Как найти точки пересечения прямой с осями координат по уравнению прямой
При практическом построении прямой по ее уравнению наиболее точный график получится тогда, когда координаты взятых для ее построения двух точек – целые числа.
1. Если прямая определена общим уравнением Ax + By + C = 0 и , то для ее построения проще всего определить точки пересечения прямой с координатными осями.
Укажем, как определить координаты точек пересечения прямой с координатными осями. Координаты точки пересечения прямой с осью Ox находят из следующих соображений: ординаты всех точек, расположенных на оси Ox, равны нулю. В уравнении прямой полагают, что y равно нулю, и из полученного уравнения находят x. Найденное значение x и есть абсцисса точки пересечения прямой с осью Ox. Если окажется, что x = a, то координаты точки пересечения прямой с осью Ox будут (a, 0).
Чтобы определить координаты точки пересечения прямой с осью Oy, рассуждают так: абсциссы всех точек, расположенных на оси Oy, равны нулю. Взяв в уравнении прямой x равным нулю, из полученного уравнения определяют y. Найденное значение y и будет ординатой пересечения прямой с осью Oy. Если окажется, например, что y = b, то точка пересечения прямой с осью Oy имеет координаты (0, b).
Пример. Прямая 2x + y – 6 = 0 пересекает ось Ox в точке (3, 0). Действительно, взяв в этом уравнении y = 0, получим для определения x уравнение 2x – 6 = 0, откуда x = 3.
Чтобы определить точку пересечения этой прямой с осью Oy, положим в уравнении прямой x = 0. Получим уравнение y – 6 = 0, из которого следует, что y = 6. Таким образом, прямая пересекает координатные оси в точках (3, 0) и (0, 6).
Если же в общем уравнении прямой C = 0, то прямая, определяемая этим уравнением, проходит через начало координат. Таким образом, уже известна одна ее точка, и для построения прямой остается только найти еще одну ее точку. Абсциссу x этой точки задают произвольно, а ординату y находят из уравнения прямой.
Точка пересечения прямых в пространстве онлайн
С помощю этого онлайн калькулятора можно найти точку пересечения прямых в пространстве. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых (“канонический” или “параметрический” ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку “Решить”. Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Точка пересечения прямых в пространстве − теория, примеры и решения
- Содержание
- 1. Точка пересечения прямых, заданных в каноническом виде.
- 2. Точка пересечения прямых, заданных в параметрическом виде.
- 3. Точка пересечения прямых, заданных в разных видах.
- 4. Примеры нахождения точки пересечения прямых в пространстве.
1. Точка пересечения прямых в пространстве, заданных в каноническом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:
, | (1) |
, | (2) |
Найти точку пересечения прямых L1 и L2 (Рис.1).
Запишем уравнение (1) в виде системы двух линейных уравнений:
, | (3) |
(4) |
Сделаем перекрестное умножение в уравнениях (3) и (4):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом преобразуем уравнение (2):
Запишем уравнение (2) в виде системы двух линейных уравнений:
, | (7) |
(8) |
Сделаем перекрестное умножение в уравнениях (7) и (8):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (5), (6), (9), (10) с тремя неизвестными x, y, z. Для этого представим эту систему в матричном виде:
(11) |
Как решить систему линейных уравнений (11)(или (5), (6), (9), (10)) посмотрите на странице Метод Гаусса онлайн. Если система линейных уравнениий (11) несовместна, то прямые L1 и L2 не пересекаются. Если система (11) имеет множество решений, то прямые L1 и L2 совпадают. Единственное решение системы линейных уравнений (11) указывает на то, что это решение определяет координаты точки пересечения прямых L1 и L2 .
2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:
(12) |
(13) |
Задачу нахождения нахождения точки пересечения прямых L1 и L2 можно решить разными методами.
Метод 1. Приведем уравнения прямых L1 и L2 к каноническому виду.
Для приведения уравнения (12) к каноническому виду, выразим параметр t через остальные переменные:
(14) |
Так как левые части уравнений (14) равны, то можем записать:
(15) |
Аналогичным образом приведем уравнение прямой L2 к каноническому виду:
(16) |
Далее, для нахождения точки пересечения прямых, заданных в каноническом виде нужно воспользоваться параграфом 1.
