Как найти передаточное отношение привода


Загрузить PDF


Загрузить PDF

В машиностроении передаточное отношение является показателем отношения частоты вращения двух или более сцепленных шестерен. Как правило, когда мы имеем дело с двумя шестернями, и ведущая шестерня (получающая поворачивающую силу непосредственно от двигателя) больше ведомой шестерни, то последняя вращается быстрее (и наоборот). Формула для вычисления: передаточное отношение = T2/ T1, где T1 — количество зубьев первой шестерни, Т2 — количество зубьев второй шестерни.[1]

Две шестерни

  1. Изображение с названием Determine Gear Ratio Step 1

    1

    Для того чтобы определить передаточное отношение, у вас должно быть по крайней мере две шестерни, сцепленных друг с другом; такое сцепление называется зубчатой передачей. Как правило, первая шестерня является ведущей шестерней (крепится к валу двигателя), а вторая — ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть сколь угодно много шестерен. Они называются промежуточными.

    • Сейчас рассмотрим зубчатую передачу с двумя шестернями. Для определения передаточного отношения эти шестерни должны быть сцеплены друг с другом (то есть их зубья сцеплены и одна шестерня поворачивает другую). Например, дана небольшая ведущая шестерня (шестерня 1) и большая ведомая шестерня (шестерня 2).
  2. Изображение с названием Determine Gear Ratio Step 2

    2

    Посчитайте количество зубьев на ведущей шестерне. Простейший способ найти передаточное отношение между двумя шестернями — сравнить количество зубьев на каждой из них. Начните с определения количества зубьев на ведущей шестерне. Вы можете сделать это вручную или посмотреть на маркировку шестерни.

    • В нашем примере допустим, что меньшая (ведущая) шестерня имеет 20 зубьев.
  3. Изображение с названием Determine Gear Ratio Step 3

    3

    Посчитайте количество зубьев на ведомой шестерне.

    • В нашем примере допустим, что большая (ведомая) шестерня имеет 30 зубьев.
  4. Изображение с названием Determine Gear Ratio Step 4

    4

    Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В зависимости от условий задачи вы можете записать ответ в виде десятичной дроби, обыкновенной дроби или в виде отношения (х:у).

    • В нашем примере: 30/20 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.
    • Такое передаточное отношение означает, что меньшая ведущая шестерня должна совершить полтора оборота, чтобы большая ведомая шестерня совершила один оборот. Это имеет смысл, так как ведомая шестерня больше, а значит вращается медленнее.[2]

    Реклама

Более двух шестерен

  1. Изображение с названием Determine Gear Ratio Step 5

    1

    Зубчатая передача может включать сколь угодно большое количество шестерен. В этом случае первая шестерня является ведущей шестерней (крепится к валу двигателя), а последняя — ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть несколько промежуточных шестерен; они используются для изменения направления вращения или для сцепления двух шестерен (когда сцепление напрямую невозможно).[3]

    • Рассмотрим пример, приведенный выше, но теперь ведущей шестерней станет шестерня с 7 зубьями, а шестерня с 20 зубьями превратится в промежуточную шестерню (ведомая шестерня с 30 зубьями остается той же).
  2. Изображение с названием Determine Gear Ratio Step 6

    2

    Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни. Помните, что при определении передаточного отношения зубчатой передачи с несколькими шестернями важно знать только количество зубьев ведомой шестерни и количество зубьев ведущей шестерни, то есть промежуточные шестерни на значение передаточного отношения не влияют.

    • В нашем примере: 30/7 = 4,3. Это означает, что ведущая шестерня должна совершить 4,3 оборота, чтобы ведомая (большая) шестерня совершила один оборот.
  3. Изображение с названием Determine Gear Ratio Step 7

    3

    Если необходимо, найдите передаточные отношения для промежуточных шестерен. Для этого начните с ведущей шестерни и двигайтесь в направлении ведомой шестерни. При каждом новом вычислении передаточного отношения для промежуточных шестерен рассматривайте предыдущую шестерню в качестве ведущей (и делите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни).

