Пересечение множеств
Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.
Друзья Джона = { | Том, Фред, Макс, Джорж } |
Друзья Майкла = { | Лео, Том, Фред, Эван } |
Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.
Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.
Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда:
Общие друзья Джона и Майкла | = { Том, Фред } |
В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.
Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.
В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.
Обозначим множество друзей Джона через букву A, множество друзей Майкла — через букву B, а множество общих друзей Джона и Майкла обозначим через букву C:
A = { Том, Фред, Макс, Джордж }
B = { Лео, Том, Фред, Эван }
C = { Том, Фред }
Тогда пересечением множеств A и B будет множество C и записываться следующим образом:
A ∩ B = C
Символ ∩ означает пересечение.
Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:
«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».
Или еще проще:
«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».
Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A, а множество друзей Майкла через букву B
A = { Макс, Джордж }
B = { Лео, Эван }
В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅
A ∩ B = ∅
Пример 2. Рассмотрим два множества: множество A, состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18
A = { 1, 2, 3, 5, 7 }
B = { 1, 2, 3, 4, 6, 12, 18 }
Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B
C = { 1, 2, 3 }
Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B
Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B, состоящее из чисел 1, 4, 5, 7
A = { 1, 5, 7, 9 }
B = { 1, 4, 5, 7 }
Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B
C = { 1, 5, 7 }
Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B.
Пример 4. Найти пересечение следующих множеств:
A = { 1, 2, 3, 7, 9 }
B = { 1, 3, 5, 7, 9}
С = { 3, 4, 5, 8, 9}
Пересечением множеств A, B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A, B и C. Этими элементами являются числа 3 и 9.
Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения ∩ запишем, что пересечением множеств A, B и C является множество D
D = { 3, 9}
A ∩ B ∩ C = D
Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.
К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5. Пересечением в данном случае является множество, состоящее из элементов 3 и 5. Чтобы записать пересечение, можно воспользоваться прямым перечислением:
{ 1, 3, 5 } ∩ { 2, 3, 5 } = { 3, 5 }
Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.
Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:
2, 3, 4, 5, 6 ∈ [2; 6]
Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.
Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6):
3, 4, 5 ∈ (2; 6)
Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.
Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8]. Найти их пересечение.
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8]:
2, 3, 4, 5, 6 ∈ [2; 6]
4, 5, 6, 7, 8 ∈ [4; 8]
Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6], так и второму [4; 8].
Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]
[2; 6] ∩ [4; 8] = [4; 6]
Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6], на нижней — промежуток [4; 8]
Видно, что числа, принадлежащие промежутку [4; 6], принадлежат как промежутку [2; 6], так и промежутку [4; 8]. Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6]. В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле что очень удобно.
Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7]:
−2, −1, 0, 1, 2, 3 ∈ [−2; 3]
4, 5, 6, 7 ∈ [4; 7]
Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:
[−2; 3] ∩ [4; 7] = Ø
Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:
Пример 7. Дано множество из одного элемента { 2 }. Найти его пересечение с промежутком (−3; 4)
Множество, состоящее из одного элемента { 2 }, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:
Пересечением множества { 2 } и числового промежутка (−3; 4) будет множество, состоящее из одного элемента { 2 }, поскольку элемент 2 принадлежит как множеству { 2 }, так и числовому промежутку (−3; 4)
{ 2 } ∩ (−3; 4) = { 2 }
На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.
По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.
Например, чтобы решить систему неравенств , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.
В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)
Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]
А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]
Если мы изобразим множество решений системы на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6], который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]
[3; +∞) ∩ (−∞; 6] = [3; 6]
Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства
x ∈ [3; 6]
Пример 2. Решить неравенство
Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.
Решением первого неравенства является числовой промежуток (−∞; −1).
Решением второго неравенства является числовой промежуток (−∞; −5).
Решением третьего неравенства является числовой промежуток (−∞; 4).
Решением системы будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4). В данном случае этим пересечением является промежуток (−∞; −5).
(−∞; −1) ∩ (−∞; −5) ∩ (−∞; 4) = (−∞; −5)
На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5), одновременно принадлежат всем исходным промежуткам.
Запишем ответ к системе с помощью числового промежутка:
x ∈ (−∞; −5)
Пример 3. Решить неравенство
Решением первого неравенства y > 7 является числовой промежуток (7; +∞).
Решением второго неравенства y < 4 является числовой промежуток (−∞; 4).
Решением системы будет пересечение числовых промежутков (7; +∞) и (−∞; 4).
В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:
(7; +∞) ∩ (−∞; 4) = ∅
Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:
Объединение множеств
Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.
На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.
Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.
A = { 1, 2, 3 }
B = { 4, 5, 6 }
Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B
C = { 1, 2, 3, 4, 5, 6 }
В данном случае объединением множеств A и B является множество C и обозначается следующим образом:
A ∪ B = C
Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение A ∪ B = C можно прочитать так:
Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.
В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.
Вернёмся к созданному нами множеству C, куда входят все элементы множеств A и B. Возьмём для примера из этого множества элемент 5. Что можно про него сказать?
Если 5 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B. Так оно и есть:
A = { 1, 2, 3 }
B = { 4, 5, 6 }
C = { 1, 2, 3, 4, 5, 6 }
Возьмем ещё один элемент из множества С, например, элемент 2. Что можно про него сказать?
Если 2 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B. Так оно и есть:
A = {1, 2, 3}
B = {4, 5, 6}
C = { 1, 2, 3, 4, 5, 6 }
Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.
Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.
A = {1, 2, 3, 4}
B = {2, 4, 5, 6}
Видим, что элементы 2 и 4 одновременно принадлежат и множеству A, и множеству B. Если мы захотим объединить множества A и B, то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:
C = { 1, 2, 3, 4, 5, 6 }
Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B.
Итак, у нас имеются следующие исходные множества:
A = { 1, 2, 3, 4 }
B = { 2, 4, 5, 6 }
Зададим новое множество С и добавим в него все элементы множества A
C = { 1, 2, 3, 4,
Теперь добавим элементы из множества B, которые не принадлежат множеству A. Множеству A не принадлежат элементы 5 и 6. Их и добавим во множество C
C = { 1, 2, 3, 4, 5, 6 }
Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.
Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.
Друзья Джона = { | Том, Фред, Макс, Джорж } |
Друзья Майкла = { | Лео, Том, Фред, Эван } |
Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.
Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.
Все друзья Джона и Майкла | = { Том, Фред, Макс, Джордж, Лео, Эван } |
В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.
Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла
Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5]. Найти их объединение.
Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.
Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:
−7, −6, −5, −4, −3,−2, −1, 0 ∈ [−7; 0]
−3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−3; 5]
Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5], который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел
−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]
Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.
Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]
[−7; 0] ∪ [−3; 5] = [−7; 5]
Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5]. На верхней области отметим числовой промежуток [−7; 0], на нижней — промежуток [−3; 5]
Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5]. Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.
Действительно, если взять любое число из промежутка [−7; 5], то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5].
Возьмём из промежутка [−7; 5] любое число, например число 2. Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5], то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]
Возьмём ещё какое-нибудь число. Например, число −4. Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5]. В данном случае оно принадлежит промежутку [−7; 0]
Возьмём ещё какое-нибудь число. Например, число −2. Оно принадлежит как промежутку [−7; 0], так и промежутку [−3; 5]. Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.
Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2; −1] и [4; 7].
Идея остаётся та же самая — объединением числовых промежутков [−2;−1] и [4; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7]. Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:
[−2; −1] ∪ [4; 7] = { −2, −1, 4, 5, 6, 7 }
Получили множество { −2, −1, 4, 5, 6, 7 }. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4, не вошли в полученное множество
Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см
Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.
Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15], поскольку она не содержит все числа, которые должна была содержать.
Решение неравенств, содержащих знак ≠
Некоторые неравенства содержат знак ≠ (не равно). Например, 2x ≠ 8. Чтобы решить такое неравенство, нужно найти множество значений переменной x, при которых левая часть не равна правой части.
Решим неравенство 2x ≠ 8. Разделим обе части данного неравенства на 2, тогда получим:
Получили равносильное неравенство x ≠ 4. Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство x ≠ 4 любое число, которое не равно 4, то получим верное неравенство.
Подставим, например, число 5
5 ≠ 4 — верное неравенство, поскольку 5 не равно 4
Подставим 7
7 ≠ 4 — верное неравенство, поскольку 7 не равно 4
И поскольку неравенство x ≠ 4 равносильно исходному неравенству 2x ≠ 8, то решения неравенства x ≠ 4 будут подходить и к неравенству 2x ≠ 8. Подставим те же тестовые значения 5 и 7 в неравенство 2x ≠ 8.
2 × 5 ≠ 8
2 × 7 ≠ 8
Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:
Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2x ≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞). Напомним, что для слова «или» используется символ ∪
x ∈ (−∞; 4) ∪ (4; +∞)
В этом выражении говорится, что значения, принимаемые переменной x, принадлежат промежутку (−∞; 4) или промежутку (4; +∞).
Неравенства, содержащие знак ≠, также можно решать, как обычные уравнения. Для этого знак ≠ заменяют на знак =. Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.
Решим предыдущее неравенство 2x ≠ 8, как обычное уравнение. Заменим знак ≠ на знак равенства =, получим уравнение 2x = 8. Разделим обе части данного уравнения на 2, получим x = 4.
Видим, что при x, равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.
Пример 2. Решить неравенство 3x − 5 ≠ 1 − 2x
Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях:
Разделим обе части получившегося неравенства на 5
Решением неравенства x ≠ 1,2 является множество всех чисел, не равных 1,2.
Изобразим множество решений неравенства x ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:
x ∈ (−∞; 1,2) ∪ (1,2; +∞)
В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)
Решение совокупностей неравенств
Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.
Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.
А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.
Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:
Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.
Решением первого неравенства x ≥ 3 является числовой промежуток [3; +∞). Решением второго неравенства x ≤ 6 является числовой промежуток (−∞; 6].
Множество значений x, при которых верно хотя бы одно из неравенств, будет принадлежать промежутку [3; +∞) или промежутку (−∞; 6]. Так и записываем:
x ∈ [3; +∞) ∪ (−∞; 6]
В этом выражении говорится, что переменная x, входящая в
совокупность принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6]. А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.
Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству x ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству x ≤ 6.
Посмотрите внимательно на выражение x ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6]. Точнее, объединение множеств решений первого и второго неравенства.
Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.
Иначе говоря, решением совокупности будет объединение числовых промежутков [3; +∞) и (−∞; 6]
Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞). Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть
[3; +∞) ∪ (−∞; 6] = (−∞; +∞)
Ответ можно оставить таким, каким мы его записали ранее:
x ∈ [3; +∞) ∪ (−∞; 6]
либо заменить на более короткий:
x ∈ (−∞; +∞)
Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.
Возьмем для примера число 8. Оно удовлетворяет первому неравенству x ≥ 3.
8 ≥ 3
Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству x ≤ 6
1 ≤ 6
Возьмем еще какое-нибудь число, например, число 5. Оно удовлетворяет и первому неравенству x ≥ 3 и второму x ≤ 6
Пример 2. Решить совокупность неравенств
Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.
Для начала найдём множество решений первого неравенства x < −0,25. Этим множеством является числовой промежуток (−∞; −0,25).
Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).
Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.
x ∈ (−∞; −0,25) ∪ [−7; +∞)
Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)
Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть
(−∞; −0,25) ∪ [−7; +∞) = (−∞; +∞)
Ответ можно оставить таким, каким мы его записали ранее:
x ∈ (−∞; −0,25) ∪ [−7; +∞)
либо заменить на более короткий:
x ∈ (−∞; +∞)
Пример 3. Решить совокупность неравенств
Решим каждое неравенство по отдельности:
Множеством решений первого неравенства x < −3 является числовой промежуток (−∞; −3).
Множеством решений второго неравенства x ≤ 0 является числовой промежуток (−∞; 0].
Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.
x ∈ (−∞; −3) ∪ (−∞; 0]
Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −3) и (−∞; 0]
Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]
(−∞; −3) ∪ (−∞; 0] = (−∞; 0]
Ответ можно оставить таким, каким мы его записали ранее:
x ∈ (−∞; −3) ∪ (−∞; 0]
либо заменить на более короткий:
x ∈ (−∞; 0]
Задания для самостоятельного решения
Задание 1. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 5 }
B = { 3, 4, 5 }
Решение:
A ∩ B = { 5 }
A ∪ B = { 1, 2, 3, 4, 5 }
Задание 2. Найдите пересечение и объединение следующих множеств:
А = { −3, −2, −1, 0, 1, 2 }
B = { 1, 2, 3, 4, 5 }
Решение:
A ∩ B = { 1, 2 }
A ∪ B = { −3, −2, −1, 0, 1, 2, 3, 4, 5 }
Задание 3. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 3 }
B = { 3, 4 }
Решение:
A ∩ B = { 3 }
A ∪ B = { 1, 2, 3, 4 }
Задание 4. Найдите пересечение и объединение следующих числовых промежутков:
[−2; 7) и (0; 10]
Решение:
[−2; 7) ∩ (0; 10] = (0; 7)
[−2; 7) ∪ (0; 10] = [−2; 10]
Задание 5. Найдите пересечение и объединение следующих числовых промежутков:
(−∞; 3] и [−2; 1)
Решение:
(−∞; 3] ∩ [−2; 1) = [−2; 1)
(−∞; 3] ∪ [−2; 1) = (−∞; 3]
Задание 6. Найдите пересечение и объединение следующих числовых промежутков:
(3; +∞) и [2; +∞)
Решение:
(3; +∞) ∩ [2; +∞) = (3; +∞)
(3; +∞) ∪ [2; +∞) = [2; +∞)
Задание 7. Найдите пересечение и объединение следующих числовых промежутков:
[−3; −1] и (−2; 4]
Решение:
[−3; −1] ∩ (−2; 4] = (−2; −1]
[−3; −1] ∪ (−2; 4] = [−3; 4]
Задание 8. Решите неравенство:
Задание 9. Решите неравенство:
Задание 10. Решите совокупность неравенств:
Задание 11. Решите совокупность неравенств:
Задание 12. Решите совокупность неравенств:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Математика
Тестирование онлайн
Пересечение неравенств
Если требуется найти все такие значения переменной x, при которых справедливы одновременно два (или больше) неравенств, то говорят, что надо решить систему неравенств. Найти пересечение решений.
Обозначение:
Точка “2” является решением, точку “3” исключаем из общего решения.
В ответ записываем числовой промежуток, который “заштрихован” на всех координатных прямых каждого решения. Пересечение штриховки.
Двойное неравенство можно представить в виде системы неравенств
Объединение неравенств
Если требуется найти все такие значения переменной x, при которых справедливо хотя бы одно из двух (или более) неравенств, то говорят, что надо решить совокупность неравенств. Найти объединение решений.
Обозначение:
Точка “3” не является решением совокупности, точка “6” является, так как является решением первого неравенства.
В ответ записываем числовой промежуток, который “заштрихован” хотя бы на одной из координатных прямых каждого решения. Объединяем штриховки.
Содержание:
Неравенства
Существует много задач, при решении которых нужно сравнить некоторые числа или величины, найти значения переменной, удовлетворяющие некоторому неравенству.
В этом параграфе мы выясним свойства числовых неравенств, как доказывать неравенства, что такое неравенство с переменной и система неравенств с переменной, как решать неравенства и их системы.