Метод 2. Для нахождения точки пересечения прямых L1 и L2 решим совместно уравнения (12) и (13). Из уравнений (12) и (13) следует:
(17) |
(18) |
(19) |
Из каждого уравнения (17),(18),(19) находим переменную t. Далее из полученных значений t выбираем те, которые удовлетворяют всем уравнениям (17)−(19). Если такое значение t не существует, то прямые не пересекаются. Если таких значений больше одного, то прямые совпадают. Если же такое значение t единственно, то подставляя это зачение t в (12) или в (13), получим координаты точки пересечения прямых (12) и (13).
3. Точка пересечения прямых в пространстве, заданных в разных видах.
Если уравнения прямых заданы в разных видах, то можно их привести к одному виду (к каноническому или к параметрическому) и найти точку пересечения прямых, описанных выше.
4. Примеры нахождения точки пересечения прямых в пространстве.
Пример 1. Найти точку пересечения прямых L1 и L2:
(20) |
(21) |
Представим уравнение (20) в виде двух уравнений:
(22) |
(23) |
Сделаем перекрестное умножение в уравнениях (22) и (23):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
(26) |
(27) |
Сделаем перекрестное умножение в уравнениях (7) и (8)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (24), (25), (28), (29) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
(30) |
Решим систему линейных уравнений (30) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 4 со строкой 2, умноженной на −1/4:
Сделаем перестановку строк 3 и 4.
Второй этап. Обратный ход Гаусса.
Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −4/3:
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 3/4:
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:
Пример 2. Найти точку пересечения прямых L1 и L2:
(31) |
(32) |
Приведем параметрическое уравнение прямой L1 к каноническому виду. Выразим параметр t через остальные переменные:
Из равентсв выше получим каноническое уравнение прямой:
(33) |
Представим уравнение (33) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (34 и (35):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
Сделаем перекрестное умножение в уравнениях (38) и (39)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (36), (37), (40), (41) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
Решим систему линейных уравнений (42) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1/6:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строки 3 и 4 со строкой 2, умноженной на 8/21 и −1/7, соответственно:
Исключим элементы 3-го столбца матрицы ниже элементаa33. Для этого сложим строку 4 со строкой 3, умноженной на -1/16:
Из расширенной матрицы восстановим последнюю систему линейных уравнений:
Уравнение (43) несовместна, так как несуществуют числа x, y, z удовлетворяющие уравнению (43). Следовательно система линейных уравнений (42) не имеет решения. Тогда прямые L1 и L2 не пересекаются. То есть они или параллельны, или скрещиваются.
Прямая L1 имеет направляющий вектор q1=<2,6,7>, а прямая L2 имеет направляющий вектор q2=<3,1,1>. Эти векторы не коллинеарны. Следовательно прямые L1 и L2 скрещиваются .
Пересечение с осями онлайн
Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек пересечения графика функции с осями координат.
Найти точки пересечения функции с осями координат:
При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:
График данной функции представлен на рисунке:
Как следует из рисунка, наша функция пересекает ось в двух точках, а ось – в одной.
Сначала найдём точки пересечения функции с осью . Сразу отметим, что в этих точках координата . Поэтому для их поиска, нам нужно решить уравнение:
Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс: и . Стоит отметить, что задача поиска пересечений функции с осью эквивалентна задаче нахождения нулей функции.
Теперь найдём точку пересечения с осью ординат. В этой точке координата . Поэтому для их поиска, просто подставляем значение в нашу функцию:
Таким образом, мы нашли точку пересечения нашей функции с осью ординат .
Другие полезные разделы:
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
[spoiler title=”источники:”]
http://matworld.ru/analytic-geometry/tochka-peresechenija-prjamyh-3d.php
http://mathforyou.net/online/calculus/intercepts/
[/spoiler]
Загрузить PDF
Загрузить PDF
В алгебре прямоугольную систему координат на плоскости образуют две взаимно перпендикулярные оси – ось Х (горизонтальная ось) и ось Y (вертикальная ось). Точки пересечения – это точки, в которых графики функций пересекают оси координат. Точка пересечения с осью Y и точка пересечения с осью X лежат на соответствующих осях. В простых задачах точку пересечения с осью Х легко найти по графику функции. Также эту точку пересечения можно вычислить с помощью уравнения функции.
