Как найти перемещение тела по графику координаты

Вычисление перемещения по графику проекции скорости

Из кодификатора по физике, 2020.
«1.1.3. Вычисление перемещения по графику зависимости υ(t).»

Теория

Пусть задан график зависимости проекции скорости { v }_{ x } от времени t (рис. 1).

Проекция перемещении тела { s }_{ x } за промежуток времени от { t }_{ 1 } до { t }_{ 2 } численно равна по величине площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 } (см. рис. 1, площадь выделена штриховкой).

Проекцию перемещения на ось 0Х будем считать:

положительной, если проекция скорости на данную ось будет положительной (тело движется по направлению оси) (см. рис. 1);

отрицательной, если проекция скорости на данную ось будет отрицательной (тело движется против оси) (рис. 2).

Путь s может быть только положительным:

Напоминаем формулы для расчета площадей фигур:

— прямоугольника – S=acdot b

— треугольника – S=frac { acdot h }{ 2 }

— трапеции – S=frac { a+b }{ 2 } cdot h

Задачи

Задача 1. По графику проекции скорости тела (рис. 3) определите проекцию его перемещения между 1 и 5 с.

Ответ: ____ м.

Решение. Проекция перемещения за промежуток времени Δt={ t }_{ 2 }{ t }_{ 1 }=5с–1с=4c численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=1 с и { t }_{ 2 }=5 с (рис. 4, площадь выделена штриховкой). Фигура ABCD — это трапеция, ее площадь равна

S=frac { a+b }{ 2 } cdot h=frac { AD+BC }{ 2 } cdot DC

где DC = Δt = 4 c, AD = 3 м/c, BC = 5 м/c. Тогда S = 16 м.
Проекция перемещения { s }_{ x }>0, т.к. проекция скорости { v }_{ x }>0.
{ s }_{ x }=S=16 м.

Ответ: 16.

Задача 2. Автомобиль движется по прямой улице вдоль оси X. На рисунке 5 представлен график зависимости проекции скорости автомобиля от времени. Определите путь, пройденный автомобилем в течение указанных интервалов времени.

Интервал времени Путь
от 0 до 10 с Ответ: м.
от 30 до 40 с Ответ: м.

В бланк ответов перенесите только числа, не разделяя их пробелом или другим знаком.

Решение. Путь за промежуток времени Δt = { t }_{ 2 }{ t }_{ 1 } численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 }.

На интервале [0 с, 10 с] ищем площадь треугольника (рис. 6).

{ S }_{ 1 }=frac { acdot h }{ 2 },

где a = 20 м/c, h=triangle { t }_{ 1 }=10c-0c=10c. Тогда { S }_{ 1 }=100 м.

Путь равен значению площади (путь всегда положительный, т.е. s > 0).

{ s }_{ 1 }={ S }_{ 1 }=100 м.

На интервале [30 с, 40 с] ищем площадь трапеции (см. рис. 6).

{ S }_{ 2 }=frac { a+b }{ 2 } cdot h,

где a = 10 м/c, b = 15 м/c, h = Δt = 40 c – 30 с = 10 с. Тогда { s }_{ 2 }={ S }_{ 2 }=125 м.

Ответ: 100125.

Задача 3. Определите за первые 4 с (рис. 7):

а) проекцию перемещения тела;

б) пройденный путь.

Ответ: а) ____ м; б) ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=4c-0=4c (пер-вые 4 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 с и { t }_{ 2 }=4 с (рис. 8, площадь выделена штриховкой).

Так как при { t }_{ 0 }=3 с проекция скорости поменяла знак, то получили две фигуры, два треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,

где

{ a }_{ 1 }=30quad м/с, quad { h }_{ 1 }=triangle { t }_{ 1 }=3c-0c=3c

{ a }_{ 2 }=|-10 м/c|=10 м/c, quad { h }_{ 2 }=triangle { t }_{ 2 }=4c-3c=1c.

Тогда { S }_{ 1 }=45м, quad { S }_{ 2 }=5м.

а) Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0; проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. В итоге получаем: { s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }={ S }_{ 1 }-{ S }_{ 2 },quad { s }_{ 1x }=45м – 5м = 40 м. б) Путь равен значению площади (путь всегда положительный, т.е. s>0).

s={ S }_{ 1 }+{ S }_{ 2 }, s = 45 м + 5 м = 50 м.