Числовые неравенства
Вы знаете, что записи
являются примерами числовых неравенств. Вы научились сравнивать натуральные числа, дроби, рациональные и действительные числа.
Известно, что 25 > 17. Найдем разность левой и правой частей этого неравенства:
25 – 17 = 8 > 0 — разность положительна.
Найдем разность левой и правой частей неравенства 7 10:
7 – 10 = -3 0 — разность отрицательна.
Из равенства 15=15 имеем:
15-15 = 0 — разность равна нулю.
Следовательно, существует зависимость между соотношениями «>», «», «=» и значением разности левой и правой частей соответствующего неравенства (равенства). Эту зависимость выражает определение.
Определение:
- Число а больше числа b, если разность а – b — положительное число;
- Число а меньше числа b, если разность а – b — отрицательное число;
- Число а равно числу b, если разность а – b равна нулю.
Так как разность чисел а и b может быть либо положительной, либо отрицательной, либо равна нулю, то для любых чисел а и b выполняется одно и только одно из трех соотношений: а > b, a b или а = b.
Используя данное определение, сравним числа и . Для этого найдем их разность:
Разность данных чисел — число положительное, поэтому > .
Следовательно, для сравнения двух чисел а и b достаточно образовать разность а – b и выяснить, является она положительным числом, отрицательным числом или нулем. Если а – b > 0, то а > b; если а – b 0, то а b; если а – b = 0, то а = b.
На координатной прямой большее число изображают точкой, которая лежит правее точки, изображающей меньшее число (см. рис. 1).
Рис. 1
В неравенствах используют знаки: «>» — меньше, «>» — больше, «≤ »— меньше или равно (не больше), «≥» — больше или равно (не меньше).
Неравенства, образованные при помощи знаков «» или «>», называют строгими неравенствами, а неравенства, образованные при помощи знаков «≤» или «≥», называют нестрогими.
Из определения соотношений «больше», «меньше», «равно» следует, что а ≥ b, если a – b ≥ 0; a ≤ b, если а – b ≤ 0.
Числовые неравенства могут быть верными и неверными. Например, 5 8; 1,2 ≥ -1 — верные неравенства, 21 > 30 — неверное неравенство.
Доказательство неравенств
Докажем, что при любом значении а справедливо неравенство
(Еще говорят: докажем неравенство а(а – 4) (а – 2)².)
Для этого образуем разность левой и правой частей неравенства и преобразуем ее:
а(а – 4) – (a – 2)² = а² – 4а – а² + 4а – 4 = -4.
Так как разность а(а – 4) – (а – 2)² отрицательна при любом значении а, то неравенство а(а – 4) (а – 2)² справедливо также при любом значении а.
Пример:
Доказать неравенство, если .
Решение:
Образуем разность левой и правой частей неравенства и преобразуем ее:
Разность мы представили в виде дроби, числитель которой неотрицателен, так как он является квадратом некоторого числа, а знаменатель положителен как произведение положительных чисел. Поэтому эта дробь, а значит и разность, неотрицательны: . Следовательно, неравенство справедливо при любых положительных числах а и b.
Если в доказанном неравенстве принять, что b = 1, то получим верное неравенство:
Итак, сумма двух положительных взаимно обратных чисел не меньше 2.
Пример:
Доказать неравенство
Решение:
Образуем разность левой и правой частей неравенства и преобразуем ее:
Следовательно,
Для положительных чисел а и b число называют их средним геометрическим (или средним пропорциональным). Неравенство
справедливо и при любых положительных числах а и b. 11оэтому среднее арифметическое двух положительных чисел не меньше их среднего геометрического.
Пример:
Доказать, что неравенство 10a² -6а + 2ab + b² + 2 > 0 справедливо при любых действительных числах а и b.
Решение:
Так как (3а – 1 )² ≥ 0, (а + b)² ≥ 0 при любых действительных числах а и b, то (За – 1)² + (а + b)² + 1 > 0.
Примечание. При доказательстве неравенства при помощи определения соотношений «больше», «меньше» или «равно» разность левой и правой части неравенства нужно преобразовать так, чтобы можно было определить знак разности.
Выражение, полученное после преобразований, принимает неотрицательные значения, если оно является, например, суммой, произведением или частным неотрицательных чисел, четной степенью некоторого выражения и т. п.
Выражение принимает отрицательные значения, если оно является суммой отрицательных чисел, произведением или частным чисел разных знаков и т. п.
Свойства числовых неравенств
Свойство 1 | Если а > b, то b а.
Доказательство: Если а > b, то а – b — положительное число. Противоположное ему число – (а – b) = b – а является отрицательным. Так как b – а 0, то b а.
Свойство 2 | Если а b и b с, то а с.
Доказательство: По условию а b и b с, поэтому a – b и b – с — отрицательные числа. Сумма двух отрицательных чисел является отрицательным числом, поэтому (а – b) + (b – с) = а – b + b – с = а – с 0. Так как а – с 0, то а с.
Геометрическая иллюстрация свойства 2 представлена на рисунке 3.
Рис.3
Аналогично можно доказать утверждение: если а > b и b > с, то а > с.
Свойство 3 | Если к обеим частям верною неравенства прибавить одно и то же число, то получим верное неравенство.
Доказательство: Пусть а b и с — любое число. Докажем, что а + с b + с. Рассмотрим разность (а + с) – (b + с) = а + с – b – с = а – b. Так как а b, то а – b 0. Следовательно, (а + с) – (b+ с) 0, поэтому а + с b + с.
Аналогично проводится доказательство для случая а > b и любого числа с.
Следствие. Если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом знак слагаемого на противоположный. то получим верное неравенство.
Доказательство: Пусть а b + с — верное неравенство. Прибавим к обоим ее частям число -с, получим верное неравенство а + (-с) b + с + (-с) или а – с b. Итак, если перенести слагаемое с в левую часть неравенства, изменив его знак на противоположный, то получим верное неравенство.
Свойство 4 | Если обе части верною неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство. Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Доказательство: Пусть а b. Докажем, что ас bc, если с — положительное число, и ас > bc. если с — отрицательное число. Рассмотрим разность:
ас -bc = c(a – b).
По условию а b, поэтому а – b 0. F.c л и с > 0, то и произведении с(а – b) первый множитель положительный, а второй — отрицательный. Поэтому с(а – b) 0. В данном случае ас – bc 0, откуда ас bc.
Если c 0, то произведение с(a – b) положительно как произведение двух отрицательных множителей. Тогда и ас – bc > 0, откуда ас > bс.
Аналогично проводится доказательство, если имеем неравенство а > b.
Справедливой является и часть свойства, касающаяся деления обеих частей неравенства на некоторое число, так как деление можно заменить умножением на число, обратное делителю.
Следствие. Если a и b — положительные числа и а b, то •
Доказательство: Разделим обе части неравенства а b на положительное число ab. Получим:
Это следствие можно использовать при сравнении чисел, обратных данным. Например, поскольку .
Замечание. Двойное неравенство а b с можно записать в виде двух неравенств: а b и b с. Если а b и b с, то для любого числа m справедливы неравенства: а + m b + m и b + m с + m, откуда а + m b + m с + m.
Итак, если ко всем частям верного двойною неравенства прибавить одно и то же число, то получим верное двойное неравенство.
Аналогично можно обосновать утверждения:
Пример:
Известно, что –1 x 3. Оцените значение выражения:
а) х — 3; б) -х; в) 2х – 5.
Решение:
а) Прибавим ко всем частям неравенства -1 х 3 число -3, получим:
—1 — 3 x – 3 3 — 3, откуда -4 х – 3 0.
б) Умножим все части неравенства -1 x 3 на -1, получим:
1 > -х > -3, или -3 -х 1.
в) Умножим все части заданного неравенства на 2, получим: -2 2х 6. Теперь прибавим ко всем частям полученного неравенства число -5, получим:
-2 – 5 2х – 5 6 – 5, откуда -7 2х – 5 1.
Пример:
Доказать, что а³ + 1 ≥ а² + а, если а ≥ -1.
Решение:
Образуем разность левой и правой частей неравенства и преобразуем её:
Значения выражения (а – 1)² являются неотрицательными. По условию а ≥ -1, прибавим к обеим частям этого неравенства число 1, получим: а + 1 ≥ 0. Поэтому
(а – 1)² (а + 1) ≥ 0.
Следовательно, если а ≥ -1, то неравенство а³ + 1 ≥ а² + а является верным.
Сложение и умножение числовых неравенств. Оценка значений выражений
Рассмотрим действия, которые можно выполнять над верными числовыми неравенствами.
Сложение числовых неравенств
Возьмем верные числовые неравенства с одинаковыми знаками: -3 4 и 5 7. Сложим эти неравенства почленно. Получим верное неравенство того же знака, а именно: -3 + 5 4 + 7 или 2 11. В общем случае справедливо такое свойство:
Свойство 5 | Если почленно сложить верные неравенства одного знака, сохранив их общий знак, то получим верное неравенство.
Доказательство: Пусть а b и с d. Нужно доказать, что а + с b + d. Чтобы получить сумму а + с, прибавим к обеим частям первого неравенства число с, а чтобы получить сумму b + d, прибавим к обеим частям второго неравенства число b. Получим верные неравенства: а + с b + с, b + с b + d. По свойству 2 из последних двух неравенств следует, что а + с b + d.
Аналогично можно доказать, что если а > b и с > d, то а + с > b + d.
Умножение числовых неравенств
Возьмем верные неравенства: 7 > 2 и 5 > 3. Почленно перемножим их. Получим верное неравенство 7 • 5 > 2 • 3 или 35 > 6.
Почленно перемножим неравенства -3 1 и -4 6. Получим неверное неравенство 12 6.
В первом случае все числа данных неравенств были положительными, во втором — положительными и отрицательными. Докажем следующее свойство.
Свойство 4 | Если почленно перемножить верные неравенства одного знака, левые и правые части которых — положительные числа, сохранив при этом их общий знак, то получим верное неравенство.
Доказательство: Пусть а b и с d, где a, b, c и d — положительные числа. Нужно доказать, что ас bd. Умножим обе части неравенства а b на положительное число с, а обе части неравенства c d — на положительное число b. Получим верные неравенства: ас be, be bd. По свойству 2 из последних двух неравенств следует, что ас bd.
Аналогично можно доказать, что если а > b и с > d, где а, b, с и d — положительные числа, то ас > bd.
Следствие. Если а b, а и b — положительные числа, n — натуральное число, то
При доказательстве следствия достаточно взять н неравенств а b и почленно их перемножить.
Оценка значений выражений
Рассмотрим пример.
Пример:
Дано: 11 x 14 и 1 у 2. Оценить: а) сумму х + у; б) разность х – у; в) произведение xy; г) частное .
Решение:
а) Оценим сумму х + у.
Применим к неравенствам 11 х и 1 у свойство о почленном сложении неравенств. Получим: 12 х + у. Применим это же свойство к неравенствам х 14 и у 2. Получим: х + у 16. Результат запишем в виде двойного неравенства 12 х + у 16.
Сокращенно эти преобразования записывают так:
Общая схема оценки суммы имеет такой вид:
б) Оценим разность х – у.
Зная, как оценивается сумма, представим разность х – у в виде суммы х + (-у).
Сначала оценим значение выражения -у. Умножив все части неравенства 1 у 2 на -1, получим: -1> –у > -2 или -2 –у -1. Согласно свойству о почленном сложении неравенств получим:
Общая схема оценки разности имеет такой вид:
в) Оценим произведение ху.
Поскольку 11 х 14 и 1 у 2, то х и у — положительные числа. Применим к неравенству 11 х и 1 у свойство о почленном умножении неравенств. Получим: 11 ху. Применим это же свойство к неравенствам х 14 и y 2. Получим: ху 28. Результат запишем в виде двойного неравенства 11 ху 28.
Сокращенно эти преобразования записывают гак:
Общая схема оценки произведения имеет такой вид:
г) Оценим частное .
Представим частное в виде произведения . Поскольку 1 у 2,
то или . Согласно свойству о почленном умножении неравенств получим:
то есть .
Общая схема оценки частного имеет такой вид:
Пример:
Доказать неравенство (m + n)(mn + l) ≥ 4mn, где m ≥ 0, n ≥ 0.
Решение:
Используем известное неравенство , где а ≥ 0, b ≥ 0.
Запишем это неравенство для чисел m и n, а потом — для чисел mn и 1. Получим два верных неравенства:
Умножим обе части каждого неравенства на 2:
Почленно перемножив эти неравенства, получим:
Примечание. При доказательстве неравенства из примера 1 мы использовали известное неравенство, доказанное ранее. Особенность использованного способа доказательства неравенств состоит в том, что:
- записываем несколько неравенств, доказанных ранее;
- перемножив (или сложив) эти неравенства, приходим к доказываемому неравенству.
Неравенства с одной переменной. Числовые промежутки
Понятие о неравенстве с одной переменной и его решении
Рассмотрим неравенство 2х + 5 > 11. При одних значениях x данное неравенство превращается в верное числовое неравенство, при других — в неверное. Например, при х = 5 получим верное числовое неравенство 2 • 5 + 5 > 11; 15 > 11, а при х = 1 получим неверное числовое неравенство 2 • 1 + 5 > 11; 7 > 11.
Если нужно найти все значения х, при которых неравенство 2х + 5 > 11 является верным, то говорят, что нужно решить неравенство 2х + 5 > 11, содержащее одну переменную х.
При х = 5 неравенство 2х + 5 > 11 является верным. Говорят, что число 5 является решением данного неравенства или удовлетворяет данному неравенству.
Определение: Решением неравенства с одной переменной называют значение переменной, превращающее его в верное числовое неравенство.
Решить неравенство значит найти все его решения или доказать, что решений нет.
Неравенство с одной переменной преимущественно имеет бесконечное множество решений. Так, решениями неравенства 2х + 5 > 11 являются числа
и т. п. Множества решений неравенства иногда можно записывать в виде числовых промежутков.
Числовые промежутки
Рассмотрим несколько примеров.
1) Неравенству -2 х 3 удовлетворяют все действительные числа больше -2 и меньше 3, то есть все действительные числа, лежащие на числовой прямой между числами -2 и 3. Множество всех чисел, удовлетворяющих двойному неравенству -2 х 3, называют числовым промежутком или просто промежутком и обозначают (-2; 3) (читают: «промежуток от -2 до 3»). На координатной прямой его изображают так:
Рис. 4
Промежуток заштриховывают, точки -2 и 3 изображают «пустыми» («выколотыми»).
Число 2,2 удовлетворяет двойному неравенству -2 х 3, а число 4 ему не удовлетворяет. Говорят, что число 2,2 принадлежит промежутку (-2; 3), а число 4 ему не принадлежит.