-
1
Найдите ось Х. Прямоугольная система координат образуется двумя осями – осью Х (горизонтальная ось, которая направлена слева направо) и осью Y (вертикальная ось, которая направлена снизу вверх).[1]
Чтобы найти точку пересечения с осью Х, посмотрите на эту ось. -
2
Найдите точку, в которой график пересекает ось Х. Это точка пересечения графика с осью Х.[2]
Если нужно найти точку пересечения с осью Х по графику, возможно, координатой этой точки будет целое число, например, 4. Однако в большинстве случаев по графику удастся определить только приблизительную координату , например, между 4 и 5. -
3
Реклама
-
1
-
2
-
3
-
4
Реклама
-
1
Определите, записано ли уравнение в виде квадратного уравнения. Квадратное уравнение имеет вид .[9]
Квадратное уравнение имеет два корня: график такого уравнения представляет собой параболу и пересекает ось Х в двух точках.[10]
- Например, уравнение является квадратным уравнением, поэтому график пересечет ось Х в двух точках.
-
2
Запишите формулу для решения квадратного уравнения. Формула: , где – коэффициент при переменной второго порядка (), – коэффициент при переменной первого порядка (), – свободный член.[11]
-
3
Подставьте соответствующие значения в формулу для решения квадратного уравнения. Убедитесь, что вместо каждой переменной подставляете правильное значение.
-
4
Упростите уравнение. Для начала перемножьте соответствующие значения. Убедитесь, что учли все знаки «плюс» и «минус».
-
5
Возведите соответствующее значение в квадрат. Сделайте это со значением переменной . Затем результат прибавьте к другому числу, которое находится под знаком корня.
-
6
Выполните сложение. Так как в формуле присутствует знак , придется выполнить одну операцию сложения и одну операцию вычитания. Выполните сложение, чтобы найти первое значение .
-
7
Выполните вычитание. Так вы найдете второе значение . Сначала извлеките квадратный корень, потом выполните вычитание в числителе и, наконец, результат разделите на 2.
-
8
Реклама
Советы
- Если дано линейное уравнение вида , нужно знать угловой коэффициент (он равен значению коэффициента k) и координату «у» точки пересечения прямой с осью Y (она равна значению коэффициента b). Вместо «у» подставьте 0 и найдите «х». Вы получите координату «х» точки пересечения прямой с осью Х.
Реклама
Об этой статье
Эту страницу просматривали 75 804 раза.
Была ли эта статья полезной?
Содержание:
Общее уравнение прямой:
Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.
Определение: Любое соотношение
Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.
Пример:
а) 2х + Зу-5 = 0 – линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) – ему не удовлетворяет;
б)
в) – линии второго порядка.
Рассмотрим другое определение линии:
Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 – уравнением линии.
Определение: Общим уравнением прямой называется уравнение первого порядка вида
Рассмотрим частные случаи этого уравнения:
а) С = 0; – прямая проходит начало системы координат (Рис. 20):
Рис. 20. Прямая, проходящая через начало координат.
б) 5 = 0; Ах+С=0 – прямая проходит параллельно оси ординат Оу (Рис. 21):
Рис. 21. Прямая, проходящая параллельно оси ординат Оу.
в) А = 0; Ву+С=0 – прямая проходит параллельно оси абсцисс Ох (Рис. 22):
Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.
Виды уравнений прямой
1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой в котором коэффициент Разрешим общее уравнение прямой относительно переменной Обозначим через тогда уравнение примет вид которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При т.е. прямая отсекает на оси абсцисс отрезок к (Рис. 23, для определенности принято, что ):
Рис. 23. Отрезки, отсекаемые прямой на координатных осях.
Из рисунка видно, что т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.
2. Уравнение прямой в отрезках.
Пусть в общем уравнении прямой параметр Выполним следующие преобразования
Обозначим через тогда последнее равенство перепишется в виде . которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.
Рис. 24. Отрезки, отсекаемые прямой на координатных осях.