Ответ: а) 40; б) 50.

Задача 4. График зависимости проекции скорости материальной точки, движущейся вдоль оси 0Х, от времени изображен на рисунке 9. Определите перемещение точки, которое она совершила за первые 6 с.

Ответ: ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=6c-0=6c (пер-вые 6 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 c и { t }_{ 2 }=6 c (рис. 10, площадь выделена штриховкой).

Так как при { t }_{ 01 }=2c и { t }_{ 02 }=4c проекция скорости меняет знак, то получили три фигуры, три треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,quad { S }_{ 3 }=frac { { a }_{ 3 }cdot { h }_{ 3 } }{ 2 } ,

где

{ a }_{ 1 }=3 м/с, h_{ 1 }=triangle { t }_{ 1 }=2c-0c=2c

{ a }_{ 2 }=|-2 м/c| = 2 м/с, h_{ 2 }=triangle { t }_{ 2 }=4c-2c=2c

{ a }_{ 2 }=3м/c, h_{ 3 }=triangle { t }_{ 3 }=6c-4c=2c.

Тогда { S }_{ 1 }=3 м, { S }_{ 2 }=2 м, { S }_{ 3 }=3 м.

Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0.

Проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. Проекция перемещения { s }_{ 3x }>0, т.к. проекция скорости { v }_{ 3x }>0. В итоге получаем:

{ s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }+{ s }_{ 3x }={ S }_{ 1 }-{ S }_{ 2 }+{ S }_{ 3 },quad { s }_{ x }= 3 м – 2 м + 3 м = 4 м.

Ответ: 4.

Задача 5. На рисунке приведен график зависимости v_x скорости тела от времени t.

Определите путь, пройденный телом в интервале времени от 0 до 5 с.

Ответ: ____ м.

Решение. Решение любых графических задач основывается на умении «читать» графики. В данной задаче рассматривается зависимость проекции скорости тела от времени. На интервале от 0 до 3с проекция скорости уменьшается от значения 15 м/с до 0. На интервале от 3 до 5с модуль проекции начинает возрастать от нулевого значения до 10 м/с. Причем важно «увидеть», что тело в этом временном интервале начинает движение в направлении, противоположном оси ОХ.

Пройденный путь будет определяться площадью геометрической фигуры, образованной под графиком проекции скорости.

Рис.1

Дальнейшее решение задачи сводится к нахождению площадей двух треугольников, заштрихованных на рис.1

S_1=frac{15cdot 3}{2}=22,5 (м).

S_2=frac{10cdot 2}{2}=10 (м).

Тогда, общий путь в интервале времени от 0 до 5с будет определяться суммой отдельных путей S_1 и S_2.

S_o = S_1+S_2
S_o = 22,5+10=32,5 (м).
Ответ: 32,5 м

По условию этой задачи можно поставить второй вопрос: найти проекцию перемещения в интервале времени от 0 до 5с.

В этом случае надо учесть, что проекция перемещения в интервале времени от 0 до 3 с положительная и её значение равно пройденному пути на этом интервале.

S_{1x}=S_1=22,5 (м).

В интервале времени от 3 с до 5 с проекция перемещения отрицательная, так как тело движется в направлении противоположном оси ОХ.

S_{2x}=-10 (м).

Проекция перемещения за весь интервал времени будет равна S_{o.x}=S_{1x}+S_{2x}
S_{o.x}=22,5+(-10)=12,5 (м).

Ответ: 12,5 м

Задача 6. На рисунке представлен график зависимости модуля скорости v прямолинейно движущегося тела от времени t. Определите по графику путь, пройденный телом в интервале времени от 1 до 5 с.


Ответ: ____ м.

Решение. Для нахождения пройденного пути в интервале времени от 1с до 5с необходимо рассчитать площадь геометрической фигуры под графиком модуля скорости.

Рис.1

Дальнейшее решение сводится к расчету площади трапеции, заштрихованной на графике (см. рис.1).

S=frac{4+2}{2}cdot 10=30 (м).

Особенностью подобной задачи является то, что при решении, необходимо внимательно отследить временной интервал, на котором требуется рассчитать пройденный путь.
Ответ: 30 м.

