

Задание. На рисунке показаны два вектора. Постройте в тетради их сумму и найдите длину получившегося вектора.

23 vectory

Решение. Перенесем вектор b к концу вектора а. Далее по правилу треугольника на удастся найти их сумму (обозначим этот вектор буквой с):

24 vectory

Теперь найдем длину получившегося вектора. Он является гипотенузой в прямоугольном треугольнике, причем длины катетов в этом треугольнике можно определить по рисунку, они составляют 4 и 6. Тогда длину гипотенузы можно найти по теореме Пифагора:

25 vectory

Отдельно рассмотрим случаи, когда складываются коллинеарные вектора. В этом случае получающаяся сумма окажется коллинеарной каждому слагаемому. Если вектора сонаправлены, то их длина итогового вектора окажется равной сумме длин складываемых векторов:

26 vectory

Если складываются противоположно направленные вектора, то длина их суммы окажется разностью длин складываемых векторов.

27 vectory

Именно по этой причине при решении простейших задач на движение корабля по реке скорость корабля и скорость течения либо складывают, либо вычитают. Дело в том, что в этих задачах складываются вектора скоростей корабля и течения. Когда судно плывет по течению, эти векторы сонаправлены, а когда плавание идет против течения, векторы оказываются противоположно направленными.

Задание. Корабль развивает в неподвижной воде скорость 12 км/ч. Он плывет по реке, скорость воды в которой составляет 5 км/ч. Найдите скорость корабля относительно берега, если:

а) судно плывет по течению;

б) судно плывет против течения;

в) судно плывет перпендикулярно течению.

Решение. Во всех случаях итоговая скорость судна является векторной суммой собственной скорости судна и течения реки:

28 vectory

Однако направления этих векторов различны. Найдем решение графически, с помощью построений. В первом случае вектора по условию сонаправлены:

29 vectory

Приложив другу к другу отрезки длиной 12 и 5, получим отрезок длиной 17. Это значит, что в первом случае скорость корабля относительно берега составит 17 км/ч.

Во втором случае вектора уже окажутся противоположно направленными:

30 vectory

Отрезок, соответствующий итоговой скорости, здесь уже равен 7 клеткам, значит, итоговая скорость составляет 7 км/ч.

В третьем случае вектора скоростей перпендикулярны:

31 vectory

При построении получился прямоугольный треугольник, вектор итоговой скорости в нем оказался в роли гипотенузы. Найти его длину можно по теореме Пифагора, ведь катеты нам известны:

32 vectory

Свойства сложения

Действия с векторами во многом подобны действиям с обычными числами. Напомним, что в алгебре при прибавлении к числу нуля оно не менялось:

a + 0 = a

Аналогично и при прибавлении к вектору нулевого вектора он не изменится:

33 vectory

Работает ли это правило с векторами? Оказывается, что да. Убедиться в этом можно, построив параллелограмм, сторонами которого являются складываемые векторы:

34 vectory

Видно, что диагональ параллелограмма является суммой векторов, которые соответствуют нижней и крайней правой его стороне. Они обозначены как векторы и b, причем в данном случае к а прибавляется b. Но одновременно эта же диагональ – это сумма векторов, которые соответствуют крайней левой и его верхней стороне. Напомним, что противоположные стороны параллелограмма равны и параллельны, поэтому они и обозначены одним вектором. В этом случае уже к прибавляется a. Результат при этом получается одинаковый, поэтому можно записать, что

35 vectory

На этом примере мы увидели, как работает ещё одно правило сложения векторов, который называется правилом параллелограмма. Если есть два вектора, которые необходимо сложить, то можно отложить их от одной точки, а потом достроить получившуюся фигуру до параллелограмма.