Рис. 5
2) Неравенству -2 х 3 удовлетворяют все действительные числа, которые лежат между числами -2 и 3 или равны числам -2 или 3. Множество таких чисел обозначают так: [-2; 3] (читают: «промежуток от -2 до 3, включая -2 и 3»). На координатной прямой его изображают так:
Рис. 6
3) Множества чисел, удовлетворяющих двойным неравенствам -2 ≤ х 3 и -2 х ≤ 3, обозначают соответственно [-2; 3) и (-2; 3] (читают: «промежуток от -2 до 3, включая -2» и «промежуток от -2 до 3, включая 3»). Эти промежутки изображают на координатной прямой так:
Рис. 7 а Рис. 7 б
4) Неравенству х >4 удовлетворяют все действительные числа больше 4. На координатной прямой чти числа изображают точками, лежащими справа от точки с координатой 4. Множество чисел, удовлетворяющих неравенству х > 4, изображают полупрямой, находящейся справа от точки с координатой 4 без этой точки (см. рис. 8). Такое множество называют промежутком от 4 до плюс бесконечности и обозначают (4; ).
*Рис. 8
Множество чисел, удовлетворяющих неравенству х ≥ 4, изображают полупрямой (см. рис. 9). Это множество обозначают [4; ) (читают: «промежуток от 4 до плюс бесконечности, включая 4»),
Рис. 9
5) Множество чисел, удовлетворяющих неравенству х 8, записывают (; 8) и читают «промежуток от минус бесконечности до 8». Множество чисел, удовлетворяющих неравенству х ≤ 8, записывают (; 8] и читают: «промежуток от минус бесконечности до 8, включая 8». На координатной прямой эти числовые промежутки изображают гак:
Рис. 10 а
Рис. 10 б
6) Множество всех действительных чисел изображают всей координатной прямой и обозначают так:
Объединение и пересечение числовых промежутков
Рассмотрим два промежутка: [-1; 4) и (2; 7).
Рис. 11
Промежуток [-1; 7) образуют все числа, принадлежащие промежутку [-1; 4) или промежутку (2: 7). Говорят, что промежуток [-1; 7) является объединением промежутков [-1;4) и (2; 7). Записывают: , где — знак объединения.
Определение: Объединением числовых промежутков называют множество всех чисел, принадлежащих хотя бы одному из этих промежутков.
Промежуток (2; 4) образуют все общие числа из промежутков [-1; 4) и (2; 7), то есть все числа, принадлежащие каждому из промежутков [-1; 4) и (2; 7). Говорят, что промежуток (2; 4) является пересечением промежутков [-1; 4) и (2; 7). Записывают:, где — знак пересечения.
Определение: Пересечением числовых промежутков называют множество всех чисел, принадлежащих каждому из этих промежутков.
Для тех, кто хочет знать больше.
Объединением и пересечением двух числовых промежутков могут быть не числовые промежутки. Рассмотрим, например, промежутки [-2; 1] и (3;4). Чисел, принадлежащих обоим этим промежуткам, пет (см. рис. 12). Поэтому говорят, что пересечением этих промежутков является пустое множество. Его обозначают символом. Записывают: . Объединением промежутков [-2; 1] и (3; 4) является множество , не являющееся числовым промежутком (оно «состоит» из двух промежутков).
Рис. 12
Для промежутков множество общих чисел содержит только одно число — число 1 (см. рис. 13). Такое множество обозначают так: {1}. Записывают: . Легко найти, что .
Рис. 13
Пример:
Указать наименьшее и наибольшее действительные числа, принадлежащие промежутку:
Решение: а) ;
б) -2; наибольшего действительно числа, принадлежащего этому промежутку, нет. (Это следует из таких соображений. Предположим, что m — наибольшее число из промежутка [-2; 3). Так как m 3, то можно рассматривать промежуток (m; 3), любое число из которого больше m. Следовательно, число m на промежутке [-2; 3) не является наибольшим.);
в) наименьшего числа нет; 4,8;
г) ни наименьшего, ни наибольшего чисел нет.
Пример:
Отметить на координатной прямой множество чисел, удовлетворяющих неравенству, и записать это множество в виде промежутка или объединения промежутков: а) ; б) .
Решение:
а) Модулем числа х является расстояние от начала отсчета до точки, изображающей число х на координатной прямой. Поэтому решениями данного неравенства являются числа, соответствующие тем точкам координатной прямой, которые лежат от начала отсчета на расстоянии не больше 5.
Следовательно, решениями неравенства являются все числа, принадлежащие промежутку [-5; 5].
б) Решениями неравенства являются числа, которым соответствуют те точки координатной прямой, которые лежат от начала отсчета на расстоянии не меньше 5 (больше 5 или равном 5), то есть значения х, удовлетворяющие неравенству или неравенству .
Следовательно, множеством решений неравенства является объединение промежутков, то есть
Решение неравенств с одной переменной. Равносильные неравенства
Пример:
Одна сторона участка прямоугольной формы на 5 м длиннее другой. Какими могут быть стороны участка, чтобы для его ограждения хватило сетки длиной 46 м?
Решение:
Пусть длина меньшей стороны участка равна х м, тогда длина большей —
(х + 5 )м, а периметр участка — 2(х + х + 5) = (4х + 10) (м). По условию периметр не превышает 46 м. поэтому 4х + 10 ≤ 46.
Чтобы найти стороны участка, нужно решить неравенство 4х + 10 ≤ 46 с одной переменной х.
При решении неравенства его преобразуют, заменяя более простыми неравенствами с теми же решениями.
Неравенства, имеющие одни и тс же решения, называют равносильными. Неравенства, не имеющие решений, также называют равносильными.
Замену неравенства равносильным» ему неравенствами выполняют на основании таких свойств:
- если выполнить тождественные преобразования некоторой чисти неравенства, которые не меняют допустимые значения переменной, то получим неравенство, равносильное данному;
- если из одной части неравенства перенести в другую часть слагаемое, uxwhug его знак ни противоположный, то получим неравенство, равносильное данному;
- если обе чисти неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному;
- если обе чисти неравенства умножить или разделить на одно и то же отрицательное число и при этом изменить знак неравенства на противоположный, то получим неравенство, равносильное данному.
Используя эти и свойства, решим неравенство:
Перенесем слагаемое 10 из левой части неравенства в правую с противоположным знаком, получим неравенство
равносильное заданному неравенству.
В правой части неравенства 4х ≤ 46 – 10 приведем подобные слагаемые, получим:
Разделив обе части последнего неравенства на 4, получим неравенство
Следовательно, неравенство 4х + 10 ≤ 46 равносильно неравенству х ≤ 9, и ему удовлетворяют все числа не больше 9 (см. рис. 16). Множество решений данного неравенства можно записать в виде числового промежутка .
Рис. 16
Вернемся к задаче. Длину меньшей стороны участка мы обозначили через х м. Поскольку длина стороны выражается положительным числом, то х может принимать значения из промежутка (0; 9|. Итак, меньшая сторона участка не должна превышать 9 м, большая же сторона на 5 м длиннее нее.
Для тех, кто хочет знать больше.
Решая неравенство
мы перенесли слагаемое 10 из левой части неравенства в правую с противоположным знаком и получили неравенство
Докажем, что неравенства (1) и (2) равносильны.
Пусть х = а — любое решение неравенства (1), тогда 4а + 10 ≤ 46 — верное числовое неравенство. Перенесем слагаемое 10 из левой части неравенства в правую, изменив его знак на противоположный, получим верное числовое неравенство 4а ≤ 46- 10. Из того, что последнее неравенство является верным, следует, что число а является решением неравенства (2).
Пусть х = b — любое решение неравенства (2), тогда 4b ≤ 4b – 10 — верное числовое неравенство. Перенесем слагаемое -10 из правой части неравенства в левую, изменив его знак на противоположный, получим верное числовое неравенство 4b + 10 ≤ 46. Из того, что последнее неравенство является верным, следует, что число b является решением неравенства (1).
Мы показали, что любое решение неравенства (1) является решением неравенства (2) и любое решение неравенства (2) является решением неравенства (1). Поэтому эти неравенства имеют одни и те же решения, то есть являются равносильными.
Равносильность неравенств 4х ≤ 46 – 10 и 4х ≤ 36, а также неравенств 4х ≤ 36 и х ≤ 9 доказывают аналогично.
Пример:
Решить неравенство 3(5х– 1)+ 10 > 7 — 2(1 -6х) и отметить на координатной прямой множество его решений.
Решение:
Раскроем скобки:
перенесем слагаемые, содержащие переменную, в левую часть неравенства, а остальные — в правую часть:
приведем подобные слагаемые:
разделим обе части неравенства на 3:
Ответ.
Пример:
Решить неравенство , отметить на координатной прямой множество его решений и записать это множество в виде числового промежутка.
Решение:
Умножим обе части неравенства на наименьший общий знаменатель дробей, входящих в неравенство, то есть на 18. Получим:
Ответ, (; 4,2].
Пример:
Решить неравенство .
Решение:
Умножим все части неравенства на 2: -4 ≤ 3х – 1 ≤ 10. Прибавим ко всем частям неравенства число 1:
Разделим все части неравенства на 3, получим: .
Ответ. .
Пример:
Решить неравенство:
Решение:
а) Решениями неравенства |2х-3| ≤ 5 являются числа, удовлетворяющие двойному неравенству
Прибавим ко всем частям неравенства число 3, получим:
Разделим все части неравенства на 2:
Ответ. [-1; 4].
б) Модуль числа — число неотрицательное, поэтому модуль числа не может быть меньше числа -4. Неравенство |3х – 1| -4 не имеет решений.
Ответ. Решений нет.
в) Выражение 2х – 1, стоящее под знаком модуля, должно принимать значения меньше-5 или больше 5. Итак, 2х — 1 -5 или 2х- 1 > 5.
Если нужно найти все значения х, удовлетворяющие неравенству 2х – 1 -5 или неравенству 2х – 1 > 5, то говорят, что нужно решить совокупность неравенств, которую записывают гак:
Решая каждое неравенство совокупности, получим:
Решениями совокупности являются значения х, удовлетворяющие неравенству х -2 или неравенству х > 3.
Ответ. х -2 или х > 3. (Ответ можно записать и в виде объединения промежутков:
Линейные неравенства с одной переменной
Рассмотрим несколько примеров.
Пример:
Решить неравенство .
Решение:
Множеством решений неравенства является числовой промежуток
Ответ.
Пример:
Решить неравенство
Решение:
При любом значении х значение левой части неравенства 0 • х > -8 равно нулю, а нуль больше -8. Поэтому множеством решений данного неравенства является множество всех действительных чисел, то есть промежуток
Ответ.
Пример:
Решить неравенство .
Решение:
Неравенство 0 • х – 5 не имеет решений, так как при любом х значение
ее левой части равно нулю, а нуль не меньше -5.
Ответ. Решений нет.
В результате преобразований мы привели первое неравенство к неравенству 15х 30, второе — к неравенству 0 • х > -8, третье — к неравенству О • х -5. Неравенства такого вида называют линейными неравенствами с одной переменной.
Неравенства вида ах > b, ax>b, ах b, ах b, где а и b — некоторые известные числа, а х — переменная, называют линейными неравенствами с одной переменной.
Если ,то для решения линейного неравенства с одной переменной нужно разделить обе части неравенства на а. Если то или решением неравенства является любое число, или неравенство не имеет решений. Выделим следующие основные шаги решения неравенств:
- если неравенство содержит дроби, то обе части неравенства умножает на наименьший общий знаменатель дробей, входящих в неравенство;
- если в неравенства есть скобки, то раскрываем их;
- переносим слагаемые, содержащие переменную, в одну часть неравенства (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (как правило, в правую);
- приводим подобные слагаемые;
- если получили линейное неравенство и коэффициент при переменной не равен нулю, то делим на него обе части неравенства;
- если коэффициент при переменной равен нулю, то неравенство или не имеет решений, или его решением является любое число.
Пример:
Найти область определения функции .
Решение:
Область определения функции образуют те значения х, при которых выражение 8 – 2х принимает неотрицательные значения. Следовательно, нужно решить неравенство 8 – 2х ≥ 0. Получим:
Областью определения функции является промежуток .
Ответ.
Пример:
Решить неравенство (а + 3)х 5 с параметром а.
Решение:
Рассмотрим три случая: 1) а + 3 0; 2) а + 3 = 0; 3) а + 3 > 0.
1) Если а + 3 0, то есть а -3, то, разделив обе части неравенства на отрицательное число а + 3, получим:
2) Если а + 3 = 0, то есть а = -3, то получим неравенство 0 • х 5, решением которою является любое число.
3) Если а + 3 > 0. то есть а > —3, то
Ответ. Если а -3, то ; если а = -3, то решением неравенства является любое число; если а > -3, то
Системы линейных неравенств с одной переменной
Понятие системы неравенств с одной переменной и ее решения
Пример:
Одна хозяйка купила на рынке 10 кг помидоров и заплатила за них больше 18 руб. Вторая хозяйка купила такие же помидоры и заплатила за 5 кг меньше 14 руб. По какой цене покупали помидоры хозяйки?
Решение:
Пусть цена 1 кг помидоров х руб., тогда 10 кг стоят 10х руб., что по условию задачи больше 18 руб., то есть 10х > 18.
5 кг помидоров стоят 5х руб., что по условию задачи меньше 14 руб., то есть 5х 14.
Чтобы решить задачу, нужно найти те значения х, при которых верным будет как неравенство 10х > 18, так и неравенство 5х 14.
Если нужно найти те значения переменной, которые удовлетворяют двум неравенствам, то говорят, что нужно решить систему неравенств. Для нашей задачи систему записывают так:
Решив каждое из неравенств системы, получим:
Следовательно, значения х должны удовлетворять условию 1,8 х 2.8, то есть цена 1 кг помидоров больше 1 руб. 80 к., но меньше 2 руб. 80 к.
Значение х = 2 является решением обоих неравенств системы
поскольку каждое из числовых неравенств 10 • 2 > 18 и 5 • 2 14 является
верным. Такое значение х называют решением системы неравенств.
Определение: Решением системы неравенств с одной переменной называют значение переменной, при котором выполняется каждое из неравенств системы.
Решить систему неравенств значит найти все ее решения или доказать, что их нет.
Решение систем линейных неравенств с одной переменной
Рассмотрим примеры.
Пример:
Решить систему неравенств
Решение:
Решим каждое из неравенств системы:
Отметим на координатной прямой множество чисел, удовлетворяющих первому неравенству последней системы, — промежуток , и множество чисел, удовлетворяющих второму неравенству, — промежуток .
Общими решениями неравенств являются значения х, принадлежащие обеим промежуткам, то есть их пересечению:
Пример:
Решить систему неравенств
Решение:
На координатной прямой отметим множество чисел, удовлетворяющих неравенству , и множество чисел, удовлетворяющих неравенству .
Общими решениями неравенств являются значения х, принадлежащие промежутку
Ответ.
Пример:
Решить систему неравенств
Решение:
На координатной прямой отметим множество чисел, удовлетворяющих неравенству х > 2, и множество чисел, удовлетворяющих неравенству х -3.
Общих решений неравенства не имеют.
Ответ. Решений нет.
Следовательно, систему линейных неравенств с одной переменной можно решить, используя следующую схему:
- решаем каждое неравенство системы;
- отмечаем множество решений каждого неравенства на одной координатной прямой;
- находим пересечение множеств решений неравенств и записываем множество решений системы в виде промежутка или соответствующего неравенства.
Примечание.
- Если система неравенств приводится к виду где а b, то решениями системы являются х a, то есть х меньше меньшего из чисел а и b.