    • В нашем примере передаточные отношения для промежуточной шестерни: 20/7 = 2,9 и 30/20 = 1,5. Заметьте, что передаточные отношения для промежуточной шестерни отличаются от передаточного отношения всей зубчатой передачи (4,3).
    • Также заметьте, что (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

    Реклама

  1. Изображение с названием Determine Gear Ratio Step 8

    1

    Определите частоту вращения ведущей шестерни. Используя передаточное отношение и частоту вращения ведущей шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (rpm).

    • Рассмотрим пример зубчатой передачи, описанной выше (с тремя шестернями). Здесь частота вращения ведущей шестерни равна 130 оборотам в минуту. Вычислим частоту вращения ведомой шестерни.
  2. Изображение с названием Determine Gear Ratio Step 9

    2

    Подставьте соответствующие значения в формулу: S1 × T1 = S2 × T2, где S1, Т1 — частота вращения и количество зубьев ведущей шестерни; S2, Т2 — частота вращения и количество зубьев ведомой шестерни.

    • В нашем примере нужно найти S2, но по этой формуле вы можете найти любую переменную.
    • 130 rpm × 7 = S2 × 30
  3. Изображение с названием Determine Gear Ratio Step 10

    3

    Теперь просто обособьте неизвестную переменную на одной стороне уравнения, чтобы получить ответ. Не забудьте приписать к нему соответствующую единицу измерения.

    • В нашем примере:
    • 130 rpm × 7 = S2 × 30
    • 910 = S2 × 30
    • 910/30 = S2
    • 30,33 rpm = S2
    • Другими словами, если ведущая шестерня вращается со скоростью 130 оборотов в минуту, ведомая шестерня будет вращаться со скоростью 30,33 оборотов в минуту. Это имеет смысл, так как ведомая шестерня значительно больше, а значит вращается намного медленнее.

    Реклама

Советы

  • Для того, чтобы понять принцип передаточного отношения в действии, покатайтесь на велосипеде! Обратите внимание, что проще всего ехать в гору, когда у вас небольшая шестерня спереди, а большая сзади. Хотя педалями легче крутить меньшую шестерню, понадобится множество вращений, чтобы заставить заднее колесо вращаться, то есть скорость велосипеда будет ниже.
  • Мощность, необходимая для движения нагрузки, может увеличиваться или уменьшаться (относительно мощности двигателя) посредством зубчатой передачи. При проектировании двигателя необходимо учитывать передаточное отношение, чтобы мощность двигателя соответствовала характеру будущей нагрузки. Повышающая система (в которой обороты вала нагрузки выше, чем обороты двигателя) требует мотора, вырабатывающего оптимальную мощность при меньших скоростях вращения ведущего вала.
  • С другой стороны, понижающая система (в которой обороты вала нагрузки ниже, чем обороты двигателя) требует мотора, вырабатывающего оптимальную мощность при больших скоростях вращения ведущего вала.

Реклама

Об этой статье

Эту страницу просматривали 257 410 раз.

Была ли эта статья полезной?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 мая 2022 года; проверки требуют 7 правок.

Передаточное отношение — отношение между угловыми скоростями, либо крутящими моментами валов (в передачах), либо перемещениями (линейным или угловым). Понятие применяется в машиностроении (передачи), теории механизмов и машин, метрологии.

Ввиду большой распространённости редукторов, термин чаще всего применяют в смысле передаточного отношения механических передач. Но несмотря на отличие этого термина от передаточного числа, некоторые авторитетные издания допускают путаницу в этом вопросе[1].

Передаточное отношение зубчатой и цепной передачи[править | править код]

Данная зубчатая передача состоит из двух зубчатых колёс с числом зубьев (z) в 10 (малое) и 28 (большое).
В зависимости от того, какое зубчатое колесо является ведущим, передаточное отношение данной передачи будет либо 2.8 (ведущее колесо — малое), либо 0.357 (ведущее колесо — большое). В первом случае передача понижающая (редуктор), во втором — повышающая (мультипликатор).
Передаточное число данной передачи равно 2.8 независимо от того, какое зубчатое колесо ведущее

Отношение угловой скорости (ω) ведущего зубчатого колеса к угловой скорости ведомого зубчатого колеса.[2] Определение одинаково справедливо для любых типов зубчатых передач — цилиндрических, конических, гиперболоидных. Обозначение — i.