Задание. Сложите с помощью правила параллелограмма вектора, изображенные на рисунке:

36 vectory

Решение. Надо всего лишь построить параллелограмм, как показано на рисунке. Его диагональ и окажется искомым вектором:

37 vectory

Ещё один закон, использующийся в алгебре, называется сочетательным законом, записывается он так:

38 vectory

Оказывается, что и при действиях с векторами он также работает, то есть справедливо соотношение:

39 vectory

Здесь оранжевый вектор – это сумма красного (а) и синего (b) вектора. Если к оранжевому вектору добавить зеленый (с), то получится фиолетовый вектор, который, таким образом, является суммой

40 vectory

Желтый вектор – это сумма синего и зеленого вектора. Видно, что фиолетовый вектор представляет собой сумму красного и желтого, то есть он представляет сумму

41 vectory

Складывать можно любое количество векторов. В этом случае надо последовательно прикладывать эти вектора друг к другу, выстраивая «цепочку» векторов. Например, сложение 4 векторов, показанных на рисунке, будет осуществляться следующим образом:

42 vectory

Этот способ сложения векторов именуют правилом многоугольника. Естественно, в силу переместительного закона вектора можно прикладывать друг к другу в разной последовательности, при этом результат будет получаться один и тот же.

Задание. Сложите, используя правило многоугольника, вектора, изображенные на рисунке. Выполните сложение двумя разными способами:

43 vectory

В первом случае последовательно сложим вектора a, b, c и d. Во втором случае изменим последовательность сложения. Например, сложим их в порядке d, b, c, a:

44 vectory

Видно, что каждый из двух способов дал один и тот же результат, что ещё раз подтверждает справедливость переместительного закона сложения векторов.

Вычитание векторов

Напомним, что в алгебре операция вычитания вводится как операция обратная сложению. То есть если для трех чисел верно соотношение

a + b = c

то разностью чисел с и a как раз окажется b:

c – a = b

Аналогично вычитание понимается и в векторной алгебре. Пусть построены вектора а, b и c так, что

45 vectory

Этот пример показывает, как строить разность двух векторов. На рисунке вектора с и отложены от одной точки, а вектор b, являющийся их разницей, проведен от конца вычитаемого вектора к концу уменьшаемого вектора.

46 vectory

В данном случае под уменьшаемым вектором понимается тот, который в разнице стоит перед знаком минус, а вычитаемый вектор – тот, который находится уже после этого знака. Например, в записи

47 vectory

Вектор а – уменьшаемый, а вектор b – вычитаемый.

Задание. Постройте в тетради разность векторов, изображенных на рисунке:

48 vectory

Решение. Заметим, что в условии не сказано, какой вектор из какого надо вычитать. Поэтому можно построить сразу два ответа:

49 vectory

Несложно заметить, две получившиеся разности представляют собой противоположно направленные векторы одной длины. Такие векторы называются противоположными.

50 vectory

Очевидно, что если сложить друг с другом два противоположных вектора, то получится нулевой вектор:

51 vectory

Противоположные вектора играют в векторной алгебре такую же роль, как и противоположные числа. С их помощью удобно выполнять вычитание векторов. Напомним, что для обычных чисел справедливо соотношение:

52 vectory

Поэтому операцию вычитания можно заменить операцией сложения, если вместо вычитаемого вектора взять вектор, противоположный ему. Рассмотрим этот способ на примере. Пусть из надо вычесть b:

53 vectory

На первом шаге надо построить вектор, противоположный b:

54 vectory

Теперь надо просто сложить a и (– b):

55 vectory

В итоге нам удалось построить разность векторов а и b.

Умножение вектора на число

Предположим, что нам надо сложить два равных вектора. В результате мы получим новый вектор, который будет сонаправлен с исходным, но его длина будет вдвое больше. Логично считать, что получившийся вектор вдвое больше исходного, то есть он получился при умножении вектора на число 2:

56 vectory

Аналогично можно построить вектора, которые больше исходного не в 2, а в 3,4 и т. д. раз:

57 vectory

Итак, чтобы умножить вектор на положительное число k, надо построить сонаправленный с ним вектор, длина которого в k раз больше.А как умножать вектор на отрицательное число? Здесь нужно использовать противоположный вектор. Логично считать, что он получается при умножении (– 1) на вектор. Зная это, легко умножать вектор и на другие отрицательные числа:

58 vectory

Естественно, что если вектор умножается на ноль, то в результате получается нулевой вектор.