- Если система неравенств приводится к виду где а > b, то решениями системы являются x > а, то есть x больше большего из чисел а и b.
Пример:
Решить неравенство .
Решение:
Найдем значения х, при которых значения выражений, стоящих под знаком модуля, равны нулю:
Значения х = -1 и х = 2 разбивают координатную прямую на три промежутка.
Раскроем модули на каждом из промежутков и решим соответствующие неравенство.
1) х —1 или х принадлежит промежутку , что сокращенно записывают так: (знак читают: «принадлежит»). При таких значениях х выражение х + 1 принимает отрицательные значения, поэтому; выражение х – 2 также принимает отрицательные значения, поэтому . Тогда неравенство будет иметь вид .
Решим полученное неравенство:
Кроме того, значения х должны удовлетворять неравенству х -1, а значит, и
системе неравенств Множеством решений этой системы является промежуток (-2.5; -1).
2) , или . Значения выражения х + 1 при таких значениях х неотрицательны, поэтому ; выражение х -2 принимает отрицательные значения, поэтому . Заданное неравенство на промежутке [-1; 2) без знака модуля имеет вид: х + 1 – х + 2 6, откуда 0 • х 3. Решениями последнего неравенства являются любые числа. Поэтому все числа из промежутка [-1; 2) являются решениями заданного неравенства.
3) , или На этом промежутке выражения х + 1 и х – 2 принимают неотрицательные значения, поэтому . Заданное неравенство на промежутке без знака модуля запишется так: х + 1 + х – 2 6, откуда 2х 7; х 3,5.
Значения х должны удовлетворять двум неравенствам: и х 3,5, то есть
системе множеством решений которой является промежуток [2; 3,5).
Итак, множеством решений заданного неравенства является объединение промежутков (-2,5; -1), [-1; 2) и |2; 3,5), то есть промежуток (-2,5; 3,5).
Ответ. (-2,5; 3,5).
Пример:
При каких значениях х имеет смысл выражение
Решение:
Данное выражение имеет смысл при тех значениях х, при которых каждое из выражений 2х + 9 и 5 + х принимает неотрицательные значения. Поэтому искомые значения л должны удовлетворять систему неравенств
Решим полученную систему:
Общими решениями неравенств являются значения х, удовлетворяющие неравенству х > -4,5.
Ответ, х > -4,5.
Пример:
Решить неравенство
Решение:
Дробь положительна только тогда, когда ее числитель и знаменатель положительны или когда они оба отрицательны. Поэтому решение данного неравенства сводится к решению двух систем неравенств:
Решениями первой системы являются значения х, удовлетворяющие неравенству х > 2, а второй — неравенству х – 1.
Ответ, х -1 или х > 2. (Множество решений можно записать в виде объединения промежутков:
Замечание. Решение неравенства (х – 2)(х + 1) > 0 также сводится к решению двух систем, приведенных в предыдущем примере. Поэтому множеством решений этого неравенства также является .
Пример:
Решить двойное неравенство .
Решение:
Данное двойное неравенство можно записать в виде системы
Решим систему:
Ответ. [-3; -0,5).
Заметим, что двойное неравенство в упражнении 3 можно решать и на основании свойств равносильности неравенств (см. пункт 5, упражнение 3).
Как известно, возникновение чисел обусловлено потребностями практической деятельности человека. Применение чисел требовало умения их сравнивать. Делать это люди научились много тысячелетий назад.
Где в «Началах» Евклида сугубо геометрически было обосновано неравенство , где а и b рассматривались как длины отрезков.
Рассмотрим геометрическую иллюстрацию неравенства
, где а > 0, b > 0.
На отрезке MN длиной а + b как на диаметре построим полуокружность, О — ее центр, МК – a, KN – b. Проведем перпендикуляры РО и LK к прямой MN, где Р и L — точки полуокружности. Треугольник MLN — прямоугольный , LK — его высота, поэтому .
Отрезок РО — радиус полуокружности, поэтому .
Поскольку .
Это известное неравенство между средним арифметическим и средним геометрическим двух положительных чисел, которое можно распространить па случай большего количества чисел, называют еще неравенством Коши.
Огюстен Луи Коши — известный французский математик. Он является автором более 800 работ по арифметике и теории чисел, алгебре, математическому анализу, теоретической и небесной механике, математической физике и т. п. Были периоды, когда Коши каждую неделю подавал в Парижскую Академию наук новую математическую работу. Скорость, с какой Коши переходил от одного предмета к другому, позволила ему проложить в математике немало новых путей. Многие теоремы, определения, признаки носят его имя.
Приведем еще два известных неравенства, которые, как и неравенство Коши, используют для доказательства многих математических утверждений, в частности, для доказательства других неравенств.
Неравенство Коши — Буняковского:
где — любые действительные числа.
О В. Я. Буняковском читайте в рубрике «Отечественные математики».
Неравенство Бернулли:
где — натуральное число.
Якоб Бернулли — швейцарский математик, профессор Базельского университета. Основные его работы посвящены математическому анализу, но особое внимание ученый уделял теории вероятностей. Немало теорем названы его именем. Бернулли положил начало одному из разделов прикладной математики — математической статистике.
Неравенства
- В этом параграфе вы узнаете, в каком случае число а считают больше (меньше) числа b, каковы свойства числовых неравенств, в каких случаях можно складывать и умножать числовые неравенства, что называют решением неравенства с одной переменной, решением системы неравенств с одной переменной.
- Вы научитесь оценивать значения выражений, доказывать неравенства, решать линейные неравенства и системы линейных неравенств с одной переменной.
На практике вам часто приходится сравнивать величины. Например, площадь России (603,7 тыс. км2) больше площади Франции (551 тыс. км2), высота горы Роман-Кош (1545 м) меньше высоты горы Говерлы (2061 м), расстояние от Киева до Харькова (450 км) равно 0,011 длины экватора.
Когда мы сравниваем величины, нам приходится сравнивать числа. Результаты этих сравнений записывают в виде числовых равенств и неравенств, используя знаки =, >, < .
Если число а больше числа b, то пишут а > b; если число а меньше числа b, то пишут а < b.
Очевидно, что . Справедливость этих неравенств следует из правил сравнения действительных чисел, которые вы изучили в предыдущих классах.
Однако числа можно сравнивать не только с помощью изученных ранее правил. Другой способ, более универсальный, основан на таких очевидных соображениях: если разность двух чисел положительна, то уменьшаемое больше вычитаемого, если же разность отрицательна, то уменьшаемое меньше вычитаемого.
Если разность двух чисел положительна, то уменьшаемое больше вычитаемого, если же разность отрицательна, то уменьшаемое меньше вычитаемого.
Эти соображения подсказывают, что удобно принять такое определение.
Определение: Число a считают больше числа b, если разность а — b является положительным числом. Число а считают меньше числа b, если разность а — b является отрицательным числом.
Это определение позволяет задачу о сравнении двух чисел свести к задаче о сравнении их разности с нулем. Например, чтобы сравнить значения выражений и рассмотрим их разность:
Поскольку , то .
Заметим, что разность чисел а и b может быть либо положительной, либо отрицательной, либо равной нулю, поэтому для любых чисел а и b справедливо одно и только одно из таких соотношений:
Если, то точка, изображающая число a на координатной прямой, лежит правее точки, изображающей число b (рис. 1).
Часто в повседневной жизни мы пользуемся высказываниями «не больше», «не меньше». Например, в соответствии с санитарными нормами количество учеников в 9 классе должно быть не больше чем 35. Дорожный знак, изображенный на рис. 2, означает, что скорость движения автомобиля должна быть не меньше 30 км/ч.
Числовые неравенства
В математике для высказывания «не больше» используют знак (читают: «меньше или равно»), а для выражения «не меньше» — знак (читают: «больше или равно»). Если или , то верно
Если или , то верно неравенство
Например, неравенства верны. Заметим, что, например, неравенство неверно.
Знаки называют знаками строгого неравенства, а знаки — знаками нестрогого неравенства.
Пример:
Докажите, что при любых значениях а верно неравенство
Решение:
Для решения достаточно показать, что при любом а разность левой и правой частей данного неравенства положительна. Имеем:
В таких случаях говорят, что доказано неравенство
Пример:
Докажите неравенство , где — любое действительное число.
Решение:
Рассмотрим разность левой и правой частей данного неравенства:
При любом значении а имеем: Сумма неположительного и отрицательного чисел является числом отрицательным. Значит, Отсюда следует, что при любом значении
Пример:
Докажите неравенство
Решение:
Рассмотрим разность левой и правой частей данного неравенства. Имеем:
Выражение принимает неотрицательные значения при любых неотрицательных значениях переменных Следовательно, доказываемое неравенство верно.
Заметим, что выражение называют средним геометрическим чисел a и b.
Пример:
Докажите, что при любых значениях
Решение:
Имеем:
Поскольку при любых значениях
при любых значениях
Следовательно, при любых значениях
Основные свойства числовых неравенств
В этом пункте рассмотрим свойства числовых неравенств, часто используемые при решении задач. Их называют основными свойствами числовых неравенств.
Теорема: Если а > b и b > с, то а > с.
Доказательство: Поскольку по условию а > b и b > с, то разности а – b и b – с являются положительными числами. Тогда положительной будет их сумма (а -b) + (b – с). Имеем: (а – b) + (b – с) = а – с. Следовательно, разность а – с является положительным числом, а поэтому а > с.
Аналогично доказывают свойство: если а < b и b < с, то а < с.
Теорему 2.1 можно проиллюстрировать геометрически: если на координатной прямой точка А (а) лежит правее точки В (b), а точка В (b) — правее точки С (с), то точка А (а) лежит правее точки С (с) (рис. 3).
Теорема: Если а > b и с — любое число, то а + с > b + с.
Доказательство: Рассмотрим разность (а + с) – (b + с). Имеем: (а + с) – (b + с) = а – b. Поскольку по условию а > b, то разность а — b является положительным числом. Следовательно, a + c > b+ c.
Аналогично доказывают свойство: если а < b и с — любое число, то а + с < b + с.
Поскольку вычитание можно заменить сложением (а – с = а + (-с)), то, учитывая теорему 2.2, можно сделать такой вывод.
Если к обеим частям верного неравенства прибавить или из обеих частей правильного неравенства вычесть одно и то же число, то получим верное неравенство.
Следствие: Если любое слагаемое перенести из одной части верного неравенства в другую, изменив знак слагаемого на противоположный, то получим верное неравенство.
Доказательство: Пусть неравенство а > b + с верно. Вычтем из обеих его частей число с. Получим:
Теорема: Если а > b и с — положительное число, то ас > bc. Если а > b и с — отрицательное число, то ас < bc.
Доказательство: Рассмотрим разность ас – bc. Имеем:
По условию а > b, следовательно, разность а – b является положительным числом.
Если с > 0, то произведение с (а – b) является положительным числом, следовательно, разность ас — bc является положительной, то есть ас > bc.
Если с < 0, то произведение с (а – b) является отрицательным числом, следовательно, разность ас — bc является отрицательной, то есть ас < bc.
Аналогично доказывают свойство: если а < b и с — положительное число, то ас < bc. Если а < b и с — отрицательное число, то ас > bc.
Поскольку деление можно заменить умножением то, учитывая теорему 2.3, можно сделать такой вывод.
Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.
Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Следствие:
Доказательство: Разделим обе части неравенства а > b на положительное число ab. Получим правильное неравенство , то есть Отсюда
Обратим внимание: требование, чтобы числа а и b были одного знака (ab > 0), является существенным. Действительно, неравенство 5 > -3 верно, однако неравенство — неверно.
В теоремах этого пункта шла речь о строгих неравенствах. Нестрогие неравенства также обладают аналогичными свойствами. Например, если — любое число, то
Сложение и умножение числовых неравенств. Оценивание значения выражения
Рассмотрим примеры.
- Если с одного поля собрали не менее 40 т пшеницы, а со второго поля — не менее 45 т, то очевидно, что с двух полей вместе собрали не менее 85 т пшеницы.
- Если длина прямоугольника не больше, чем 70 см, а ширина — не больше, чем 40 см, то очевидно, что его площадь не больше, чем 2800 см2.
Выводы из этих примеров интуитивно очевидны. Их справедливость подтверждают следующие теоремы.
Теорема: (о почленном сложении неравенств).
Если а > b и с > d, то а + с > b + d .
Доказательство: Рассмотрим разность (а + с) – (b + d). Имеем:
Так как а > b и с > d, то разности а – b и с – d являются положительными числами Следовательно, рассматриваемая разность является положительной, т. е. а + с > b + d
Аналогично доказывается свойство: если а < b и с < d, то а + с
Неравенства а > b и с > d (или а < b и с < d) называют неравенствами одного знака, а неравенства а > b и с < d (или а < b и с > d) — неравенствами противоположных знаков.
Говорят, что неравенство а + с > b + d получено из неравенств а > b и с > d путем почленного сложения.
Теорема: означает, что при почленном сложении верных неравенств одного знака результатом является верное неравенство того же знака.
Отметим, что теорема 3.1 справедлива и в случае почленного сложения трех и более неравенств. Например, если
Теорема: (о почленном умножении неравенств). Если а > Ь, с > d и а, и, с, d — положительные числа, то ас > bd.
Доказательство: Рассмотрим разность ас – bd. Имеем: ас – bd = ас – bс + bс – bd = с (а – b) + b (с – d).
По условию а – b > 0, с – d > 0, с > 0, b > 0. Следовательно, рассматриваемая разность является положительной. Из этого следует, что ас > bd.
Аналогично доказывается свойство: если а < b, с < d и a, b, с, d — положительные числа, то ас < bd.
Говорят, что неравенство ас > bd получено из неравенств а > b и с > d путем почленного умножения.
Теорема: означает, что при почленном умножении верных неравенств одного знака, у которых левые и правые части — положительные числа, результатом является верное неравенство того же самого знака.
Обратим внимание: требование, чтобы обе части умножаемых неравенств были положительными, является существенным. Действительно, рассмотрим два верных неравенства -2 > -3 и 4 > 1. Умножив почленно эти неравенства, получим верное неравенство -8 > -3.
Заметим, что теорема 3.2 справедлива и в случае почленного умножения трех и более неравенств. Например, если – положительные числа, причем то
Следствие: Если — положительные числа, то , где — натурально число.
Доказательство: Запишем верных неравенств а > b :
неравенств
Так как а и b — положительные числа, то можем перемножить почленно записанных неравенств. Получим
Заметим, что все рассмотренные свойства неравенств справедливы и в случае нестрогих неравенств:
Часто значения величин, являющихся результатами измерений, не точны. Измерительные приборы, как правило, позволяют лишь установить границы, между которыми находится точное значение.
Пусть, например, в результате измерения ширины х и длины у прямоугольника было установлено, что 2,5 см < х < 2,7 см и 4,1 см < у < 4,3 см. Тогда с помощью теоремы 3.2 можно оценить площадь прямоугольника. Имеем:
Вообще, если известны значения границ величин, то, используя свойства числовых неравенств, можно найти границы значения выражения, содержащего эти величины, т. е. оценить его значение.
Пример:
Дано: Оцените значение выражения:
Решение:
1) Применив теорему о почленном сложении неравенств, получим:
2) Умножив каждую часть неравенства на получим: или Учитывая, что далее имеем:
3) Так как и то а и b принимают положительные значения.