При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки:
3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Так как точки лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:
Пусть тогда полученные равенства можно преобразовать к виду Отсюда находим, что или Полученное уравнение называется уравнением прямой, проходящей через две заданные точки и
4. Уравнение прямой, проходящей через заданную точку параллельно заданному вектору (каноническое уравнение прямой). Пусть прямая проходит через заданную точку параллельно вектору
Определение: Вектор называется направляющим вектором прямой. Возьмем на прямой произвольную точку и создадим вектор (Рис. 25):
Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.
В силу того, что вектора коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой
Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.
5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой
Основные задачи о прямой на плоскости
1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых
2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами
Требуется найти угол между этими прямыми (Рис. 26):
Рис. 26. Угол между двумя прямыми.
Из рисунка видно, что Вычислим
Наименьший угол между пересекающимися прямыми определим формулой Из полученной формулы видно:
Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением
Пример:
Определить угол между прямыми
Решение:
В силу того, что что прямые параллельны, следовательно,
Пример:
Выяснить взаимное расположение прямых
Решение:
Так как угловые коэффициенты и связаны между собой соотношением то прямые взаимно перпендикулярны.
3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки на прямую Если прямая задана общим уравнением, то расстояние от точки до прямой определяется формулой:
Если прямая задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой:
Прямая линия на плоскости и в пространстве. Системы координат на плоскости
Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка . Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.
Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая – второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси – координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую – осью ординат, обозначаемую Оу.
Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно .
Координатами точки М в заданной системе называются числа , обозначающие величину отрезка оси абсцисс и величину отрезка оси ординат, где х – первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у).
Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у – М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.
На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3).
Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:
Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.
Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.
Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3).
Каждая точка М в полярной системе координат задается парой координат .
Декартова прямоугольная система координат связана с полярной системой формулами:
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамии . Числа могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку горизонтальную прямую, а через точку – вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора
или (7.1.1)
Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки . Например, если точка расположена ниже точки и справа от нес, как на рис. 7.5, то отрезок можно считать равныму .
Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как . Заметим, что, так как величина в этом случае отрицательна, то разность больше, чем
Если обозначить через угол, образованный положительным направлением оси абсцисс и отрезком , то формулы
выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:
позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u – произвольная ось, а – угол наклона отрезка к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:
.
Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая – второй. Обозначим их в заданном порядке через . Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой .
Определение 7.1.1. Число определяемое равенством где – величины направленных отрезков оси u, называется отношением, в котором точка М делит направленный отрезок .
Число не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины . Кроме того, будет положительно, если Мнаходится между точками если же М вне отрезка , то -отрицательное.
Задача о делении отрезка в данном отношении формулируется следующим образом:
Считая известными координаты двух точек и и отношение в котором некоторая неизвестная точка М делит отрезок , найти координаты точки М.
Решение задачи определяется следующей теоремой.
Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок в отношении то координаты этой точки выражаются формулами:
Доказательство:
Спроектируем точки на ось Ох и обозначим их проекции соответственно через (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:
Подставив в (7.1.4) величины отрезков и
, получим
Разрешая это уравнение относительно х, находим:
Вторая формула (7.1.3) получается аналогично.
Если – две произвольные точки и М(х,y) –
середина отрезка , то . Эти формулы
получаются из (7.1.3) при .
Основная теорема о прямой линии на плоскости
Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.
Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора одной и той же прямой коллинеарны между собой, т.е.
, .
Для всех направляющих векторов данной прямой, не параллельной оси ординат, отношение ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.
Действительно, если – два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.
их координаты пропорциональны: а значит
Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.
Справедлива следующая теорема.
Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.
Доказательство: Пусть В = (О,b}- точка пересечения прямой L с осью у, а Р = (х,у) – любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р – прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.
Так как треугольники BSQ и BRP подобны, то или после упрощения
Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.
Таким образом, уравнение любой прямой можно записать в виде:
(не вертикальная прямая) , (7.2.2), х = а (вертикальная прямая) (7.2.3).
В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).
Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:
Ах+Ву+С=0. (7.2.4)
Если , мы можем записать уравнение (7.2.4) в виде
т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению
А х = —С,
или , т.е. к уравнению вида (7.2.3).
Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую.
Уравнение (7.2.4) называется общим уравнением прямой. Так
как , то вектор является направляющим вектором прямой (7.2.4). Вектор перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:
1. или у =b, где , -это уравнсние прямой, параллельной оси Ох.