Задание. На рисунке показаны вектора а и b. Найдите вектора

59 vectory

Решение. Для построения снам надо сначала умножить исходные вектора на 4 и 2, а далее полученные результаты сложить:

60 vectory

Для нахождения вектора d надо построить вектор, противоположный вектору 2b, и уже его складывать с 4a:

61 vectory

Наконец, для нахождения вектора е необходимо построить противоположный вектор уже для :

62 vectory

Некоторые правила обычной алгебры, касающиеся операции умножения, справедливы и для векторов. Первый такое правило – это сочетательный закон:

63 vectory

Видно, что мы можем либо сразу умножить вектор а на число 12, либо сначала его умножить на 4, а потом на 3. Результат операции при этом не изменится.

Также в отношении операции умножения векторов на число справедлив распределительный закона, которые позволяют раскрывать скобки:

64 vectory

Например, пусть нам надо сложить вектора и . Распределительный закон говорит, что мы можем поступить двумя способами. В первом случае мы просто строим вектора 2а и 3а и складываем их. Во втором случае мы складываем только числа 2 и 3 (получаем 5), и далее уже умножаем вектор а на число 5:

65 vectory

Есть ещё один распределительный закон, в котором в скобках находится уже сумма векторов, а не чисел:

66 vectory

Этот закон можно применить в случае, когда нам необходимо, например, сложить вектора и 4b. Конечно, можно просто построить их и сложить, однако закон говорит, что мы можем сначала сложить aи b, и уже потом эту сумму умножить на 4:

67 vectory

Сформулированные нами законы сложения и умножения векторов позволяют выполнять действия с векторами так же, как с числами. В том числе можно упрощать выражения, содержащие векторные величины. Например, пусть известны вектора а, b и с, и надо найти вектор

68 vectory

Видно, что выражение значительно упростилось.

Решение задач с помощью векторов

Вектора активно используются в физике при решении многих задач, однако они также помогают доказывать геометрические теоремы. Рассмотрим несколько примеров, и начнем со вспомогательной задачи.

Задание. Известно, что С – это середина отрезка АВ. Докажите, что для любой точки О выполняется равенство:

69 vectory

Используя правило треугольника, вектор ОС можно представить в виде двух различных сумм:

70 vectory

Проанализируем выражение в скобках. Вектора АС и ВС коллинеарны, ведь они лежат на одной прямой АВ. При этом они противоположно направлены. Длина у них одинакова, ведь С – середина АВ. Тогда по определению АС и ВС – противоположные вектора, и их сумма равна нулю:

71 vectory

Задание. Докажите, что если в трапеции провести прямую, проходящую через середины ее оснований, то она также пройдет через точку, в которой пересекаются продолжения боковых сторон трапеции.

Решение. Построим трапецию, обозначим ее вершины и середины оснований:

72 vectory

Здесь ABCD – трапеция, основаниями которой являются отрезки ВС и AD. M и N – их середины. Прямые АВ и CD пересекаются в точке O. Необходимо доказать, что прямая MN также проходит через О.

Заметим, что ∆ОВС и ∆ОАD подобны. Действительно, у них есть общий ∠ВОС, а ∠ОВС и ∠ОАD одинаковы как односторонние углы при секущей АВ, поэтому треугольники подобны по 1-ому признаку. Обозначим коэффициент подобия буквой k, тогда можно записать, что

73 vectory

Так как отрезки ОА и АВ лежат на одной прямой, то вектора ОА и АВ коллинеарны и притом сонаправлены, поэтому в (1) отрезки можно заменить векторами:

74 vectory

(это соотношение мы доказали в предыдущей, вспомогательной задаче).

Аналогичную формулу можно составить и для второго основания и его середины N:

75 vectory

Полученное нами равенство означает, что вектора ON и ОМ коллинеарны, а значит, лежат на одной прямой (эти вектора не могут лежать на параллельных прямых, так как имеют общую точку О). Тогда получается, что О, M и N лежат на одной прямой, ч. т. д.

Комментарии преподавателя

 По­вто­ре­ние тео­рии. За­да­чи

 1. Основные определения

На­пом­ним, что су­ще­ству­ют такие фи­зи­че­ские ве­ли­чи­ны, для ко­то­рых важна не толь­ко ве­ли­чи­на, но и на­прав­ле­ние. Такие ве­ли­чи­ны на­зы­ва­ют­ся век­тор­ны­ми, или век­то­ра­ми, и обо­зна­ча­ют­ся они на­прав­лен­ным от­рез­ком, то есть таким от­рез­ком, у ко­то­ро­го от­ме­че­ны на­ча­ло и конец. Вве­де­но было по­ня­тие кол­ли­не­ар­ных век­то­ров, то есть таких, ко­то­рые лежат либо на одной пря­мой, либо на па­рал­лель­ных пря­мых.