Применив теорему о почленном умножении неравенств, получим:
4) Так как то — или —
Учитывая, что — имеем:
5) Умножим каждую часть неравенства 6 < а < 8 на 3, а каждую часть неравенства на
Сложим полученные неравенства:
Ответ:
Пример:
Докажите, что
Решение:
Так как
О некоторых способах доказательства неравенств
Мы использовали такой прием: рассматривали разность левой и правой частей неравенства и сравнивали ее с нулем.
Однако существует и ряд других способов доказательства неравенств. Ознакомимся с некоторыми из них.
Рассуждения «от противного». Само название этого метода отображает его суть.
Пример:
Для любых значений докажите неравенство
Решение:
Пусть доказываемое неравенство неверно. Тогда найдутся такие числа что будет верным неравенство Отсюда:
Последнее неравенство неверно. Полученное противоречие означает, что неравенство (*) верно. Неравенство (*) является частным случаем более общего неравенства
Неравенство (**) называют неравенством Коши- Буняковского. С его доказательством вы можете ознакомиться на занятиях математического кружка.
Огюстен Луи Коши (1789-1857)
Выдающийся французский математик, автор более 800 научных трудов.
Виктор Яковлевич Буняковский (1804-1889)
Выдающийся математик XIX в. Родился в г. Баре (ныне Винницкой обл.). В течение многих лет был вице- президентом Петербургской академии наук.
Метод использования очевидных неравенств
Пример:
Докажите неравенство
Решение:
Очевидно, что при любых значениях а, b, с выполняется такое неравенство:
Отсюда:
Метод применения ранее доказанного неравенства
Мы доказали, что для любых и выполняется неравенство
Его называют неравенством Коши для двух чисел. Рассмотрим на примере, как можно использовать неравенство Коши при доказательстве других неравенств.
Пример:
Докажите, что для положительных чисел а и b справедливо неравенство
Решение:
Применим неравенство Коши для положительных чисел
Имеем:
Отсюда
Аналогично доказываем, что
Применив теорему о почленном умножении неравенств, получим:
Отсюда
Метод геометрической интерпретации
Пример:
Докажите неравенство:
Решение:
Рассмотрим четверть окружности с центром О радиуса 1. Впишем в нее ступенчатую фигуру, составленную из 99 прямоугольников, так, как показано на рисунке 4,
Площадь первого прямоугольника
Для второго прямоугольника имеем:
Площадь ступенчатой фигуры меньше площади четверти круга, т. е.
Отсюда следует доказываемое неравенство.
Неравенства с одной переменной
Рассмотрим такую задачу. Одна из сторон параллелограмма равна 7 см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?
Пусть искомая сторона равна х см. Тогда периметр параллелограмма равен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма.
Если в это неравенство вместо переменной х подставить, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.
Определение: Решением неравенства с одной переменной называют значение переменной, которое обращает его в верное числовое неравенство.
Так, каждое из чисел является решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.
Замечание. Определение решения неравенства аналогично определению корня уравнения. Однако не принято говорить «корень неравенства».
Решить неравенство означает найти все его решения или доказать, что решений не существует.
Все решения неравенства образуют множество решений неравенства. Если неравенство решений не имеет, то говорят, что множеством его решений является пустое множество. Пустое множество обозначают символом
Например, в задаче «решите неравенство ответ будет таким: «все действительные числа, кроме числа 0».
Очевидно, что неравенство решений не имеет, т. е. множеством его решений является пустое множество.
Определение: Неравенства называют равносильными, если они имеют одно и то же множество решений.
Приведем несколько примеров.
Неравенства равносильны. Действительно, каждое из них имеет единственное решение х = 0.
Неравенства равносильны, так как множеством решений каждого из них является множество действительных чисел.
Так как каждое из неравенств решений не имеет, то они также являются равносильными.
Решение линейных неравенств с одной переменной
Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.
Решая уравнение, мы заменяли его другим, более простым уравнением, но равносильным данному. По аналогичной схеме решают и неравенства.
При замене уравнения на равносильное ему уравнение используют теоремы о перенесении слагаемых из одной части уравнения в другую и об умножении обеих частей уравнения на одно и то же отличное от нуля число.
Аналогичные правила применяют и при решении неравенств.
- Если какое-либо слагаемое перенести из одной части неравенства в другую, изменив при этом его знак на противоположный, то получим неравенство, равносильное данному.
- Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, равносильное данному.
- Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим неравенство, равносильное данному.
С помощью этих правил решим неравенство, полученное в задаче о периметре параллелограмма (см. п. 4).
Имеем: 14 + 2х > 44.
Переносим слагаемое 14 в правую часть неравенства: 2х > 44 -14.
Отсюда 2х > 30.
Разделим обе части неравенства на 2:
х > 15.
Заметим, что полученное неравенство равносильно исходному неравенству. Множество его решений состоит из всех чисел, которые больше 15. Это множество называют числовым промежутком и обозначают (15; +) (читают: «промежуток от 15 до плюс бесконечности»).
Точки координатной прямой, изображающие решения неравенства х > 15, расположены справа от точки, изображающей число 15, и образуют луч, у которого «выколото» начало (рис. 5).
Ответ может быть записан одним из способов: (15 ; + ; либо х > 15.
Заметим, что для изображения на рисунке числового промежутка используют два способа: с помощью либо штриховки (рис. 5, а), либо дуги (рис. 5, б). Мы будем использовать второй способ.
Пример:
Решите неравенство
Решение:
Перенесем слагаемое х из правой части неравенства в левую, а слагаемое 3 — из левой части в правую и приведем подобные члены:
Умножим обе части неравенства на -2:
Множеством решений этого неравенства является числовой промежуток, который обозначают (читают: «промежуток от -8 до плюс бесконечности, включая -8»).
Точки координатной прямой, изображающие решения неравенства х > -8, образуют луч (рис. 6).
Ответ можно записать одним из способов: либо
Пример:
Решите неравенство
Решение:
Запишем цепочку равносильных неравенств:
Множеством решений последнего неравенства является числовой промежуток, который обозначают (читают: «промежуток от минус бесконечности до -1»). Точки координатной прямой, изображающие решения неравенства х < -1, расположены слева от точки -1 (рис. 7) и образуют луч, у которого «выколото» начало.
Ответ можно записать одним из способов: либо
Пример:
Решите неравенство
Решение:
Запишем цепочку равносильных неравенств:
Множеством решений последнего неравенства является числовой промежуток, который обозначают (читают «промежуток от минус бесконечности до включая »)
Точки координатной прямой, изображающие решения неравенства образуют луч (рис. 8).
Ответ можно записать одним из способов: либо
Пример:
Решите неравенство
Решение:
Имеем:
Последнее неравенство при любом значении х превращается в верное числовое неравенство Следовательно, искомое множество решений совпадает с множеством всех чисел.
Ответ: х — любое число.
Этот ответ можно записать иначе : (читают: «промежуток от минус бесконечности до плюс бесконечности»). Этот числовой промежуток называют числовой прямой.
Пример:
Решите неравенство
Решение:
Имеем:
Полученное неравенство при любом значении х превращается в неверное числовое неравенство 0 < -9.
Ответ можно записать одним из способов: решений нет либо .
Каждое из неравенств, рассмотренных в примерах 1-5, сводилось к равносильному неравенству одного из четырех видов: ах > b, ах < b, ах > b, ах < b, где х — переменная, а и b — некоторые числа. Такие неравенства называют линейными неравенствами с одной переменной.
Приведем таблицу обозначений и изображений изученных числовых промежутков:
Системы линейных неравенств с одной переменной
Рассмотрим выражение Найдем множество допустимых значений переменной х, то есть все значения переменной х, при которых данное выражение имеет смысл. Это множество называют областью определения выражения.
Так как подкоренное выражение может принимать только неотрицательные значения, то должны одновременно выполняться два неравенства То есть искомые значения переменной х — это все общие решения указанных неравенств.
Если требуется найти все общие решения двух или нескольких неравенств, то говорят, что надо решить систему неравенств.
Как и систему уравнений, систему неравенств записывают с помощью фигурной скобки. Так, для нахождения области определения выражения надо решить систему неравенств
(*)
Определение: Решением системы неравенств с одной переменной называют значение переменной, превращающее каждое неравенство системы в верное числовое неравенство.
Например, числа 2, 3,4, 5 являются решениями системы (*), а число 7 не является ее решением.
Решить систему неравенств — это означает найти все ее решения или доказать, что решений нет.
Все решения системы неравенств образуют множество решений системы неравенств. Если система решений не имеет, то говорят, что множеством ее решений является пустое множество.
Например, в задаче «Решите систему неравенств
ответ будет таким: «множество действительных чисел».
Очевидно, что множество решений системы стоит из единственного числа 5.
Система решений не имеет, т. е. множеством ее решений является пустое множество.
Решим систему (*). Преобразовав каждое неравенство в равносильное ему, получим:
Множество решений последней системы состоит из всех чисел, которые не меньше — и не больше 5, т. е. из всех чисел, удовлетворяющих неравенству — Это множество является числовым промежутком, который обозначают ; (читают: «промежуток от до 5, включая и 5»).
Точки, изображающие решения системы (*), расположены между точками и , включая точки A и B (рис. 9). Они образуют отрезок.
Ответ к задаче о нахождении области определения выражения может быть записан одним из способов: или
Заметим, что все общие точки промежутков и образуют промежуток (рис. 10). В таком случае говорят, что промежуток является пересечением промежутков
Записывают
Промежутки и являются решениями соответствующих неравенств Тогда можно сказать, что множество решений системы является пересечением множеств решении каждого из неравенств, составляющих систему. Следовательно, чтобы решить систему неравенств, надо найти пересечение множеств решений неравенств, составляющих систему.
Пример:
Решите систему неравенств
Решение:
Имеем:
С помощью координатной прямой найдем пересечение множеств решений неравенств данной системы, т. е. пересечение промежутков и (рис. 11).
Искомое пересечение состоит из чисел, удовлетворяющих неравенству -2 < х < 3. Это множество является числовым промежутком, который обозначают (—2; 3) и читают: «промежуток от —2 до 3».
Ответ можно записать одним из способов: (—2; 3) либо -2 < х < 3.
Пример:
Решите систему неравенств
Решение:
Имеем:
С помощью координатной прямой найдем пересечение промежутков и являющихся множествами решений неравенств данной системы
Искомое пересечение состоит из всех чисел,удовлетворяющих неравенству Это множество является числовым промежутком, который обозначают [-2; 1) и читают: «промежуток от -2 до 1, включая —2».
Ответ можно записать одним из способов: [-2; 1) либо -2 < х < 1,
Пример:
Решите систему неравенств
Решение:
Множеством решений данной системы является пересечение промежутков Это пересечение — числовой промежуток, который обозначают (—2; 1] и читают: «промежуток от —2 до 1, включая 1».
Пример:
Найдите область определения функции
Решение:
Искомая область определения — это множество решений системы
Имеем:
Изобразим на координатной прямой пересечение промежутков и Этим пересечением является промежуток (рис. 13).
Ответ:
Приведем таблицу обозначений и изображений числовых промежутков, изученных в этом пункте:
—————-
Неравенства
В этом разделе вы научитесь:
- решать неравенства;
- решать задачи из реальной жизни, при помощи неравенств;
- тригонометрическим соотношениям;
- применять тригонометрические соотношения при решении задач;
- систематизировать и представлять информацию в различных формах;
- при помощи мер центральных тенденций оценивать и давать прогнозы;
- определять генеральную совокупность (или популяцию) и выборку для исследования;
- различать независимые и зависимые события, а также вычислять их вероятность.
Это интересно!
Великий Азербайджанский мыслитель, философ, математик, астроном Насреддин Туси создал научные труды, которые внесли большой вклад в историю человечества. В письменных источниках его называют “Отецом тригонометрии”. В своём труде «Об измерении круга» он впервые доказал теорему синусов и применил их для астрономических расчетов.
Неравенства:
Неравенства записываются при помощи знаков Неравенства могут быть записаны словами или математическими символами, а также изображены на числовой оси.
- если точка закрашена, то координаты этой точки удовлетворяют неравенству.
- если точка не закрашена, то координаты этой точки не удовлетворяют неравенству
Для сравнения чисел и выражений применяются различные методы. Одним из них является метод оценки разности.
На числовой оси большему числу соответствует точка, расположенная правее, а меньшему числу соответствует точка, расположенная левее. Значит, если , то точка расположена правее точки , если , то – левее.
Пример:
Сравним выражения . Для этого рассмотрим разность . Значит, при любых значениях переменой значение выражения не меньше (больше или равно) значения выражения .
Свойства неравенств
- Если , то
- Если , то
- Если и , то
- Если и , то
Доказательство 3-го свойства: если , то ; если , то Тогда , отсюда следует, что
Исследование
Рассмотрим неравенство
При значении переменной меньше 7, значение суммы меньше 10.
При значении переменной равной 7, значение суммы равно 10.
При значении переменной больше 7, значение суммы больше 10.
Неравенство верно для всех чисел меньше 7.
Свойства неравенств
Теорема. Если неравенство верное, то прибавив или отняв от обеих частей данного неравенства одно и то же число, получим верное неравенство.
Если , то для любого числа
Если , то для любого числа .
Пример:
Масса морского тюленя может достигать максимально 650 кг. В настоящее время тюлень весит 398 кг. Как при помощи неравенства можно записать массу, которую еще сможет набрать тюлень?
Свойства неравенств
Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.
Для любых чисел при получим:
- Если , то и Пример 1.
- Если , то и Пример 2.
Если обе части верного неравенства разделить или умножить на одно и то же отрицательное число и поменять знак неравенства на противоположный, то получим верное неравенство.
Для любых чисел при получим:
- Если , то , и Пример 3.
- Если , то , и Пример 4.
Сложение и вычитание неравенств
Теорема. Если
Если к обеим частям неравенства прибавить , то
Если к обеим частям неравенства прибавить , то
Из получим, что
Данная теорема верна при сложении двух и более неравенств. Если почленно сложить верные неравенства одного знака, то получится верное неравенство.
Теорема. Если перемножить почленно верные неравенства одного знака, левые и правые части которых – положительные числа, то получится верное неравенство.
Если положительные числа, и , тогда .
Если в неравенстве обе части умножим на , а в неравенстве обе части умножим на , то получим и
Отсюда следует что, .
Следствие. Если положительные числа и , тогда . (я-натуральное число).
- Заказать решение задач по высшей математике
Числовые промежутки
При множество всех действительных чисел, удовлетворяющих соотношению называется интервалом
.
Если в множество точек интервала добавить точки , то полученный промежуток будет называться отрезком .
Множество всех чисел , удовлетворяющих двойному неравенству и , соответственно записывается как .
Множество всех точек, удовлетворяющих условию и расположенных справа от точки с координатой , записывается как и читается так: промежуток от до плюс бесконечности.
Если точка принадлежит множеству чисел, удовлетворяющих условию , то это записывается как и графически изображается так:
Множество всех чисел, удовлетворяющих условию , записывается как и графически изображается так:
Если точка принадлежит множеству чисел, удовлетворяющих условию , то это записывается как и графически изображается так:
Решение линейных неравенств с одной переменной
Определение. Решением линейною неравенства с одной переменной называется множество всех значений переменной превращающих данное неравенство в верное.