Задача 7. Из двух городов навстречу друг другу с постоянной скоростью двиижутся два автомобиля. На графике показана зависимость расстояния между автомобилями от времени. Скорость первого автомобиля равна 15 м/с. Какова скорость второго автомобиля?


Ответ: ____ м.

Решение. При движении навстречу друг к другу расстояние между двумя автомобилями уменьшается от значения 144 км до 0. На графике видно, что встреча автомобилей произошла в момент времени 60 минут, так как расстояние между автомобилями стало равным 0. Расчеты в этой задаче требуют обязательного применения системы «СИ».

144 км = 144000 м; 60 мин = 3600 с.
Используя эти данные, можно рассчитать скорость сближения автомобилей.

v=frac{144000}{3600}=40 м/с

Так как автомобили движутся навстречу друг другу, то v=v_1+v_2, отсюда скорость второго автомобиля можно выразить как v_2=v-v_1

v_2=40-15=25 (м/с)

Ответ: 25 м/с.

Задача 8. На рисунке представлен график зависимости модуля скорости тела от времени. Найдите путь, пройденный телом за время от момента времени 0 с до момента времени 5 с. (Ответ дайте в метрах.)


Ответ: ____ м.

Решение. Для нахождения пройденного пути необходимо рассчитать площадь геометрической фигуры (трапеции) под графиком модуля скорости (см.рис.1). Это относится к интервалу времени от 0 до 3 с. От 3 с до 5 с скорость тела равна 0, следовательно, тело находилось в состоянии покоя и пройденный путь в этом интервале равен 0.

Рис.1

S_1=frac{3+1}{2}cdot 10=20 (м).
S_2=0
S_o=20+0=20 (м).

Сакович А.Л., 2020

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Вычисление перемещения по графику проекции скорости» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

В данной статьи изложены мысли, которые возникали при решении задач с сайта “Решу ЕГЭ” в разделе – https://phys-ege.sdamgia.ru/test?theme=204. Рисунки взяты оттуда же.

1. Общий подход

Анализ и использование данного графика базируется на формуле перемещения тела S, м:

Формула 1
Формула 1

Как видно из формулы площадь под графиком равна перемещению тела. Например, тело с 1 по 2 секунду на графике, представленном на рис. 1 прошло S = V * t = 2м/с * (2с – 1с) = 2м/с *1с = 2м

Рис. 1. График зависимости скорости от времени
Рис. 1. График зависимости скорости от времени

2. Чуть посложнее

Если мы захотим найти перемещение тела с начала движения t = 0c до 4-ой секунды движения тела согласно графику на рис. 2, то нам необходимо найти сумму площадей трех геометрических фигур: с 0с по 1с – треугольник, с 1с по 2с прямоугольник, со 2с по 4с – трапеция.

Рис. 2. Находим перемещение как сумму площадей геометрических фигур
Рис. 2. Находим перемещение как сумму площадей геометрических фигур

S треугольника = (1/2) * длину высоты треугольника * длину сторону треугольника, к которой проведена высота =
=(1/2) * 2м/с * (1с – 0с) = 1/2 * 2м/с * 1с =

S прямоугольника мы находили в начале статьи =
S трапеции = (1/2) * сумму оснований трапеции * высоту трапеции =
=(1/2) * (2м/с + 6м/с) * (4с – 2с) = (1/2) * 8м/с * 2с =

Итого
S = 1м + 2м + 8м = 11м

3. А если скорость равна нулю?

Не стоит пугаться нулевых скоростей на каком-либо интервале времени. Например с 3с по 5с на графике, представленном на рис. 3 перемещение тела равно 0м, т. к. площадь фигуры с 3с по 5с равна 0.

Рис. 3. Нулевое перемещение
Рис. 3. Нулевое перемещение

4. А если скорость ушла “в минус”?