Мы рас­смат­ри­ва­ем век­тор, ко­то­рый можно от­ло­жить от любой точки, за­дан­ный век­тор от про­из­воль­но вы­бран­ной точки можно от­ло­жить един­ствен­ным об­ра­зом.

Было вве­де­но по­ня­тие рав­ных век­то­ров – это такие со­на­прав­лен­ные век­то­ры, длины ко­то­рых равны. Со­на­прав­лен­ны­ми на­зы­ва­ют­ся кол­ли­не­ар­ные век­то­ры, на­прав­лен­ные в одну сто­ро­ну.

Были вве­де­ны пра­ви­ла тре­уголь­ни­ка и па­рал­ле­ло­грам­ма – пра­ви­ла сло­же­ния век­то­ров.

За­да­ны два век­то­ра – век­то­ры  и . Най­дем сумму этих двух век­то­ров . Для этого от­ло­жим из неко­то­рой точки А век­тор  – на­прав­лен­ный от­ре­зок, точка А – его на­ча­ло, а точка В – конец. Из точки В от­ло­жим век­тор . Тогда век­тор  на­зы­ва­ют сум­мой за­дан­ных век­то­ров:  – пра­ви­ло тре­уголь­ни­ка (см. Рис. 1).

Рис. 1

За­да­но два век­то­ра – век­то­ры  и . Най­дем сумму этих двух век­то­ров  по пра­ви­лу па­рал­ле­ло­грам­ма.

От­кла­ды­ва­ем из точки А век­тор  и век­тор  (см. Рис. 2). На от­ло­жен­ных век­то­рах можно по­стро­ить па­рал­ле­ло­грамм. Из точки В от­кла­ды­ва­ем век­тор , век­то­ры  и  равны, сто­ро­ны ВС и

Рис. 2

АВ1 па­рал­лель­ны. Ана­ло­гич­но па­рал­лель­ны и сто­ро­ны АВ и В1С, таким об­ра­зом, мы по­лу­чи­ли па­рал­ле­ло­грамм. АС – диа­го­наль па­рал­ле­ло­грам­ма. 

 2. Правила сложения векторов

Для сло­же­ния несколь­ких век­то­ров при­ме­ня­ют пра­ви­ло мно­го­уголь­ни­ка (см. Рис. 3). Нужно из про­из­воль­ной точки от­ло­жить пер­вый век­тор, из его конца от­ло­жить вто­рой век­тор, из конца вто­ро­го век­то­ра от­ло­жить тре­тий и так далее, когда все век­то­ры от­ло­же­ны – со­еди­нить на­чаль­ную точку с кон­цом по­след­не­го век­то­ра, в итоге по­лу­чит­ся сумма несколь­ких век­то­ров.

Рис. 3

Кроме того, мы рас­смот­ре­ли по­ня­тие об­рат­но­го век­то­ра – век­то­ра, име­ю­ще­го такую же длину, как за­дан­ный, но ему про­ти­во­на­прав­лен­но­го.

 3. Решение примеров

При­мер 1 – за­да­ча 747: вы­пи­ши­те пары кол­ли­не­ар­ных со­на­прав­лен­ных век­то­ров, ко­то­рые опре­де­ля­ют­ся сто­ро­на­ми па­рал­ле­ло­грам­ма; ука­жи­те про­ти­во­по­лож­но на­прав­лен­ные век­то­ры;

Задан па­рал­ле­ло­грамм MNPQ (см. Рис. 4). Вы­пи­шем пары кол­ли­не­ар­ных век­то­ров. В первую оче­редь это век­то­ры  и . Они не толь­ко кол­ли­не­ар­ные, но и рав­ные, т.к. они со­на­прав­ле­ны, и длины их равны по свой­ству па­рал­ле­ло­грам­ма (в па­рал­ле­ло­грам­ме про­ти­во­по­лож­ные сто­ро­ны равны). Сле­ду­ю­щая пара . Ана­ло­гич­но

Рис. 4

вы­пи­шем кол­ли­не­ар­ные век­то­ры вто­рой пары сто­рон: .