Решить неравенство, значит найти все его решения или докатать, что решений нет. Неравенства, имеющие одинаковые множества решений, называются равносильными. Неравенства, не имеющие решения, также называются равносильными. При решении неравенств используются следующие следствия, полученные из свойств числовых неравенств:
1) Если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство.
2) Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство. Например, неравенство равносильно неравенству , а неравенство равносильно неравенству .
3) Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.
Неравенства вида (где некоторые числа) называются линейными неравенствами, зависящими от одной переменной.
Решение неравенства
- Если , то ;
- Если , то .
Решение неравенства
- Если , то ;
- Если , то .
Пример:
разделим обе части на -3
решением неравенства является промежуток
Графическое представление решения:
Решение двойных неравенств
Двойные неравенства
Пример 1. Запишем неравенство в виде двух неравенств
Надо найти такие значения , которые будут удовлетворять неравенствам .
Пример 2.
Надо найти такие значения х, которые будут удовлетворять неравенствам
Решаем каждое неравенство и находим объединение множеств.
Пример 3. Двойное неравенство можно решить используя свойства неравенств.
Простые неравенства с переменной, входящей под знаком модуля
Геометрически решением неравенства является множество всех точек, расположенных на расстоянии меньше 3-х единиц от числа 0. Это все действительные числа, которые расположены между числами 3 и 3, т.е. .
При неравенство геометрически выражает расстояние от точки 0 до точек , при котором это расстояние будет меньше . Оно состоит из множества точек , размещённых на интервале .
Поэтому неравенство равносильно двойному неравенству Аналогично, неравенство равносильно двойному неравенству
При неравенство геометрически выражает расстояние от точки 0 до точек , при котором это расстояние будет больше . Для любого , взятого из промежутков расстояние от начала отсчета до точки больше . Поэтому, множеством решений неравенства является , т.е. объединение промежутков, удовлетворяющее неравенствам .
Множество решений неравенства будет .
——-
Неравенства
В этой лекции вы:
- вспомните числовые неравенства, двойные неравенства;
- познакомитесь с понятиями объединения и пересечения множеств, линейными неравенствами с одной переменной и их системами;
- узнаете о свойствах числовых неравенств;
- научитесь решать линейные неравенства с одной переменной и системы линейных неравенств с одной переменной.
Числовые неравенства
В предыдущих классах вы научились сравнивать всевозможные числа и записывать результат их сравнения в виде равенства или неравенства с помощью знаков . Например, . Выражение, записанное слева от знака неравенства, называют левой частью неравенства, а выражение, записанное справа, – правой частью неравенства. Так, в последнем неравенстве левой частью неравенства является число 5, а правой – число 7.
Неравенство, обе части которого – числа, называют числовым неравенством. Например,
Для любых двух чисел и имеет место одно и только одно из соотношений: или . Ранее в зависимости от вида чисел (натуральные числа, десятичные дроби, обычные дроби с одинаковыми или разными знаменателями) мы использовали то или иное правило сравнения чисел. Удобнее было бы иметь универсальное правило сравнения.
Известно, что . Рассмотрим разность левой и правой частей этого неравенства: , разность положительна. Рассматривая разность левой и правой частей неравенства , получаем: , разность отрицательна. Рассматривая в равенстве разность левой и правой частей, получим, что разность равна нулю: .
Приходим к определению сравнения чисел:
Пример №285
Сравнить и .
Решение:
Рассмотрим разность чисел и :
Разность отрицательна, значит .
Ответ.
Напомним, что на координатной прямой точка, соответствующая меньшему числу, лежит левее точки, соответствующей большему числу. На рисунке 1 точка, соответствующая числу , лежит левее точки, соответствующей числу , поэтому .
Числовые неравенства бывают верные и неверные.
Например, – верные числовые неравенства, – неверные числовые неравенства.
Кроме знаков , называемых знаками строгого неравенства, в математике также используют знаки (читают: «меньше или равно» или «не больше») и («больше или равно» или «не меньше»). Знаки и называют знаками нестрогого неравенства. Неравенства, которые содержат знак , называют строгими неравенствами, а те, которые содержат знак или – нестрогими неравенствами.
Из определения соотношений «больше», «меньше» и «равно» получаем, что , если , и , если .
Рассмотрим, как с помощью определения сравнения чисел можно доказывать неравенства.
Пример №286
Доказать, что при любом значении имеет место неравенство .
Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:
.
Так как при любом значении , то при любом значении имеет место неравенство , что и требовалось доказать.
Условие для примера 2 можно было сформулировать проще, например: доказать неравенство .
Пример №287
Доказать неравенство .
Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:
.
Так как при любом значении , . Следовательно, по определению, неравенство верно при любом , что и требовалось доказать.
Пример №288
Доказать неравенство .
Доказательство: В левой части неравенства выделим квадраты двучленов:
.
При любых значениях и : .
А значит, .
Следовательно, , что и требовалось доказать.
Напомним, что число называют средним арифметическим чисел и . Для неотрицательных чисел и число называют их средним геометрическим.
Пример №289
Доказать, что среднее арифметическое двух неотрицательных чисел и не меньше их среднего геометрического (неравенство Коши):
.
Доказательство: Рассмотрим разность левой и правой частей неравенства и преобразуем ее, учитывая, что для . Получим:
для любых и . Следовательно, при любых , , что и требовалось доказать. Отметим, что знак равенства в неравенстве Коши возможен тогда и только тогда, когда . Если .
Понятия «больше» и «меньше» появились одновременно с понятием «равно».Еще с древних времен в практической деятельности человека возникла потребность сравнивать количество предметов, длины отрезков, площади участков и т. п. Так, например, несколько неравенств присутствует в выдающемся труде «Начала» древнегреческого математика Евклида (ок. 356-300 до н. э.). В частности, там он доказывает неравенство геометрическим методом для положительных чисел и .
Чтобы оценить отношение длины круга к его диаметру (позже названное числом ), другой древнегреческий физик и математик Архимед (ок. 287-212 до н. э.) использовал неравенство:.
Привычные нам символы для записи неравенств появились лишь в XVII—XVIII в. Знаки и впервые использовал английский математик Томас Харриот (1560-1621) в работе «Практика аналитического искусства», опубликованной в 1631 году, а знаки и – в 1734 году французский математик и астроном Пьер Бугер (1698-1758).
Кроме неравенства Коши отметим еще и такие известные неравенства:
1) Неравенство Бернулли.
, где – 1, – целое число.
2) Неравенство Чебышёва.
, где – положительные числа, причем .
3) Неравенство Коши-Буняковского.
, где – любые числа.
Последнее неравенство доказали французский математик О. Л. Коши (1789-1857) и наш земляк В. Я. Буняковский. Виктор Яковлевич Буняковский (1804-1889) родился в г. Бар (сейчас – Винницкая обл.). Учился по большей части за рубежом, в основном во Франции, где его ближайшим наставником был сам Коши. В 1825 году в Парижском университете Буняковский защитил диссертацию и получил степень доктора наук. Его исследования касались области прикладной математики и математической физики. В 1826 году он переезжает из Парижа в Петербург и начинает преподавать математику и механику в известных на то время учебных заведениях, одновременно занимаясь переводом работ Коши с французского.
Основные свойства числовых неравенств
Рассмотрим свойства числовых неравенств.
Свойство 1.
Доказательство: Поскольку , то . Тогда , но , поэтому . Следовательно, .
Аналогично будем рассуждать и в случае, когда .
Свойство 2.
Доказательство: По условию . Поэтому и , т. е. числа и – положительны. Рассмотрим разность . Имеем:
(так как числа и – положительны). Поэтому .
Аналогично рассуждаем, когда и .
Геометрическая иллюстрация свойства 2 представлена на рисунках 2 и 3.
Свойство 3.
Доказательство: По условию , значит, . Рассмотрим разность и преобразуем ее:
, следовательно, .
Следствие: .
Доказательство: Так как , то , т.е. . Но , поэтому . Следовательно, .
Из этого следствия имеем:
если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом его знак на противоположный, то получим верное неравенство.
Свойство 4.
Доказательство: Пусть , тогда . Рассмотрим разность и преобразуем ее: .
Если , то , а значит, ; если , то , а значит .
Так как , то, обозначив , получим, что аналогичное свойство имеет место и в случае деления обеих частей неравенства на отличное от нуля число .
Следовательно,
- если обе части верного неравенства у множить или <*> разделить на одно и то же положительное число, то получим верное неравенство;
- если обе части верного неравенства у множить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Следствие:
Доказательство: Разделим обе части неравенства на положительное число ; тогда , т. е. .
Пример №290
Дано: . Сравнить:
Решение:
1) Если к обеим частям верного неравенства прибавим число 1, то по свойству 3 получим: .
2) Если к обеим частям верного неравенства прибавим число -5, то по свойству 3 получим верное неравенство .
3) Если обе части верного неравенства умножим на положительное число 1,7, то по свойству 4 получим верное неравенство .
4) Если обе части верного неравенства умножим на отрицательное число -1, то по свойству 4 получим верное неравенство .
5) Если обе части верного неравенства умножим на отрицательное число -10, то по свойству 4 получим верное неравенство .
Решение таких упражнений можно записать короче:
6) Если обе части верного неравенства разделим на положительное число 8, то по свойству 4 получим верное неравенство .
Напомним, что в математике есть и двойные числовые неравенства: . Например, двойное неравенство означает, что одновременно имеют место неравенства и . Так как и , то для любого числа по свойству 3 имеют место неравенства и .
Таким образом, если ко всем частям верного двойного неравенства прибавить одно и то же число, то получим верное двойное неравенство.
Рассуждая аналогично, получаем:
Рассмотренные нами свойства числовых неравенств можно использовать для оценивания значении выражении.
Пример №291
Оценить периметр квадрата со стороной см, если
Решение:
Так как периметр квадрата находят по формуле , то все части неравенства нужно умножить на 4. Получим:
, тогда .
Следовательно, периметр квадрата больше чем 12,8 см, но меньше чем 15,6 см.
Ответ. .
Пример №292
Дано: . Оценить значение выражения:
Решение:
Используя форму записи, предложенную в задании 5 примера, получим:
Почленное сложение и умножение неравенств
Продолжим рассмотрение свойств неравенств.
Допустим, имеем два верных неравенства одного знака: и . Сложим их левые части, их правые части и между результатами запишем такой же знак: . Получим верное числовое неравенство, ведь, действительно, . Действие, которое мы выполнили, называют почленным сложением неравенств. Заметим, что почленно складывать можно лишь неравенства одного знака.
Свойство 5 (почленное сложение неравенств). Если и , то .
Доказательство: К обеим частям неравенства прибавим число , а к обеим частям неравенства – число , получим два верных неравенства: и , следовательно, , что и требовалось доказать.
Аналогично доказываем, что если и , то .
Свойство 5 справедливо и в случае почленного сложения более чем двух неравенств.
Пример №293
Стороны некоторого треугольника равны см, см и см. Оценить периметр треугольника (в см), если .
Решение:
Приведем сокращенную запись решения:
Таким образом, .
Ответ. .
Свойство, аналогичное почленному сложению двух и более неравенств, существует и для умножения. Почленно умножив верные неравенства и , получим верное неравенство , ведь . Если же почленно перемножить верные неравенства и , получим – неверное неравенство. Отметим, что в первом случае обе части неравенств были положительны , а во втором -некоторые были отрицательны .
Свойство 6 (почленное умножение неравенств). Если и , где — положительные числа, то .
Доказательство: Умножим обе части неравенства на положительное число , а обе части неравенства – на положительное число получим два верных неравенства: и , следовательно, (по свойству 2). Доказано.
Аналогично можно доказать, что если и , где – положительные числа, то .
Отметим, что свойство 6 справедливо и для более чем двух неравенств.
Следствие: Если — положительные числа, причем , то , где — натуральное число.
Доказательство: Перемножив почленно верных неравенств , где и , получим .
С помощью рассмотренных нами свойств можно оценивать сумму, разность, произведение и частное чисел.
Пример №294
Дано: . Оцените значение выражения:
Решение:
1)
2) Чтобы оценить разность , представим ее в виде суммы: , но сначала оценим выражение .
Умножив все части неравенства на число и изменив знаки неравенства на противоположные, получим: , т. е. . Таким образом,
3)
4) Чтобы оценить частное , представим его в виде произведения:. Оценим выражение . Если , то . Таким образом, .
Ответ.
С помощью рассмотренных свойств можно также доказывать неравенства.
Пример №295
Доказать, что , если ,
Решение:
К каждому множителю левой части неравенства применим неравенство между средним арифметическим и средним геометрическим (неравенство Коши), получим:
Используя свойство 4, обе части каждого из этих неравенств умножим на 2, получим:
.
Перемножим эти неравенства почленно:
Таким образом,, что и требовалось доказать.
Неравенства с переменными. решение неравенства
Рассмотрим неравенство , содержащее переменную. При одних значениях переменной неравенство обращается в верное числовое неравенство, а при других – в неверное. Действительно, если вместо подставить, например, число 8, то получим – верное неравенство, если же подставить число 4, то получим неверное неравенство . В таком случае говорят, что число 8 является решением неравенства (или число 8 удовлетворяет неравенству ), а число 4 – не является его решением (или число 4 не удовлетворяет неравенству ).
Также решениями неравенства являются, например, числа т. д.
Решением неравенства с одной переменной называют такое значение переменной, которое обращает его в верное числовое неравенство.
Решить неравенство — означает найти все его решения или доказать, что решений нет.
Пример №296
Решить неравенство: 1)
Решение:
1) при всех , причем тогда и только тогда, когда . Значит, решением неравенства является любое положительное число.
2) при любом значении , поэтому при
любом . Следовательно, значение выражения также будет положительным при любом . А значит, при любом значении неравенство является неверным, т. е. не имеет решений.
Ответ. 1) Любое число, большее нуля; 2) нет решений.
Числовые промежутки. пересечение и объединение множеств
Множество решений неравенств удобно записывать с помощью числовых промежутков.
Пример №297
Рассмотрим двойное неравенство . Ему удовлетворяют все числа больше -4 и меньше 1, то есть числа, лежащие на координатной прямой между числами -4 и 1. Множество всех чисел, удовлетворяющих неравенству , называют числовым промежутком, или просто промежутком, от -4 до 1 и обозначают: (читают: «промежуток от -4 до 1»). Чтобы показать на координатной прямой это множество, его выделяют штриховкой, как показано на рисунке 4. При этом точки -4 и 1 изображают «пустыми» (или «выколотыми»).
Число -1 удовлетворяет неравенству , а число 2 ему не удовлетворяет. В таком случае говорят, что число -1 принадлежит промежутку , а число 2 – не принадлежит (рис. 5). Следовательно, любое число, удовлетворяющее неравенству , принадлежит промежутку , и, наоборот, любое число, принадлежащее промежутку , удовлетворяет неравенству .
Пример №298
Двойному неравенству удовлетворяют не только все числа, большие, чем -4, и меньшие, чем 1, но и сами числа -4 и 1. Множество этих чисел обозначают (читают: «промежуток от -4 до 1, включая -4 и 1»). В этом случае на координатной прямой выделяют промежуток между числами -4 и 1 вместе с этими числами (рис. 6).