Рис. 4. Отрицательная скорость
Рис. 4. Отрицательная скорость

А вот отрицательная скорость может вызвать некоторые затруднения. Здесь надо очень внимательно читать задание и не перепутать очень похожие физические величины: путь и перемещение. Путьвеличина скалярная и поэтому для ее нахождения с помощью графика на рис. 4 надо зеркально отобразить отрицательные участки скорости и сложить площади фигур (см. Рис. 5)

Рис. 5. Зеркальное отображение отрицательных участков
Рис. 5. Зеркальное отображение отрицательных участков

Перемещение – величина векторная и поэтому при определении этой величины необходимо учитывать знак площади. Например, если нужно найти перемещение тела с 0с по 10с (см. рис. 5), то нужно площадь треугольника с 0с по 4с сложить с площадью треугольника с 8с по 10с и из полученного результата вычесть площадь треугольника с 4с по 8с.

5. Когда можно и не считать!

Рис. 6. Анализ графиков
Рис. 6. Анализ графиков

Иногда требуется визуальный анализ графиков. Например, необходимо определить какой автомобиль из 4-х с 0с до 15с проехал наибольшее расстояние?
Рассматривая площади геометрических фигур под графиками (см. рис. 6) видим, что площадь больше у графика (и машины) №3.

6. Переходим к ускорению

До сих пор мы на линейных графиках с координатами скорости и времени (см. рис. 7) видели скорость, время и перемещение (или путь).

Рис. 7. Ищем на графике ускорение
Рис. 7. Ищем на графике ускорение

А тут ещё прячется ускорение. Давайте попробуем его найти. Вспоминаем формулу равноускоренного движения

Формула 2 . Формула равноускоренного движения
Формула 2 . Формула равноускоренного движения

Рассматривая график на рис. 7 определим Vo при t = 0с => Vo = 2м/с.
А теперь возьмём на графике точку в момент времени
t = 1c и определим по графику скорость в этот момент времени => V = 4м/с.
Подставляем найденные значения в формулу 2 =>
4м/с = 2м/с +
a * 1c => а = (4м/с – 2м/с) / 1с = 2м/с2

Возвращаемся к графику (см. рис. 8)

Рис. 8. Находим уравнение графика
Рис. 8. Находим уравнение графика

Теперь мы можем сказать, что на рис. 8 представлен график линейного уравнения V = Vo + a*t = 2 + 2*t. Эти знания расширяют область использования графика на рис. 8. Например мы можем сказать, что при
t = 10c скорость будет равна V = 2м/с + 2м/с2*10с = 22м/с

7. Ищем ускорение на произвольном прямолинейном участке графика

Нас могут попросить найти ускорение тела на произвольном прямолинейном участке графика. Например с 6с по 10с на графике, представленном на рис. 9.

Рис. 9. Находим ускорение на произвольном прямолинейном участке графика
Рис. 9. Находим ускорение на произвольном прямолинейном участке графика

Для этого получим формулу для ускорения, усложнив формулу 2 заменив t на (t – to):

Формула 3.  Формула для определения ускорения
Формула 3. Формула для определения ускорения

Возвращаемся к поиску ускорения:
а = (5м/с – (-5м/с))/(10с – 6с) = 10м/с / 4с = 2.5м/с2

8. Ищем координаты тела

Зная начальные координаты тела, начальную скорость, ускорение тела и время перемещения можем найти координаты тела в любой момент времен (формула 4)

Формула 4. Уравнение для координаты тела
Формула 4. Уравнение для координаты тела

9. Ищем скорость в пространстве

Рис. 10. Скорость в пространстве
Рис. 10. Скорость в пространстве

Мы можем знать значение проекций скорости на оси: х, y и z. Нас могут попросить найти модуль скорости. Ищем по формуле 5:

Формула 5. Формула для модуля скорости
Формула 5. Формула для модуля скорости

Для понимания формулы 5 можно представить модуль скорости диагональю параллелепипеда, а проекции скорости сторонами параллелепипеда (см. рис. 11)

рис. 11 Расшифровка формулы 4
рис. 11 Расшифровка формулы 4

Заключение

Пока, это все мысли, которые появлялись во время решения задач в разделе сайта “Решу ЕГЭ” по адресу https://phys-ege.sdamgia.ru/test?theme=204. Пишите в комментариях, если что-то напрашивается добавить.

Автор с благодарностью примет любые пожертвования на развитие канала “От сложного к простому” https://money.yandex.ru/to/4100170126360.

Физика

Тема 2: Кинематика

Урок 8: Графический способ нахождения пути и перемещения

  • Видео
  • Тренажер
  • Теория

Заметили ошибку?