Про­ти­во­по­лож­но на­прав­лен­ные век­то­ры: .

При­мер 2 – за­да­ча 756: на­чер­ти­те по­пар­но некол­ли­не­ар­ные век­то­ры  и . По­строй­те век­то­ры ;;.

Для вы­пол­не­ния дан­но­го за­да­ния можем поль­зо­вать­ся пра­ви­лом тре­уголь­ни­ка или па­рал­ле­ло­грам­ма.

Спо­соб 1 – с по­мо­щью пра­ви­ла тре­уголь­ни­ка (см. Рис. 5):

Рис. 5

Спо­соб 2 – с по­мо­щью пра­ви­ла па­рал­ле­ло­грам­ма (см. Рис. 6):

Рис. 6

Ком­мен­та­рий: мы при­ме­ня­ли в пер­вом спо­со­бе пра­ви­ло тре­уголь­ни­ка – от­кла­ды­ва­ли из про­из­воль­но вы­бран­ной точки А пер­вый век­тор, из его конца – век­тор, про­ти­во­по­лож­ный вто­ро­му, со­еди­ня­ли на­ча­ло пер­во­го с кон­цом вто­ро­го, и таким об­ра­зом по­лу­ча­ли ре­зуль­тат вы­чи­та­ния век­то­ров. Во вто­ром спо­со­бе мы при­ме­ни­ли пра­ви­ло па­рал­ле­ло­грам­ма – по­стро­и­ли на нуж­ных век­то­рах па­рал­ле­ло­грамм и его диа­го­наль – ис­ко­мую раз­ность, помня тот факт, что одна из диа­го­на­лей – это сумма век­то­ров, а вто­рая – раз­ность.

При­мер 3 – за­да­ча 750: до­ка­жи­те, что если век­то­ры  и  равны, то се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют. До­ка­жи­те об­рат­ное утвер­жде­ние: если се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют, то век­то­ры  и  равны (см. Рис. 7).

Из ра­вен­ства век­то­ров  и  сле­ду­ет, что пря­мые АВ и CD па­рал­лель­ны, и что от­рез­ки АВ и CD равны. Вспом­ним при­знак па­рал­ле­ло­грам­ма: если у че­ты­рех­уголь­ни­ка пара про­ти­во­по­лож­ных сто­рон лежит на па­рал­лель­ных пря­мых, и их длины равны, то дан­ный че­ты­рех­уголь­ник – па­рал­ле­ло­грамм.

Рис. 7

Таким об­ра­зом, че­ты­рех­уголь­ник ABCD, по­стро­ен­ный на за­дан­ных век­то­рах, – па­рал­ле­ло­грамм. От­рез­ки AD и BC яв­ля­ют­ся диа­го­на­ля­ми па­рал­ле­ло­грам­ма, одно из свойств ко­то­ро­го: диа­го­на­ли па­рал­ле­ло­грам­ма пе­ре­се­ка­ют­ся и в точке пе­ре­се­че­ния де­лят­ся по­по­лам. Таким об­ра­зом, до­ка­за­но, что се­ре­ди­ны от­рез­ков AD и BC сов­па­да­ют.

До­ка­жем об­рат­ное утвер­жде­ние. Для этого вос­поль­зу­ем­ся дру­гим при­зна­ком па­рал­ле­ло­грам­ма: если в неко­то­ром че­ты­рех­уголь­ни­ке диа­го­на­ли пе­ре­се­ка­ют­ся и точ­кой пе­ре­се­че­ния де­лят­ся по­по­лам, то этот че­ты­рех­уголь­ник – па­рал­ле­ло­грамм. От­сю­да че­ты­рех­уголь­ник ABCD – па­рал­ле­ло­грамм, и его про­ти­во­по­лож­ные сто­ро­ны па­рал­лель­ны и равны, таким об­ра­зом, век­то­ры  и  кол­ли­не­ар­ны, оче­вид­но, что они со­на­прав­ле­ны, и мо­ду­ли их равны, от­сю­да век­то­ры  и  равны, что и тре­бо­ва­лось до­ка­зать.