Пример №299
Множество чисел, удовлетворяющих двойному неравенству , обозначают: (читают: «промежуток от -4 до 1, включая -4»). Этот промежуток изображен на рисунке 7.
Пример №300
Множество чисел, удовлетворяющих двойному неравенству , обозначают: (читают: «промежуток от -4 до 1, включая 1»). Этот промежуток изображен на рисунке 8.
Пример №301
Неравенству удовлетворяют все числа, большие, чем 2, то есть числа, лежащие на координатной прямой справа от числа 2. Множество этих чисел обозначают (читают: «промежуток от 2 до плюс бесконечности») и изображают лучом, выходящим из «пустой» точки с координатой 2 (рис. 9).
Пример №302
Неравенству удовлетворяют все числа, большие, чем 2, и само число 2. Множество этих чисел обозначают: (читают: «промежуток от 2 до плюс бесконечности, включая 2») и изображают лучом, лежащим справа от точки с координатой 2, включая эту точку (рис. 10).
Пример №303
Множество чисел, удовлетворяющих условию , записывают так: (читают: «промежуток от минус бесконечности до 4»). Это множество изображено на рисунке 11.
Пример №304
Множество чисел, удовлетворяющих условию , записывают так: (читают: «промежуток от минус бесконечности до 4, включая 4»). Изображено оно на рисунке 12.
Таким образом, если конец промежутка принадлежит промежутку (например, для нестрогого неравенства), то этот конец заключают в квадратную скобку, во всех остальных случаях конец заключают в круглую скобку.
Множество всех чисел изображает вся координатная прямая и его записывают в виде . Множество, не содержащее ни одного числа, обозначают символом и называют пустым множеством.
Над множествами можно выполнять некоторые действия (операции). Рассмотрим два из них: пересечение и объединение.
Пересечением множеств и называют множество, которое состоит из элементов, принадлежащих как множеству , так и множеству .
Пересечение множеств записывают с помощью символа . Изображать пересечение множеств удобно в виде диаграмм Эйлера-Венна (рис. 13).
Пример №305
Если даны множества , и , то ; .
Пересечением числовых промежутков называют множество, которое содержит все числа, принадлежащие как одному промежутку, так и другому.
Пример №306
(рис. 14).
Пример №307
Промежутки и не имеют общих точек (рис. 15), поэтому их пересечением является пустое множество. Записать это можно так: .
Объединением множеств и называют множество, которое состоит из всех элементов, принадлежащих хотя бы одному из множеств или .
Для записи объединения множеств используют символ . Изображать объединение множеств также удобно в виде диаграмм Эйлера-Венна (рис. 16).
Пример №308
Если даны множества , и , то .
Объединением числовых промежутков называют множество, которое состоит из всех чисел, принадлежащих хотя бы одному из этих промежутков.
Пример №309
. Отметим, что объединение промежутков не всегда является промежутком. Например, множество не является промежутком (рис. 15).
Линейные неравенства с одной переменной. Равносильные неравенства
Неравенства вида , где -переменная, — некоторые числа, называют линейными неравенствами с одной переменной. Если , то обе части неравенства можно разделить на , учитывая при этом свойство числовых неравенств, то есть если а , то знак неравенства оставляем без изменении; если же , то знак неравенства изменяем на противоположный.
Пример №310
Решить неравенство: 1) .
Решение:
1) Разделив обе части неравенства на 2, получим: . Таким образом, решением неравенства является промежуток .
2) Разделив обе части неравенства на -3 и изменив при этом знак неравенства на противоположный, получим: , то есть .
Ответ. 1) ; 2) .
Отметим, что ответ можно было записать и так:
1) ; 2) .
Неравенства, имеющие одни и те же решения, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Для неравенств с переменными имеют место свойства, подобные тем, которые справедливы и для уравнений:
- если в любой части неравенства раскрыть скобки или привести подобные слагаемые, то получим неравенство, равносильное данному;
- если в неравенстве перенести слагаемое из одной его части в другую, изменив его знак на противоположный, то получим неравенство, равносильное данному;
- если обе части неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному; если же обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим неравенство, равносильное данному.
Чтобы решить уравнение, мы приводим его к равносильному ему, но более простому уравнению. Аналогично, пользуясь свойствами неравенств, можно решать и неравенства, приводя их к более простым неравенствам, им равносильным.
Пример №311
Решить неравенство
Решение:
Умножим обе части неравенства на наименьший общий знаменатель дробей – число 6, далее упростим его левую часть и перенесем слагаемые с переменной в левую часть неравенства, а без переменной – в правую.
Получили неравенство, равносильное исходному. Оно не имеет решений, так как при любом значении левая часть неравенства будет равна нулю, а неравенство является неверным.
Ответ. Решений нет.
Пример №312
Решить неравенство .
Решение:
Раскрыв скобки, получим:
.
Решая далее, имеем: ; то есть .
Последнее неравенство равносильно исходному и является верным при любом значении , так как при любом значении его левая часть будет равна нулю, а неравенство является верным. Таким образом, решением неравенства будет любое число, а значит, множеством решений является промежуток .
Ответ: .
Из примеров 2 и 3 можно сделать вывод, что
неравенства вида или не имеют решений, или их решение — любое число.
Пример №313
Для каждого значения решить неравенство , где – переменная.
Решение:
Чтобы привести неравенство к линейному, перенесем слагаемые, содержащие переменную, в левую часть неравенства, остальные – в правую часть:
Значение выражения для разных значений может быть положительным, отрицательным или нулевым, поэтому рассмотрим отдельно каждый из этих случаев:
1) Если , т. е. , то, разделив левую и правую части неравенства на положительное число , получим:
2) Если , т. е. , получим не имеющее решений неравенство.
3) Если , т. е. , то, разделив левую и правую части неравенства на отрицательное число и изменив знак неравенства на противоположный, получим:
Ответ. Если , то ; если , то решений нет; если ,то .
Системы линейных неравенств с одной переменной, их решение
Рассмотрим задачу. Велосипедист за 2 ч преодолевает расстояние, большее чем 24 км, а за 3 ч – расстояние, меньшее чем 39 км. Найти скорость велосипедиста.
Решим ее. Пусть скорость велосипедиста равна км/ч, тогда за 2 ч он преодолевает км, а за 3 ч – км. По условию задачи и .
Нам нужно найти такие значения , при которых верным будет как неравенство , так и неравенство , то есть нужно найти общие решения обоих неравенств. В таком случае объединяют неравенства в систему и говорят, что нужно решить систему неравенств:
Так как оба неравенства – линейные, то получим систему линейных неравенств с одной переменной.
Решив каждое из неравенств системы, имеем систему:
Значит, значение должно удовлетворять условию: .
Следовательно, скорость велосипедиста больше чем 12 км/ч, но меньше чем 13 км/ч.
Число 12,6 удовлетворяет каждому из неравенств системы
И действительно, каждое из числовых неравенств и является верным. В таком случае говорят, что число 12,6 – решение данной системы неравенств.
Решением системы неравенств с одной переменной называют значение переменной, при котором верным является каждое из неравенств системы.
Решить систему – означает найти все ее решения или доказать, что решений нет.
При решении системы неравенств целесообразно придерживаться следующей последовательности действий:
- решить каждое из неравенств системы;
- отметить множество решений каждого из неравенств на координатной прямой;
- найти пересечение этих множеств, которое и будет множеством решений системы;
- записать ответ.
Пример №314
Решить систему неравенств:
Решение:
Постепенно заменяя каждое из неравенств системы ему равносильным, но более простым, получим:
Отметим на координатной прямой множество чисел, удовлетворяющих неравенству , и множество чисел, удовлетворяющих неравенству (рис. 26). Множеством решений системы является пересечение этих множеств, то есть промежуток .
Ответ. .
Ответ в примере 1 можно записать и так: .
Пример №315
Найти все целые решения системы неравенств:
Решение:
Найдем сначала все решения системы:
Очевидно, решением системы является промежуток . Теперь найдем все целые числа, принадлежащие этому промежутку: -5; -4; -3. Таким образом, целыми решениями системы являются числа -5; -4; -3.
Ответ. -5; -4; -3.
Пример №316
Решить систему неравенств:
Решение:
Имеем:
Отметив полученные решения неравенств системы на координатной прямой (рис. 28), видим, что общих точек у них нет, а значит, пересечением промежутков является пустое множество. Следовательно, система решений не имеет.
Ответ. Решений нет.
Пример №317
Решить неравенство .
Решение:
Перепишем данное двойное неравенство в виде системы неравенств:
Решим эту систему:
Таким образом, , то есть .
Ответ. .
Решение можно записать и так:
А ответ можно также представить в виде: .
—-10 клас
Неравенства: равносильные преобразования неравенств и общий метод интервалов
Понятия неравенства с одной переменной и его решений
Определение:
Если два выражения с переменной соединить одним из знаков то получим неравенство с переменной. В общем виде неравенство с одной переменной (например, для случая «больше») записывают так:
Пример:
— линейное неравенство;
— квадратное неравенство;
— дробное неравенство
Определение:
Решением неравенства с переменной называется значение переменной, которое обращает заданное неравенство в верное числовое неравенство. Решить неравенство — значит найти все его решения или доказать, что их нет
Пример:
— одно из решений неравенства , так как при получаем верное неравенство: , то есть
2. Область допустимых значений (ОДЗ)
Определение:
Областью допустимых значений (или областью определения) неравенства называется общая область определения для функций и , которые стоят в левой и правой частях неравенства
Пример:
Для неравенства ОДЗ: , то есть , так как область определения функции определяется условием: , а областью определения функции является множество всех действительных чисел
3. Равносильные неравенства
Определение:
Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения
то есть каждое решение первого неравенства является решением второго и наоборот, каждое решение второго неравенства является решением первого
Простейшие теоремы
1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве)
2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не меняя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)
3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства) и изменить знак неравенства на противоположный, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)
4. Метод интервалов (решения неравенств вида )
План
1. Найти ОДЗ.
2. Найти нули функции
3. Отметить нули на ОДЗ и найти знак функции на каждом промежутке, на которые разбивается ОДЗ.
4. Записать ответ, учитывая знак заданного неравенства
Пример:
Решите неравенство
Решение
► Пусть
1. ОДЗ: , то есть, .
2. Нули функции:
(входят в ОДЗ)
3.
Ответ:
5. Схема поиска решения неравенств
– исходное неравенство;
– неравенство, полученное в результате преобразования исходного;
– символическое изображение выполненных преобразований (с указанием направления их выполнения)
Объяснение и обоснование:
Понятия неравенства с переменной и его решений
Если два выражения с переменной соединить одним из знаков то получаем неравенство с переменной.
Аналогично уравнению, неравенство с переменной (например, со знаком ) чаще всего понимают как аналитическую запись задачи о нахождении тех значений аргументов, при которых значение одной из заданных функций больше, чем значение другой заданной функции. Поэтому в общем виде неравенство с одной переменной (например, для случаев «больше») записывают так:
Напомним, что решением неравенства называется значение переменной, которое обращает это неравенство в верное числовое неравенство.
Решить неравенство — значит найти все его решения или доказать, что их нет.
Например, решениями неравенства являются все значения , для неравенства решениями являются все действительные числа (), а неравенство не имеет решений, поскольку значение не может быть отрицательным числом, меньшим .
Область допустимых значений (ОДЗ) неравенств
Область допустимых значений (ОДЗ) неравенства определяется аналогично ОДЗ уравнения. Если задано неравенство , то общая область определения функций и называется областью допустимых значений этого неравенства (иногда используются также термины «область определения неравенства» или «множество допустимых значений неравенства»). Например, для неравенства областью допустимых значений являются все действительные числа (это можно записать, например, так: ОДЗ: ), поскольку функции и имеют области определения .
Понятно, что каждое решение заданного неравенства входит как в область определения функции , так и в область определения функции (иначе мы не сможем получить верное числовое неравенство). Таким образом, каждое решение неравенства обязательно входит в ОДЗ этого неравенства. Это позволяет в некоторых случаях применить анализ ОДЗ неравенства для его решения.
Например, в неравенстве функция определена при всех действительных значениях , а функция — только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Таким образом, ОДЗ этого неравенства задается системой из которой получаем систему не имеющую решений. Таким образом, ОДЗ заданного неравенства не содержит ни одного числа, поэтому это неравенство не имеет решений.
В основном при решении неравенств различных видов приходится применять один из двух методов решения: равносильные преобразования неравенств или так называемый метод интервалов.
Равносильные неравенства
С понятием равносильности неравенств вы знакомы еще из курса алгебры 9 класса. Как и для случая равносильных уравнений, равносильность неравенств мы будем рассматривать на определенном множестве.
Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения, то есть каждое решение первого неравенства является решением второго, и наоборот, каждое решение второго неравенства является решением первого.
Договоримся, что в дальнейшем все равносильные преобразования неравенств будем выполнять на ОДЗ заданного неравенства. В случае когда ОДЗ заданного неравенства является множество всех действительных чисел, мы не всегда будем его записывать (как не записывали ОДЗ при решении линейных или квадратных неравенств). И в других случаях главное — не записать ОДЗ при решении неравенства, а действительно учесть ее при выполнении равносильных преобразований заданного неравенства.
Общие ориентиры выполнения равносильных преобразований неравенств аналогичны соответствующим ориентирам выполнения равносильных преобразований уравнений.
Как указывалось выше, выполняя равносильные преобразования неравенств, необходимо учитывать ОДЗ заданного неравенства — это и есть первый ориентир для выполнения равносильных преобразований неравенств.
По определению равносильности неравенств необходимо обеспечить, чтобы каждое решение первого неравенства было решением второго, и наоборот, каждое решение второго неравенства было решением первого. Для этого достаточно обеспечить сохранение верного неравенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях. Это и есть второй ориентир для решения неравенств с помощью равносильных преобразований. Действительно, каждое решение неравенства обращает его в верное числовое неравенство, и если верное неравенство сохраняется, то решение каждого из неравенств будет также и решением другого, таким образом, неравенства будут равносильны (соответствующие ориентиры схематически представлены в пункте 5 табл. 11).
Например, чтобы решить с помощью равносильных преобразований неравенство
достаточно учесть его ОДЗ: и условие положительности дроби (дробь будет положительной тогда и только тогда, когда числитель и знаменатель дроби имеют одинаковые знаки), а также учесть, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлении с сохранением верного неравенства.
Решение
► Данное неравенство равносильно
совокупности двух систем:
или (2)
Тогда получаем или
Таким образом, или .
Ответ: .
Комментарий:
Заметим, что при записи условия положительности дроби — совокупности систем (2) — мы неявно учли ОДЗ неравенства (1). Действительно, если или , то , поэтому в явном виде ОДЗ заданного неравенства не записано при оформлении решения.
Кроме выделенных общих ориентиров, для выполнения равносильных преобразований неравенств можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности неравенств обобщим также формулировки простейших теорем о равносильности неравенств, известных из курса алгебры 9 класса.
1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве).
2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не изменяя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного).
3. Если обе части неравенства у множить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства ) и изменить знак неравенства на противоположный, то получим неравенство,равносильное заданному (на ОДЗ заданного).
Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований заданного неравенства.
Замечание. Для обозначения перехода от заданного неравенства к неравенству, равносильному ему, можно применять специальный значок , но его использование при оформлении решений не является обязательным (хотя иногда мы будем его использовать, чтобы подчеркнуть, что было выполнено именно равносильное преобразование).
Метод интервалов
Решение неравенств методом интервалов опирается на свойства функций, связанные с изменением знаков функции. Объясним эти свойства, используя графики известных нам функций, например функций и (рис. 54).
Рассматривая эти графики, замечаем, что функция может изменить свой знак только в двух случаях:
1) если график разрывается (как в случае функции (рис. 54, а) — график разрывается в точке 0 и знак функции изменяется в точке 0);
2) если график без разрыва переходит из нижней полуплоскости в верхнюю (или наоборот). Но тогда график пересекает ось (как в случае функции ) (рис. 54, б). На оси значения функции равны нулю. (Напомним, что значения аргумента, при которых функция равна нулю, называют нулями функции.) Таким образом, любая функция может поменять свой знак только в нулях или в точках, где разрывается график функции (в так называемых точках разрыва функции). Точки, в которых разрывается график функции , мы выделяем, как правило, когда находим область определения этой функции. Например, если , то ее область определения , и именно в точке 0 график этой функции разрывается (рис. 54, а). Если же на каком-нибудь промежутке области определения график функции не разрывается и функция не равна нулю, то по приведенному выше выводу она не может на этом промежутке поменять свой знак. Таким образом, если отметить нули функции на ее области определения, то область определения разобьется на промежутки, внутри которых знак функции измениться не может (и поэтому этот знак можно определить в любой точке из этого промежутка).
Подробнее это понятие будет рассмотрено в 11 классе.
В 11 классе мы уточним формулировку этого свойства (так называемых непрерывных функций). Для всех известных вам функций (линейных, квадратичных, степенных, дробно-рациональных) это свойство имеет место.
В таблице 12 приведено решение дробно-рационального неравенства методом интервалов; комментарий, объясняющий каждый этап решения; план решения неравенств вида методом интервалов.
Пример:
Решение:
►
1. ОДЗ: , то есть
2. Нули
тогда .
3.
4. Ответ: .
Комментарий:
1. Рассмотрим функцию, стоящую в левой части этого неравенства, и обозначим ее через .
Решением неравенства могут быть только числа, которые входят в область определения функции , то есть числа, входящие в ОДЗ неравенства. Поэтому первым этапом решения неравенства методом интервалов будет нахождение его ОДЗ
2. Нас интересуют те промежутки области определения функции , на которых эта функция положительна. Как было отмечено выше, элементарная функция может поменять знак в своих нулях, поэтому вторым этапом решения неравенства будет нахождение нулей функции (для этого приравниваем функцию к нулю и решаем полученное уравнение)
3. Если теперь отметить нули на области определения функции , то область определения разбивается на промежутки, внутри каждого из которых функция не меняет свой знак. Поэтому знак функции на каждом промежутке можно определить в любой точке этого промежутка. Это и является третьим этапом решения
4. Из рисунка видно, что решением неравенства является объединение промежутков
План решения
1. Найти ОДЗ неравенства
2. Найти нули
3. Отметить нули на ОДЗ и найти знак функции в каждом промежутке, на которые разбивается ОДЗ
4. Записать ответ, учитывая знак неравенства
Приведем пример решения более сложного дробно-рационального неравенства методом интервалов и с помощью равносильных преобразований.
Пример:
Решите неравенство
I способ (метод интервалов)
Решение:
►Пусть
1. ОДЗ:
2. Нули
(принадлежат ОДЗ).
3. Отмечаем нули функции на ОДЗ и находим знак в каждом из промежутков, на которые разбивается ОДЗ.
4. Ответ:
Комментарий:
Данное неравенство имеет вид , и для его решения можно применить метод интервалов. Для этого используем план, приведенный выше и в таблице 11.
При нахождении нулей следим за тем, чтобы найденные значения принадлежали ОДЗ (или выполняем проверку найденных корней уравнения ).
Записывая ответ к нестрогому неравенству, следует учесть, что все нули функции должны войти в ответ (в данном случае — числа ).
II способ (с помощью равносильных преобразований)
Комментарий:
Выберем для решения метод равносильных преобразований неравенства. При выполнении равносильных преобразований мы должны учесть ОДЗ данного неравенства, то есть учесть ограничение .
Но если , и тогда в данной дроби знаменатель положителен. Если выполняется данное неравенство, то числитель дроби (и наоборот, если выполняется последнее неравенство, то на ОДЗ дробь ), то есть данное неравенство равносильно на ОДЗ неравенству .
Чтобы решить полученное квадратное неравенство, найдем корни квадратного трехчлена и построим эскиз графика функции . Решение квадратного неравенства: .
Поскольку все преобразования были равносильными только на ОДЗ, то мы должны выбрать те решения квадратного неравенства, которые удовлетворяют ограничению ОДЗ.
Решение:
► ОДЗ: то есть .
Тогда и данное неравенство на его ОДЗ равносильно неравенству . Поскольку при (эти значения принадлежат ОДЗ), получаем (см. рисунок).
Учитывая ОДЗ, получаем ответ.
Ответ: .
- Числовые последовательности
- Предел числовой последовательности
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Системы линейных уравнений с двумя переменными
- Рациональные выражения
- Квадратные корни
- Квадратные уравнения
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
> больше,
≥ больше или равно,
< меньше,
≤ меньше или равно,
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x < b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x < c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
- Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.
Смысл выколотой точки в том, что сама точка в ответ не входит.
- Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.
Смысл жирной точки в том, что сама точка входит в ответ.
- Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.
Таблица числовых промежутков
Неравенство | Графическое решение | Форма записи ответа |
---|---|---|
x < c | x ∈ ( − ∞ ; c ) | |
x ≤ c | x ∈ ( − ∞ ; c ] | |
x > c | x ∈ ( c ; + ∞ ) | |
x ≥ c | x ∈ [ c ; + ∞ ) |
Алгоритм решения линейного неравенства
- Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:
a x < b a x ≤ b a x > b a x ≥ b
- Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
- Если a > 0 то неравенство приобретает вид x ≤ b a .
- Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
- Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.
Примеры решения линейных неравенств:
№1. Решить неравенство 3 ( 2 − x ) > 18.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 − 3 x > 18
− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )
Делим обе части неравенства на (-3) – коэффициент, который стоит перед x. Так как − 3 < 0 , знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).
Ответ: x ∈ ( − ∞ ; − 4 )
№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x + 4 ≥ 3 x + 3 − 14
6 x − 3 x ≥ 3 − 14 − 4
3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед x. Так как 3 > 0, знак неравенства после деления меняться не будет.
x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).
Ответ: x ∈ [ − 5 ; + ∞ )
Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).
Примеры:
№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x − 1 ≤ 6 x − 1
6 x − 6 x ≤ − 1 + 1
0 ≤ 0
Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.
Ответ:
- x – любое число
- x ∈ ( − ∞ ; + ∞ )
- x ∈ ℝ
№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
x + 6 − 9 x > − 8 x + 48
− 8 x + 8 x > 48 − 6
0 > 42
Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.
Ответ: x ∈ ∅
Квадратные неравенства
Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c – некоторые числа, причем a ≠ 0, x – переменная.
Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.
Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).
Алгоритм решения квадратного неравенства методом интервалов
- Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
- Отметить на числовой прямой корни трехчлена.
Если знак неравенства строгий > , < , точки будут выколотые.
Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).
- Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.
Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
- Выбрать подходящие интервалы (или интервал).
Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.
Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.
- Записать ответ.
Примеры решения квадратных неравенств:
№1. Решить неравенство x 2 ≥ x + 12.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
x 2 ≥ x + 12
x 2 − x − 12 ≥ 0
x 2 − x − 12 = 0
a = 1, b = − 1, c = − 12
D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:
x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0
Это значит, что знак на интервале, в котором лежит точка 6 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .
Точки -3 и 4 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )
№2. Решить неравенство − 3 x − 2 ≥ x 2 .
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
− 3 x − 2 ≥ x 2
− x 2 − 3 x − 2 ≥ 0
− x 2 − 3 x − 2 = 0
a = − 1, b = − 3, c = − 2
D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1
x 1 = − 2, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:
− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0
Это значит, что знак на интервале, в котором лежит точка 0 будет − .
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.
Точки -2 и -1 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ [ − 2 ; − 1 ]
№3. Решить неравенство 4 < x 2 + 3 x .
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
4 < x 2 + 3 x
− x 2 − 3 x + 4 < 0
− x 2 − 3 x + 4 = 0
a = − 1, b = − 3, c = 4
D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1
x 1 = − 4, x 2 = 1
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:
− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0
Это значит, что знак на интервале, в котором лежит точка 2, будет -.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервалы со знаком − .
Точки -4 и 1 будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )
№4. Решить неравенство x 2 − 5 x < 6.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
x 2 − 5 x < 6
x 2 − 5 x − 6 < 0
x 2 − 5 x − 6 = 0
a = 1, b = − 5, c = − 6
D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1
x 1 = 6, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:
x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0
Это значит, что знак на интервале, в котором лежит точка 10 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервал со знаком -.
Точки -1 и 6 будут в круглых скобках, так как они выколотые
Ответ: x ∈ ( − 1 ; 6 )
№5. Решить неравенство x 2 < 4.
Решение:
Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.
x 2 < 4
x 2 − 4 < 0
x 2 − 4 = 0
( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2
x 1 = 2, x 2 = − 2
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:
x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0
Это значит, что знак на интервале, в котором лежит точка 3 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервал со знаком − .
Точки -2 и 2 будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 2 ; 2 )
№6. Решить неравенство x 2 + x ≥ 0.
Решение:
Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.
x 2 + x ≥ 0
x 2 + x = 0
x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1
x 1 = 0, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:
x 2 + x = 1 2 + 1 = 2 > 0
Это значит, что знак на интервале, в котором лежит точка 1 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )
Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.
Дробно рациональные неравенства
Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:
f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).
Примеры дробно рациональных неравенств:
x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3
Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.
Алгоритм решения дробно рациональных неравенств:
- Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):
f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
- Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя.
- Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя.
В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.
- Нанести нули числителя и нули знаменателя на ось x.
Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые.
Если знак неравенства строгий,
при нанесении на ось x нули числителя выколотые.
Если знак неравенства нестрогий,
при нанесении на ось x нули числителя жирные.
- Расставить знаки на интервалах.
- Выбрать подходящие интервалы и записать ответ.
Примеры решения дробно рациональных неравенств:
№1. Решить неравенство x − 1 x + 3 > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
- Приравниваем числитель к нулю f ( x ) = 0.
x − 1 = 0
x = 1 – это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.
- Приравниваем знаменатель к нулю g ( x ) = 0.
x + 3 = 0
x = − 3 – это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,
Это значит, что знак на интервале, в котором лежит точка 2 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.
Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )
№2. Решить неравенство 3 ( x + 8 ) ≤ 5.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Привести неравенство к виду f ( x ) g ( x ) ≤ 0.
3 ( x + 8 ) ≤ 5
3 ( x + 8 ) − 5 x + 8 ≤ 0
3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 x − 40 x + 8 ≤ 0
− 5 x − 37 x + 8 ≤ 0
- Приравнять числитель к нулю f ( x ) = 0.
− 5 x − 37 = 0
− 5 x = 37
x = − 37 5 = − 37 5 = − 7,4
x = − 7,4 – ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.
- Приравнять знаменатель к нулю g ( x ) = 0.
x + 8 = 0
x = − 8 – это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение f ( x ) g ( x ) :
− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0
Это значит, что знак на интервале, в котором лежит точка 0 будет -.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.
В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.
Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )
№3. Решить неравенство x 2 − 1 x > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
- Приравнять числитель к нулю f ( x ) = 0.
x 2 − 1 = 0
( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1
x 1 = 1, x 2 = − 1 – нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.
- Приравнять знаменатель к нулю g ( x ) = 0.
x = 0 – это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) :
x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )
Системы неравенств
Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств – это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.
Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.
Пример системы неравенств:
{ x + 4 > 0 2 x + 3 ≤ x 2
Алгоритм решения системы неравенств
- Решить первое неравенство системы, изобразить его графически на оси x.
- Решить второе неравенство системы, изобразить его графически на оси x.
- Нанести решения первого и второго неравенств на ось x.
- Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.
Примеры решений систем неравенств:
№1. Решить систему неравенств { 2 x − 3 ≤ 5 7 − 3 x ≤ 1
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
2 x − 3 ≤ 5
2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x ≤ 4 ;
Графическая интерпретация:
Точка 4 на графике жирная, так как знак неравенства нестрогий.
- Решаем второе неравенство системы.
7 − 3 x ≤ 1
− 3 x ≤ 1 − 7
− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 < 0, знак неравенства после деления меняется на противоположный.
x ≥ 2
Графическая интерпретация решения:
Точка 2 на графике жирная, так как знак неравенства нестрогий.
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.
Ответ: x ∈ [ 2 ; 4 ]
№2. Решить систему неравенств { 2 x − 1 ≤ 5 1 < − 3 x − 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
2 x − 1 ≤ 5
2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x ≤ 3
Графическая интерпретация:
Точка 3 на графике жирная, так как знак неравенства нестрогий.
- Решаем второе неравенство системы.
1 < − 3 x − 2
3 x < − 1 − 2
3 x < − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.
x < − 1
Графическая интерпретация решения:
Точка -1 на графике выколотая, так как знак неравенства строгий.
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.
Ответ: x ∈ ( − ∞ ; − 1 )
№3. Решить систему неравенств { 3 x + 1 ≤ 2 x x − 7 > 5 − x
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
3 x + 1 ≤ 2 x
3 x − 2 x ≤ − 1
x ≤ − 1
Графическая интерпретация решения:
- Решаем второе неравенство системы
x − 7 > 5 − x
x + x > 5 + 7
2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x > 6
Графическая интерпретация решения:
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.
Ответ: x ∈ ∅
№4. Решить систему неравенств { x + 4 > 0 2 x + 3 ≤ x 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
x + 4 > 0
x > − 4
Графическая интерпретация решения первого неравенства:
- Решаем второе неравенство системы
2 x + 3 ≤ x 2
− x 2 + 2 x + 3 ≤ 0
Решаем методом интервалов.
− x 2 + 2 x + 3 = 0
a = − 1, b = 2, c = 3
D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16
D > 0 – два различных действительных корня.
x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1
Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.
Графическая интерпретация решения второго неравенства:
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .
Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.
Ответ: x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )
Скачать домашнее задание к уроку 8.
Найди пересечение и объединение множеств решений неравенств:
2 ≤ x < 6 и 4 < x ≤ 8.
reshalka.com
ГДЗ учебник по математике 4 класс Петерсон. 7 урок. Оценка разности. Номер №12
Решение
Получай решения и ответы с помощью нашего бота
Посмотреть калькулятор Вычисления в столбик
2 ≤ x < 6 {2, 3, 4, 5}.
4 < x ≤ 8 {5, 6, 7, 8}.
Пересечение множеств решений данных неравенств {5}.
Объединение множеств решений данных неравенств {2, 3, 4, 5, 6, 7, 8}.