2. или х = а, где , – это уравнение прямой, параллельной оси Оу.
3. – это уравнение прямой, проходящей через начало координат.
4. А=0; С=0; Ву-0 или у = 0 – это уравнение оси абсцисс Ох.
5. В=0;С=0; Ах=0 или х = 0 – это уравнение оси ординат Оу.
Различные виды уравнений прямой на плоскости
Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.
Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:
где -длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).
Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки . Тогда вектор является направляющим вектором этой прямой l.
Геометрическое место концов всевозможных векторов вида где пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:
где – координаты направляющего вектора.
Система (7.3.3) равносильна уравнению
называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение
которое называется уравнением прямой, проходящей через две данные точки
Если абсциссы точек одинаковы, т. е. то прямая параллельна оси ординат и ее уравнение имеет вид: х=а.
Если ординаты точек одинаковы, т. е. , то прямая параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:
или
где
угловой коэффициент прямой.
Уравнение (7.3.6) называется уравнением прямой, проходящей через точку и имеющей угловой коэффициент k.
Пример:
Составить уравнение прямой, проходящей через две точки
Решение:
I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек , получим искомое уравнение прямой:
II способ. Зная координаты точек по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:
Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: .
Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения
.
Взаимное расположение двух прямых на плоскости
Пусть на плоскости заданы две прямые общими уравнениями . Угол между ними можно вычислить как угол между направляющими векторами
этих прямых:
Если прямые параллельны, то их нормальные векторы коллинеарны, а это значит, что их соответствующих координаты пропорциональны:
И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:
Теорема 7.4.1. Две прямые параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.
Например, прямые параллельны,
т. к..
Если прямые перпендикулярны , то их нормальные векторы тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: , или в координатной форме
Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.
Теорема 7.4.2. Две прямые перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству .
Например, прямые перпендикулярны, так как
.
Если прямые заданы уравнениями вида и , то угол между ними находится по формуле:
Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство
(7.4.5)
а для их перпендикулярности необходимо и достаточно, чтобы
(7.4.6)
Пример:
Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).
Решение:
Проекция точки Р на прямую АВ – это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.
Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:
Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку ,то из равенства находим угловой коэффициент перпендикуляра . Подставляя найденное значение углового коэффициента и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:
.
Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра
найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.
Пример:
Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .
Решение:
Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:
Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:
(млн. дсн. ед)
Пример:
Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.
Решение:
Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: . Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства то фирма будет работать с прибылью.
Прямая линия в пространстве
Системы координат в пространстве
В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).
Пусть задано пространство. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка – плоскости и прямой линии.
Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки и вектора параллельного этой прямой.
Вектор , параллельный прямой, называется направляющим вектором этой прямой.
Итак, пусть прямая L проходит через точку , лежащую на прямой, параллельно вектору (см. рис. 7.9).
Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор параллельный (коллинеарный) вектору . Поскольку векторы коллинеарны, то найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.
Уравнение (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:
Полученные уравнения называются параметрическими уравнениями прямой.
При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.
Разрешив уравнения (7.5.2) относительно t
и приравняв найденные значенияt получим канонические уравнения прямой:
Если прямая L в пространстве задается двумя своими точками ,то вектор
можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения
где . (7.5.4)- это уравнение прямой, проходящей через две заданные точки
Пример:
Составить параметрические уравнения прямой, проходящей через точку, перпендикулярно плоскости Oxz.
Решение:
В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: • Подставив значения координат точки и значения координат направляющего вектора в уравнения (7.5.2), получаем: .
Пример:
Записать уравнения прямой в параметрическом виде.
Обозначим. Тогда ,
, откуда следует, что .
Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор
прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид
Исключая из уравнений параметр t, получим уравнения прямой в виде
Однако и в этом случае формально можно записывать канонические уравнения прямой в виде . Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.
Аналогично, канонические уравнения
определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.
Пример:
Составить канонические и параметрические уравнения прямой, проходящей через точку параллельно вектору
Решение:
Подставив координаты точки , и вектора в (7.5.2) и (7.5.3), находим искомые канонические уравнения:
.и параметрические уравнения:
Пример:
Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно
а) прямой ;
б) оси Ох;
в) оси Оу;
г) оси Oz.