При­мер 4 – за­да­ча 760: до­ка­жи­те, что для любых некол­ли­не­ар­ных век­то­ров  и  спра­вед­ли­во нера­вен­ство  (см. Рис. 8)

От­ло­жим из про­из­воль­ной точки А век­тор , по­лу­чим точку В, из нее от­ло­жим некол­ли­не­ар­ный ему век­тор . По пра­ви­лу па­рал­ле­ло­грам­ма или тре­уголь­ни­ка по­лу­чим сумму век­то­ров  – век­тор . Имеем тре­уголь­ник .

Длина суммы век­то­ров со­от­вет­ству­ет длине сто­ро­ны АС тре­уголь­ни­ка. По нера­вен­ству тре­уголь­ни­ка длина сто­ро­ны АС мень­ше, чем сумма длин двух дру­гих сто­рон АВ и ВС, что и тре­бо­ва­лось до­ка­зать.

Рис. 8

При­ме­не­ние век­то­ров к ре­ше­нию задач

 4. Выражение вектора через два неколлинеарных

На­пом­ним, что мы уже изу­чи­ли неко­то­рые факты о век­то­рах, и те­перь умеем опре­де­лять рав­ные век­то­ры, кол­ли­не­ар­ные век­то­ры, со­на­прав­лен­ные и про­ти­во­по­лож­но на­прав­лен­ные. Также мы умеем скла­ды­вать век­то­ры по пра­ви­лу тре­уголь­ни­ка и па­рал­ле­ло­грам­ма, скла­ды­вать несколь­ко век­то­ров по пра­ви­лу мно­го­уголь­ни­ка, умеем умно­жать век­тор на число. Ре­ше­ние задач с век­то­ра­ми ис­поль­зу­ет все эти зна­ния. Пе­рей­дем к ре­ше­нию неко­то­рых при­ме­ров.

При­мер 1 – за­да­ча 769: от­ре­зок ВВ1 – ме­ди­а­на тре­уголь­ни­ка . Вы­ра­зи­те через век­то­ры  и  век­то­ры  и .

От­ме­тим, что век­то­ры  и  некол­ли­не­ар­ны, то есть пря­мые АВ и АС не па­рал­лель­ны.

В даль­ней­шем мы узна­ем, что любой век­тор может быть вы­ра­жен через два некол­ли­не­ар­ных век­то­ра.

Вы­ра­зим пер­вый век­тор (см. Рис. 1): , т. к. по усло­вию ВВ1 – ме­ди­а­на тре­уголь­ни­ка, зна­чит, век­то­ры  и  имеют рав­ные мо­ду­ли, кроме того, оче­вид­но, что они кол­ли­не­ар­ны и при этом со­на­прав­ле­ны, зна­чит, дан­ные век­то­ра равны.

Рис. 1

Для вы­ра­же­ния сле­ду­ю­ще­го век­то­ра вос­поль­зу­ем­ся пра­ви­лом па­рал­ле­ло­грам­ма для вы­чи­та­ния. Мы пом­ним, что одна из диа­го­на­лей па­рал­ле­ло­грам­ма, по­стро­ен­но­го на двух век­то­рах, со­от­вет­ству­ет сумме этих век­то­ров, а вто­рая – их раз­но­сти. Диа­го­наль, со­от­вет­ству­ю­щая раз­но­сти век­то­ров, сле­ду­ет от конца к на­ча­лу, таким об­ра­зом, если по­стро­ить на за­дан­ных век­то­рах  и  па­рал­ле­ло­грамм, то его диа­го­наль  будет со­от­вет­ство­вать раз­но­сти .

Век­тор  яв­ля­ет­ся про­ти­во­по­лож­ным к за­дан­но­му век­то­ру , от­сю­да .

Век­тор  ана­ло­гич­но век­то­ру  можно пред­ста­вить в виде раз­но­сти век­то­ров . При вы­ра­же­нии сле­ду­ет учесть тот факт, что точка В1 яв­ля­ет­ся се­ре­ди­ной от­рез­ка АС, зна­чит, век­то­ры  и  равны, зна­чит, век­тор  можно пред­ста­вить как удво­ен­ное про­из­ве­де­ние век­то­ра .