Передаточное отношение любых зубчатых и цепных передач можно определить без замеров угловых скоростей в движении, зная лишь числа зубьев всех зубчатых колёс, составляющих передачу. В общем случае для передачи из двух зубчатых колёс справедлива формула:

{displaystyle i_{12}={frac {omega _{1}}{omega _{2}}}={frac {z_{2}}{z_{1}}}} — то есть, число зубьев ведомого зубчатого колеса делится на число зубьев ведущего зубчатого колеса (не наоборот).

Понижающая передача[править | править код]

Зубчатая передача, в которой угловая скорость ведомого зубчатого колеса меньше угловой скорости ведущего зубчатого колеса.[3] Передаточное отношение понижающей передачи всегда больше единицы. То же самое, что редуктор.

Повышающая передача[править | править код]

Зубчатая передача, в которой угловая скорость ведомого зубчатого колеса больше угловой скорости ведущего зубчатого колеса.[4] Передаточное отношение понижающей передачи всегда меньше единицы. То же самое, что мультипликатор.

Передаточное число[править | править код]

Передаточное число — отношение числа зубьев большего зубчатого колеса к числу зубьев меньшего зубчатого колеса.[5] Справедливо только для пары зацепления (зацепления только из двух зубчатых колёс). Ввиду большего числителя дроби, передаточное число больше или равно (если число зубьев совпадает) единице. Из определения следует, что передаточное число является частным случаем передаточного отношения для одноступенчатого зубчатого редуктора (понижающая передача), причём передаточное число всегда беззнаковое.

u = zБ / zМ,

где:
zБ — число зубьев большей шестерни зубчатого колеса;
zМ — число зубьев меньшей шестерни зубчатого колеса.

Передаточное отношение вариатора[править | править код]

Отношение частоты вращения (или угловой скорости) входного вала вариатора к частоте вращения (или угловой скорости) выходного вала вариатор.[6] Передаточное отношение вариатора не фиксировано и может изменяться в пределах т.н. диапазона регулирования вариатора.

Передаточное отношение гидротрансформатора/гидромуфты[править | править код]

Отношение частоты вращения (или угловой скорости) выходного звена к частоте вращения (или угловой скорости) входного звена.[7] Передаточное отношение гидродинамической передачи не фиксировано и может изменяться в пределах т.н. диапазона регулирования.

Теория механизмов и машин[править | править код]

В теории механизмов и машин, передаточным отношением звена или механизма называют отношение угловых скоростей[8] (либо мгновенных перемещений, в случае линейного передаточного числа механизма[9]) входного и выходного звеньев. Таким образом, отличие здесь в том, что потери механизма не учитываются (нулевые), и в некоторых случае, соотношение меняется при работе механизма (передаточное отношение при работе кривошипно-шатунного механизма). Формула для угловых координат:

{displaystyle i={frac {omega _{1}}{omega _{2}}}}, где
omega _{1},omega _{2} — угловые скорости звеньев[8].

В рядовых механизмах общее передаточное отношение равняется произведению частных[8].

Метрология[править | править код]

Передаточное отношение — отношение линейного или углового перемещения указателя к изменению измеряемой величины, вызвавшей такое перемещение[10].