Графический способ нахождения пути и перемещения
 

При равномерном движении, проекция перемещения на ось х (S x) вычисляется как S x=v x t.
 

Если мы на графике изобразим зависимость скорости v xот времени, то получим прямую линию, параллельную оси t . Тогда S xна графике – это площадь прямоугольника

Если тело движется против оси х, то проекция скорости vнаправлена против оси х и v x будет отрицательной. Тогда

S x=−vx t.
 

При неравномерном движении, мы разбиваем проекцию перемещения на маленькие участки, где на каждом участке, скорость практически не менялась и движение равномерно

Сложив площади всех маленьких участков (где площадь каждого участка S x=v x t ¿, мы получим общую площадь под графиком, т. е. проекцию перемещения на ось t .


 

Задача 1

Электропоезд, отходящий от станции, в течение 0,5 мин двигался с ускорением 0,8 м/с2. Определите путь, который он прошёл за это время, и скорость в конце пути.
 

Дано
 


 

Решение
 

Задача 2

Тело движется прямолинейно вдоль оси ОХ (рис 8). График зависимости скорости V x от времени представлен на рисунке 7. По данному графику определите перемещение и путь, пройденные телом за время t = 6 с.

Заметили ошибку?

Расскажите нам об ошибке, и мы ее исправим.

Скачать конспект “Использование графиков”

К_1.05 ИСПОЛЬЗОВАНИЕ ГРАФИКОВ

Содержание

§1. АНАЛИЗ ГРАФИКОВ КИНЕМАТИЧЕСКИХ ВЕЛИЧИН
– КАЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ

Конспект – К_1.05 Использование графиков

1.1°. Определение характера движения – равномерное или не равномерное

Форма графика  говорит нам о виде движения – равномерное или равно-переменное.

 

1.2°. Определение особых точек.

“Чтение” любого кинематического графика необходимо начинать с поиска “особых точек”. Такими точками являются точки пересечения с осями (в большинстве случаев), а так же точки перегибов и изломов.

Пересечение с вертикальной осью даст нам начальные значения параметров

 

Пересечение графика скорости с горизонтальной осью даст нам “точку остановки”

Перегибы и изломы так же позволяют определить где находится (на оси времени) точка остановки.

Мы много внимания уделяем точке остановки, так как это точка где происходит ИЗМЕНЕНИЕ характера движения.

Например, до точки остановки тело двигалось вверх, значит после точки остановки оно будет двигаться вниз, если до точки остановки тело двигалось замедленно, то после точки остановки тело будет двигаться ускоренно.

1.3°. Определение характера изменения скорости – ускоренное или замедленное. Правило ТРОЛЛЕЙБУСА.

Правило ТРОЛЛЕЙБУСА заключается в следующем:

– если тело приближается к точке остановки – оно замедляется

– если тело удаляется от точки остановки – оно ускоряется.

1.4° Направления вектора скорости и перемещения по графику КООРДИНАТЫ

Чтобы определить направление движения с помощью графика КООРДИНАТЫ необходимо отследить как изменяется координата с течением времени.     

 

посмотреть анимацию

Например , если с течением времени координата уменьшается (Δx<0) , то это означает, что тело движется в направлении противоположном OX

1.5° Направления вектора скорости и перемещения по графику СКОРОСТИ

Чтобы определить направление движения с помощью графика СКОРОСТИ необходимо обратить внимание на то в какой полуплоскости находится график

Стрелки показывают куда смотреть

1.5° Направления вектора ускорения по графику КООРДИНАТЫ

Чтобы определить направление движения с помощью графика КООРДИНАТЫ необходимо отследить как направлены ветви графика,

если вверх – ускорение положительно

если вниз, ускорение отрицательно

1.6° Направления вектора ускорения по графику СКОРОСТИ

Что бы определить знак ускорения по графику СКОРОСТИ нужно вспомнить как определяется ускорение. А определяется оно следующим образом:

где Vx – конечная скорость, Vxo – начальная скорость тела

Следовательно, глядя на график скорости нам нужно отследить как ИЗМЕНЯЕТСЯ СКОРОСТЬ, а именно

если проекция скорости уменьшается – ускорение отрицательно.