Перед ре­ше­ни­ем за­да­чи мы ска­за­ли, что через за­дан­ные два некол­ли­не­ар­ных век­то­ра можно вы­ра­зить любой век­тор. Вы­ра­зим, на­при­мер, ме­ди­а­ну АА1 (см. Рис. 2).

По­лу­чи­ли си­сте­му урав­не­ний, вы­пол­ним их сло­же­ние:

Век­то­ры  в сумме со­став­ля­ют ну­ле­вой век­тор, так как они кол­ли­не­ар­ны и про­ти­во­на­прав­ле­ны, а мо­ду­ли их равны, таким об­ра­зом по­лу­ча­ем:

Рис. 2

По­де­лим обе части урав­не­ния на два, по­лу­чим: 

Из дан­ной за­да­чи можно сде­лать вывод, что если за­да­ны два некол­ли­не­ар­ных век­то­ра, то любой тре­тий век­тор на плос­ко­сти можно од­но­знач­но вы­ра­зить через эти два век­то­ра. Для этого необ­хо­ди­мо при­ме­нить пра­ви­ло сло­же­ния век­то­ров, либо ме­то­дом тре­уголь­ни­ка, либо па­рал­ле­ло­грам­ма, и пра­ви­ло умно­же­ния век­то­ра на число.

 5. Свойство средней линии треугольника

При­мер 2: до­ка­зать с по­мо­щью век­то­ров свой­ство сред­ней линии тре­уголь­ни­ка (см. Рис. 3).

Задан про­из­воль­ный тре­уголь­ник , точки M и N – се­ре­ди­ны сто­рон АВ и АС со­от­вет­ствен­но, MN – сред­няя линия тре­уголь­ни­ка. Свой­ство сред­ней линии: сред­няя линия па­рал­лель­на ос­но­ва­нию тре­уголь­ни­ка и равна его по­ло­вине.

До­ка­за­тель­ство дан­но­го свой­ства ана­ло­гич­но для тре­уголь­ни­ка и тра­пе­ции.

Рис. 3

Вы­ра­зим век­тор  двумя спо­со­ба­ми:

По­лу­чи­ли си­сте­му урав­не­ний:

          Вы­пол­ним сло­же­ние урав­не­ний си­сте­мы:

Сумма век­то­ров  – это ну­ле­вой век­тор, длины этих век­то­ров равны по усло­вию, кроме того, они оче­вид­но кол­ли­не­ар­ны и про­ти­во­на­прав­ле­ны. Ана­ло­гич­но сум­мой век­то­ров  будет ну­ле­вой век­тор. По­лу­ча­ем:

По­де­лим обе части урав­не­ния на два:

Таким об­ра­зом, мы по­лу­чи­ли, что сред­няя линия тре­уголь­ни­ка равна по­ло­вине его ос­но­ва­ния. Кроме того, из ра­вен­ства век­то­ра  по­ло­вине век­то­ра  сле­ду­ет, что эти век­то­ры кол­ли­не­ар­ны и со­на­прав­ле­ны, а зна­чит, пря­мые MN и ВС па­рал­лель­ны.

Таким об­ра­зом, мы до­ка­за­ли свой­ство сред­ней линии тра­пе­ции при по­мо­щи век­то­ров.

 6. Свойство точки пересечения медиан треугольника

При­мер 3: задан про­из­воль­ный тре­уголь­ник  (см. Рис. 4). В нем про­ве­де­ны ме­ди­а­ны АА1, ВВ1, СС1. Точка пе­ре­се­че­ния ме­ди­ан – М. Век­тор  со­от­вет­ству­ет силе  – силе  – силе . До­ка­зать, что .

На­пом­ним, что ме­ди­а­ны тре­уголь­ни­ка пе­ре­се­ка­ют­ся в одной точке и этой точ­кой де­лят­ся в от­но­ше­нии 2:1, счи­тая от вер­ши­ны.

Ино­гда точку пе­ре­се­че­ния ме­ди­ан на­зы­ва­ют цен­тром тя­же­сти тре­уголь­ни­ка.