Примечания[править | править код]

  1. Передаточное отношение — Энциклопедия журнала “За рулем”. wiki.zr.ru. Дата обращения: 12 февраля 2020. Архивировано 12 февраля 2020 года.
  2. ГОСТ 16530-83 Передачи зубчатые. — С. 28. 2.8.3 «Передаточное отношение зубчатой передачи».
  3. ГОСТ 16530-83 Передачи зубчатые. — С. 33. 3.5.1 «Понижающая зубчатая передача».
  4. ГОСТ 16530-83 Передачи зубчатые. — С. 33. 3.5.1 «Повышающая зубчатая передача».
  5. ГОСТ 16530-83 Передачи зубчатые. — С. 22. 2.4.4 «Передаточное число зубчатой передачи».
  6. ГОСТ 26546-85 Вариаторы. — С. 12. Приложение 1 «Пояснения терминов, применяемых в стандарте», «Передаточное отношение вариатора».
  7. ГОСТ 19587-74 Передачи гидродинамические; термины и определения. — С. 11. термин 4.20.
  8. 1 2 3 Ефанов А.М., Ковалевский В.П. Теория механизмов и машин. — ОГУ, 2004. — С. 22, 125. — ISBN 5-7410-0011-8.
  9. Линейное передаточное отношение – Большая Энциклопедия Нефти и Газа, статья, страница 1. www.ngpedia.ru. Дата обращения: 13 февраля 2020. Архивировано 13 февраля 2020 года.
  10. Передаточное отношение таким образом равнозначно чувствительности ( по терминологии ГОСТ 3951 – 47), Передаточное отношение, … – Большая Энциклопедия Нефти и Газа. www.ngpedia.ru. Дата обращения: 14 февраля 2020. Архивировано 20 октября 2021 года.

Литература[править | править код]

  1. ГОСТ 16530-83 Передачи зубчатые; общие термины, определения и обозначения. — официальное. — Москва: ИПК Издательство стандартов, 1983. — 51 с.
  2. ГОСТ 26546-85. «Вариаторы. Общие технические условия». — Москва: Издательство стандартов, 1986. — 13 с.
  3. ГОСТ 19587-74. Передачи гидродинамические; термины и определения. — Москва: ИПК Издательство стандартов, 1974. — 37 с.
  4. Под ред. Скороходова Е. А. Общетехнический справочник. — М.: Машиностроение, 1982. — С. 416.
  5. Гулиа Н. В., Клоков В. Г., Юрков С. А. Детали машин. — М.: Издательский центр “Академия”, 2004. — С. 416. — ISBN 5-7695-1384-5.
  6. Анурьев В. И. Справочник конструктора-машиностроителя : в 3 т. / под ред. И. Н. Жестковой. — 8-е изд., перераб. и доп. — М. : Машиностроение, 2001. — ББК 34.42я2. — УДК 621.001.66 (035)(G). — ISBN 5-217-02962-5.
  7. Курмаз Л. В. Детали машин. Проектирование// Л. В. Курмаз; А. Т. Скойбеда — 2-е изд., испр. и доп. — Мн.: УП «Технопринт», — 2002. — 296с.,ил.
  8. Чернавский С. А., Боков К. Н. Курсовое проектирование деталей машин. — 1988.
    1. Определение кпд привода и выбор электродвигателя

Кинематическая
схема силового привода

1
– электродвигатель; 2- клиноременная
передача; 3 – редуктор; 4 – муфта;5 –
рама; I
– входной(быстроходный) вал; II
– промежуточный вал; III
– выходной (тихоходный) вал.

Рис.
1.1

Для
привода электродвигателя следует
определить его мощность, которая
вычисляется по формуле

где
– мощность на выходном валу, Вт;– коэффициент полезного действия (КПД)
привода.

Мощность
на выходном валу определяется по формуле

где

– мощность на выходном валу, Вт;– крутящий момент на выходном валу,;– угловая скорость на валу, рад/с.

Угловая
скорость на валу вычисляется по формуле

где

– частота вращения на выходном валу,
об/мин.

Численное
значение угловой скорости на выходном
валу равно

Найдём
численное значение мощности на выходном
валу

КПД
привода может быть вычислен по формуле

где

КПД ременной передачи;
КПД подшипников качения валаI;
– КПД быстроходной передачи;– КПД подшипников качения валаII;
– КПД тихоходной зубчатой передачи;– КПД подшипников качения валаIII,

КПД муфты.