Решение:
а) Поскольку направляющий вектор заданной прямой
является направляющим вектором искомой прямой, то
подставив координаты точки М(2; -1; 4) и вектора в (7.5.3) получим уравнение искомой прямой:
б) Поскольку единичный вектор оси О х: будет направляющим вектором искомой прямой, то подставив в уравнение
(7.5.3) координаты точки М(2; -1; 4 ) и вектора , получаем:
в) В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: . В соответствии с уравнением (7.5.3), получаем или .
г) Единичный вектор оси Oz : будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем
Пример:
Составить уравнение прямой, проходящей через две заданные точки
Решение:
Подставив координаты точек в уравнение
(7.5.4), получим:
Взаимное расположение двух прямых в пространстве
Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:
Очевидно, что за угол между прямыми можно принять угол между их направляющими векторами и
, косинус которого находится по формуле:
Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов:
Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:
т.е. параллельна тогда и только тогда, когда параллелен
.
Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю:
Пример:
Найти угол между прямыми и
Решение:
Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов и
. Тогда , откуда или.
Вычисление уравнения прямой
Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол , образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.
Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.
1) Пусть сначала . Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.
Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:
из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь
при х > 0.
Таким образом,
при х > 0.
Нетрудно проверить, что формула (3) остается справедливой также и при х < 0.
Мы доказали, что координаты любой точки М (х, у) прямой PQ удовлетворяют уравнению (3). Легко убедиться в обратном: если координаты какой-нибудь точки Ml удовлетворяют уравнению (3), то точка Мх обязательно лежит на прямой PQ. Следовательно, уравнение (3) представляет собой уравнение прямой линии PQ (так называемое уравнение прямой с угловым коэффициентом). Постоянные величины (параметры) имеют следующие значения: b = ОБ — начальный отрезок (точнее, начальная ордината), k = tg ф — угловой коэффициент. Заметим, что если точка В расположена выше оси Ох, то , а если ниже, то b < 0. При 6 = 0 прямая проходит через начало координат и уравнение такой прямой есть
При k = 0 получаем уравнение прямой, параллельной оси Ох:
2) Если , то с помощью аналогичных рассуждений мы также приходим к уравнению (3).
3) Если , т. е. прямая АВ перпендикулярна оси Ох, то ее уравнение есть
где а — абсцисса следа этой прямой на оси Ох (т. е. ее точки пересечения с осью Ох).
Замечание. Как частные случаи получаем уравнения осей координат:
Прямую легко построить по ее уравнению.
Пример:
Построить прямую, заданную уравнением
Решение:
Известно, что две точки вполне определяют положение прямой. Поэтому достаточно найти две точки, через которые проходит наша прямая. В данном уравнении b = -4. Следовательно, прямая проходит через точку В (0, -4). С другой стороны, координаты х и у любой точки, лежащей на нашей прямой, связаны заданным уравнением. Поэтому, задав абсциссу некоторой точки, лежащей на прямой, мы из уравнения прямой найдем ее ординату. Положим, например, х = 2; из уравнения прямой получим у = -1. Таким образом, наша прямая проходит через точки А (2, -1) и В (0, -4). Построив эти точки по их координатам и проведя через них прямую (рис. 24), мы получим искомую прямую.
Из предыдущего видно, что для произвольной прямой на плоскости можно составить ее уравнение; обратно, зная уравнение некоторой прямой, можно построить эту прямую. Таким образом, уравнение прямой полностью характеризует положение ее на плоскости.
Из формул (3) и (5) видно, что уравнение прямой есть уравнение первой степени относительно текущих координат х и у. Справедливо и обратное утверждение.
Теорема: Всякое невырожденное уравнение первой степени
представляет собой уравнение некоторой прямой линии на плоскости Оху (общее уравнение прямой линии).
Доказательство: 1) Пусть сначала В ^ 0. Тогда уравнение (7) можно представить в виде
Сравнивая с (3), мы получим, что это есть уравнение прямой с угловым коэффициентом k = -А/В и начальной ординатой
2) Пусть теперь В = 0; тогда А 0. Имеем Ах + С = 0 и
х = -С/А.