если проекция скорости возрастает со временем – ускорение положительно.

На рисунке ниже ускорение отрицательно, так как V2x < V1x.

§2. АНАЛИЗ ГРАФИКОВ КИНЕМАТИЧЕСКИХ ВЕЛИЧИН
– КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ

2.1°. Определение перемещения по графику КООРДИНАТЫ

Проекция перемещения по графику координаты всегда определяется на основании формулы

(1.01)

  где Xк – конечная координата Xн – начальная координата движения

При этом не имеет значение насколько сложен график, является ли движение, равномерным или равнопеременным, замедленным или ускоренным и т.д. Посмотреть пример (анимация)

2.2°. Определение пути по графику КООРДИНАТЫ

Определение пути является более сложной операцией по сравнению с нахождением перемещения.
Что бы правильно найти путь на заданном участке движения необходимо понимать, что

  • путь равен перемещению, только если направление движения не изменяется
  • с течением времени путь только возрастает (путь это ДЛИНА траектории)

Соответственно, если дан график движения, состоящего из участков с различными направлениями, необходимо:

  1. разделить все движение на участки с одинаковым направлением движения (однородные участки).
  2. найти перемещение на каждом участке (по формуле 1.01).
  3. просуммировать модули всех перемещений.

Пример

В примере путь на всем участке движения будет определятся как

(1.02)

2.3°. Определение перемещения по графику СКОРОСТИ

Значение перемещения определяется как ПЛОЩАДЬ ФИГУРЫ, одной из сторон которого является часть графика, одной стороной часть оси ОХ и двумя другими являются перпендикуляры опущенные из точек соответствующим заданным моментам времени

В данном случае, на промежутке Δt перемещение будет равно площади трапеции

Пример более сложного случая

2.4°. Определение пути по графику СКОРОСТИ

Так же как и на графике координаты, разбиваем все движение на однородные участки (т.е. участки где движение однонаправленно).    

Каждому участку при этом будет соответствовать  своя площадь. Затем что бы найти путь сумируем все площади

(2.01)

2.5° Определение скорости по графику КООРДИНАТЫ (для равномерного движения)

Что бы найти значение проекции скорости. Необходимо показать на графике некоторый промежуток времени Δt и соответствующее ему перемещение, тогда проекцию скорости можно будет найти как

(3.01)

Отметим что это действие позволяет определить не только модуль проекции, но и ее знак, а значит и направление.

Отметим так же что отношение в формуле (3.01) не что иное как тангенс угла альфа.

(3.02)

Следовательно угол наклона графика координаты при равномерном движении характеризует величину скорости тела. Чем боьше угол наклона (по отношению к горизонтали), тем больше скорость тела.

2.6° Определение ускорения по графику СКОРОСТИ

В с соответствии проекция ускорения может быть найдена как

(3.03)

Поэтому что бы найти ускорение с помощью графика скорости, необходимо показать на графике промежуток времени Δt и соответствующее ему изменение  скорости ΔV

Их отношение и будет значением проекции вектора ускорения.

При нахождении изменения скорости принципиально ВАЖНО! отнимать от КОНЕЧНОГО значения НАЧАЛЬНОЕ, а не наоборот.

Из рисунка видно, что отношение a =  ΔV / Δt  это тангенс угла α.  Таким образом, математическое понятие тангенса имеет в данном случае физический смысл БЫСТРОТЫ ИЗМЕНЕИЯ скорости.

(3.04)

2.7° Построение уравнения движения по точкам графика КООРДИНАТЫ

Если мы располагаем информацией о конкретных точках графика (знаем координаты точек), мы можем построить уравнение движения соответствующее данному графику.

Идея заключается в том что бы РАСПИСАТЬ эти точки с помощью искомого уравнения движения.

Проиллюстрируем на примере.

Пусть дан следующий график

Для которого известны две точки А(4;2) и В(7;6) , а так же известно начальное значение координаты X0 = 0.

Подставим известные значения времени и координаты точки А в уравнение координаты и то же самое проделаем для точки В.

Получим следующую систему уравнений

Решая эту систему, найдем начальное значение проекции ускорения и скорости (ax= -5/12 ,  Vx = 29/12).

Следовательно уравнение координаты для заданного движения будет иметь вид

Добавить комментарий