Вы­пол­ним сло­же­ние век­то­ров , вос­поль­зу­ем­ся для этого пра­ви­лом па­рал­ле­ло­грам­ма (см. Рис. 5).

Рис. 4

По­лу­ча­ем: 

С дру­гой сто­ро­ны, , так как BMCD – па­рал­ле­ло­грамм, диа­го­на­ли па­рал­ле­ло­грам­ма точ­кой пе­ре­се­че­ния де­лят­ся по­по­лам, А1 – точка пе­ре­се­че­ния диа­го­на­лей па­рал­ле­ло­грам­ма, зна­чит, от­рез­ки МА1 и А1D равны, от­сю­да, по свой­ству точки пе­ре­се­че­ния ме­ди­ан, длины век­то­ров  и  равны, но дан­ные век­то­ры про­ти­во­на­прав­ле­ны, а зна­чит, их сумма

Рис. 5

равна ну­ле­во­му век­то­ру. Мы пом­ним, что век­тор , а век­тор , таким об­ра­зом, , что и тре­бо­ва­лось до­ка­зать.

 7. Неравенство треугольника

При­мер 4 – за­да­ча 773: до­ка­жи­те, что для любых век­то­ров  и  спра­вед­ли­во сле­ду­ю­щее нера­вен­ство: 

Ре­ше­ние: пред­ста­вим раз­ность век­то­ров в виде суммы: . Также об­ра­тим вни­ма­ние на тот факт, что длины про­ти­во­на­прав­лен­ных век­то­ров  и  равны: . Таким об­ра­зом, можно пе­ре­пи­сать ис­ход­ное вы­ра­же­ние:

Для удоб­ства вве­дем новую пе­ре­мен­ную:  и пе­ре­пи­шем вы­ра­же­ние:

. А дан­ное нера­вен­ство – нера­вен­ство тре­уголь­ни­ка – было до­ка­за­но в преды­ду­щем уроке. От­ме­тим, что ра­вен­ство на­блю­да­ет­ся в том слу­чае, когда тре­уголь­ник вы­рож­да­ет­ся в от­ре­зок.

Итак, мы вспом­ни­ли все ос­нов­ные опре­де­ле­ния и свой­ства век­то­ров, вспом­ни­ли ос­нов­ные опе­ра­ции над век­то­ра­ми, рас­смот­ре­ли при­ме­не­ние век­то­ров при ре­ше­нии раз­лич­ных задач, до­ка­за­ли неко­то­рые свой­ства фигур и ре­ши­ли наи­бо­лее рас­про­стра­нен­ные типы задач.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/vektory/vektory-povtorenie-teorii-zadachi

http://interneturok.ru/ru/school/geometry/8-klass/vektory/primenenie-vektorov-k-resheniyu-zadach

http://metodbook.ru/index.php/matematika/9-testy-po-geometrii-9-klass/8-itogovyj-test-po-teme-vektory-variant-1.html

http://metodbook.ru/index.php/matematika/9-testy-po-geometrii-9-klass/9-itogovyj-test-po-teme-vektory-variant-2.html

http://uslide.ru/images/22/28455/960/img5.jpg

http://www.studfiles.ru/html/2706/538/html_OqWQ3sDQeV.5bGa/htmlconvd-WBhq8w_html_73af1ab4.png

http://uchkollektor39.ru/uploads/images/items/29cc1d8d90989d9f0e3df70c3d95a9ee.jpg

http://rushkolnik.ru/tw_files2/urls_3/891/d-890061/890061_html_m5ff065f.jpg

http://cs1-48v4.vk-cdn.net/p24/3551abddfac0c8.mp3?extra=amJxaBk9gfTT0lPmsOEwb8Rn_T2twbNJH1OUazYT-T9cSSu4_1787ibMzOu6ytv1rZKrpdEq7XnWZN1f-bjAuKyWIFf7mzw

http://matssir.ucoz.ru/_ld/0/33_G8p84-85.pptx

http://nsportal.ru/sites/default/files/2014/05/11/vektory._dokazatelstvo.pptx

http://v.5klass.net/zip/b66d124d0243f848a0bf454b75404034.zip

Добавить комментарий