Значения
всех коэффициентов, входящих в формулу
(1.4), выбираем по рекомендациям в
соответствии с [1, с.5],
;;,=0,97,=0,98.
Подставляя эти значения в формулу (1.4),
получаем значение КПД редуктора

Подставляя
численные значения в (1.1) получим
действительное значение мощности
двигателя

По
[2, с.5] выбираем 3-х фазный двигатель
переменного тока серии 4А с учётом
.

Тип
двигателя 4А180S2,
асинхронная частота вращения
об/мин.

Полученные
данные запишем в табл. 1.1.

Таблица
1.1.

Тип
двигателя

Номинальная

мощность

двигателя
,
кВт

Синхронная
частота вращения

,
об/мин

Асинхронная

Частота
вращения
,
об/мин

4А180S2

22,0

3000

2945

    1. Определение общего передаточного отношения привода и разбивка его по ступеням

Передаточное
отношение привода определяется по
формуле
Так как,
то выбираем передаточные отношения
следующим образом:

,
.
В соответствии с [1, с.36] выбираем.

Определим
передаточное отношение редуктора по
формуле

Разбиваем

где

передаточное число быстроходной
передачи;– передаточное число тихоходной передачи.

В
соответствии с рекомендациями выбираем

где
– коэффициент, учитывающий оптимальную
разбивку.,
так как схема развернута.

Из
формулы (1.7) выразим передаточное число
тихоходной передачи

    1. Определение частот вращения, крутящих моментов и мощностей на валах

Мощность
вала определяется по формуле

Мощность
на промежуточном валу находим по формуле

Для
нахождения крутящего момента на входном
валу воспользуемся формулой

где
– крутящий момент на входном валу,;– угловая скорость на входном валу,
рад/с.

Угловая
скорость на входном валу вычисляется
по формуле

где
– частота вращения входного вала, об/мин.

Частота
вращения входного вала определяется
по формуле

Подставляя
численное значение
в (1.13), находим угловую скорость на
входном вал 3

Найдём
крутящий момент на входном валу по
формуле (1.12)

Крутящий
момент на промежуточном валу рассчитывается
по формуле

где

– крутящий момент на промежуточном
валу,;– угловая скорость на промежуточном
валу, рад/с.

Угловая
скорость на промежуточном валу вычисляется
по формуле

где
– частота вращения промежуточного
вала, об/мин.

Частота
вращения промежуточного вала определяется
по формуле

Подставляя
численное значение
в (1.16), находим угловую скорость на
промежуточном валу

Найдём
крутящий момент на промежуточном валу
по формуле (1.15)

Крутящий
момент электродвигателя рассчитывается
по формуле

где

– крутящий момент на валу электродвигателя,;– угловая скорость на валу электродвигателя,
рад/с.

Угловая
скорость на валу электродвигателя
вычисляется по формуле

Найдём
крутящий момент на валу электродвигателя
по формуле (1.18)

Рассмотрим
случай

Рассмотрим
случай

Полученные
значения частот вращения, мощностей,
крутящих моментов и передаточных чисел
приведены в табл. 1.2, 1.3,1.4

Таблица
1.2

Результат
энерго-кинематического расчёта вариант
1

Вал

i(U)

T,

n,
об/мин

N,
Вт

Электродвигатель

64,1

2945

I

98,2

1840

3,92

II

374

470

18400

3,24

III

1150

145

Таблица
1.3

Результат
энерго-кинематического расчёта вариант
2

Вал

i(U)

T,

n,
об/мин

N,
Вт

Электродвигатель

1,6

64,1

2945

I

98,2

1840

3,21

II

18400

3,96

III

1150

145

Таблица
1.4

Результат
энерго-кинематического расчёта вариант
3

Вал

i(U)

T,

n,
об/мин

N,
Вт

Электродвигатель

1,6

64,1

2945

I

98,2

1840

4,63

II

18400

2,74

III

1150

145

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

Передаточное число

Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

Общее определение

Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

Передачи с крутящим моментом

В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

  • ременная;
  • цепная;
  • зубчатая.

Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудование для изменения скорости вращения рабочего узла, в автомобилях.

Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

Передача с крутящим моментом

Переходной конструкцией является ременная зубчатая передача.

На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

Характеристика зубчатой передачи

В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

Модуль – размер между одинаковыми точками двух соседних зубьев.

Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

Зубчатая передача

Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

Зачем нужна паразитка

При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:

  • количества оборотов;
  • мощности;
  • направление вращения.

Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.

Паразитка

Виды зубчатых соединений

Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:

  • прямозубая;
  • косозубая;
  • шевронная;
  • коническая;
  • винтовая;
  • червячная.

Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.

Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.

Недостаток косозубых зацеплений в дополнительной нагрузки на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.

Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.

В конической зубчатой передачи оси расположены под углом. Рабочий элемент нарезается по конической плоскости. Передаточное число таких пар может равняться 1, когда надо только изменить плоскость действия силы. Для увеличения мощности нарезается полукруглый зуб. Передающееся количество оборотов считается только по зубу, диаметр в основном используется при расчетах габаритов узла.

Винтовая передача имеет зуб, нарезанный под углом 45⁰. Это позволяет располагать оси рабочих элементов перпендикулярно в разных плоскостях. У червячной передачи нет шестерни, ее заменяет червяк. Оси деталей не пересекаются. Они расположены перпендикулярно в пространстве, но разных плоскостях. Передаточное число пары определяется количеством заходов резьбы на червяке.

Кроме перечисленных производят и другие виды передач, но они встречаются крайне редко и к стандартным не относятся.

Многоступенчатые редукторы

Как подобрать нужное передаточное число. Двигатель обычно выдает несколько тысяч оборотов в минуту. На выходе – колесах автомобиля и шпинделе станка, такая скорость вращения приведет к аварии. Мощности исполняющего механизма не хватит, чтобы рабочий инструмент мог резать металл, а колеса сдвинули автомобиль. Одна пара зубчатого зацепления не сможет обеспечить требуемое понижение или ведомая деталь должна иметь огромные размеры.

Создается многоступенчатый узел с несколькими парами зацеплений. Передаточное число редуктора считается как произведение чисел каждой пары.

Uр = U1×U2 × … ×Un;

Где:

Uр – передаточное число редуктора;

U1,2,n – каждой из пар.

Перед тем как подобрать передаточное число редуктора, надо определиться с количеством пар, направлением вращения выходного вала, и делать расчет в обратном порядке, исходя из максимально допустимых габаритов колес.

Многоступенчатый редуктор

В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.

Редуктор и коробка скоростей

Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.

Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.

Трансмиссия автомобиля

В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение – передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.

В состав трансмиссии входит несколько редукторов. Это, прежде всего:

  • коробка передач – скоростей;
  • дифференциал.

Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.

Посредством переключения – перемещения вала, шестерни на валу соединяются поочередно с разными колесами. При включении задней скорости, через паразитку меняется направление вращения, автомобиль в результате движется назад.

Автомобильная трансмиссия

Дифференциал представляет собой конический редуктор с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

U12 = ±ω12=±n1/n2

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения; n1 и n2 – частота вращения.

Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Как рассчитать передаточное отношение шестерен механической передачи.

В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев. Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев.

Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.

                Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.

Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.

Итак, рассмотрим пример расчета с использованием двух шестерен.

Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей.  Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.

В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.

Представим, что ведущая шестерня (красная)  имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.

Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.

Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.

Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.

Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.

В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.

Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

Определим теперь частоту вращения.

Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.

Будем использовать формулу: S1 × T1 = S2 × T2,

 Где:

 S1 – частота вращения желтой (ведущей) шестерни,

Т1 – количество зубьев желтой (ведущей) шестерни;

S2- частота вращения красной шестерни,

Т2 – количество зубьев красной шестерни.

В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.

340 rpm × 7 = S2 × 40

2 380 =S2 × 40

2 380 40 = S2

59,5 об/мин = S2

Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин.  Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.

Добавить комментарий