Уравнение (9) представляет собой уравнение прямой, параллельной оси Оу и отсекающей на оси Ох отрезок a = -С/А.
Так как все возможные случаи исчерпаны, то теорема доказана.
- Заказать решение задач по высшей математике
Угол между двумя прямыми
Рассмотрим две прямые (не параллельные оси Оу)у заданные их уравнениями с угловыми коэффициентами (рис. 25):
Требуется определить угол 9 между ними. Точнее, под углом 0 мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой (0 < 0 < я). Этот угол 9 (рис. 25) равен углу АСВ треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому ф’ = ф + 0, или
0 = ф’ – ф;
отсюда на основании известной формулы тригонометрии получаем
Заменяя tg ф и tg ф’ соответственно на к и k окончательно будем иметь
Формула (3) дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.
Выведем теперь условия параллельности и перпендикулярности двух прямых.
Если прямые (1) и (2) параллельны, то ф’ = ф и, следовательно,
k’ = к. (4)
Обратно, если выполнено условие (4), то, учитывая, что ф’ и ф заключаются в пределах от 0 до я, получаем
Ф’ – ф, (5)
и, следовательно, рассматриваемые прямые или параллельны, или сливаются (параллельность в широком смысле).
Правило 1. Прямые на плоскости параллельны (в широком смысле) тогда и только тогдау когда их угловые коэффициенты равны между собой.
Если прямые перпендикулярны, то и, следовательно,
отсюда 1 + kk’ = 0 и
k’ = -l/k.
Справедливо также и обратное утверждение.
Правило 2. Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.
Пусть теперь уравнения прямых заданы в общем виде:
Ах + By + С = 0 (7)
и
А’х + В’у + С’ = 0. (8)
Отсюда, предполагая, что , получаем
Следовательно, угловые коэффициенты этих прямых есть
Из формулы (3), производя несложные выкладки, находим тангенс угла между этими прямыми:
Отсюда получаем:
1) условие параллельности прямых (0 = 0)
2) условие перпендикулярности прямых
Отметим, в частности, что прямые
взаимно перпендикулярны.
Для прямых, параллельных осям Ох и Оу, условно полагают и
Пример:
Определить угол между прямыми у = х и у = 1,001 + 10. Здесь угловые коэффициенты прямых есть k = 1 и k’ = 1,001.
Решение:
По формуле (3) получаем
Так как для малых углов 0 справедливо приближенное равенство , то
Уравнение прямой, проходящей через данную точку в данном направлении
Пусть прямая РМ образует угол ф с положительным направлением оси Ох (рис. 26) и проходит через заданную точку Р . Выведем уравнение этой прямой, предполагая сначала, что прямая не параллельна оси Оу.
В этом случае, как мы видели, уравнение прямой имеет вид
у = kx + b, (1)
где k = tg ф — угловой коэффициент прямой, а Ь — длина отрезка, отсекаемого нашей прямой на оси Оу. Так как точка Р лежит на прямой РМ, то ее координаты хг и ух должны удовлетворять уравнению (1), т. е.
ух = kxt+ b. (2)
Вычитая из равенства (1) равенство (2), получим
Это и есть уравнение искомой прямой.
Если прямая, проходящая через точку Р параллельна оси Оу, то ее уравнение, очевидно, будет
Если k — заданное число, то уравнение (3) представляет вполне определенную прямую. Если же k — переменный параметр, то это уравнение определит пучок прямых у проходящих через точку Р (рис. 27); при этом k называется параметром пучка.
Пример:
Написать уравнение прямой, проходящей через точку Р (3, 2) и параллельной прямой:
Решение:
Так как искомая прямая параллельна данной прямой, то ее угловой коэффициент k = 4/3. Следовательно, на основании формулы (3) уравнение этой прямой имеет вид , или
Пример:
Написать уравнение прямой, проходящей через точку Р (4, 5) и перпендикулярной к прямой:
Решение:
Так как искомая прямая перпендикулярна прямой с угловым коэффициентом k = -2/3, то ее угловой коэффициент k’ = -l/k = 3/2. Следовательно, на основании формулы (3) уравнение этой прямой таково:
, или окончательно
Уравнение прямой, проходящей через две данные точки
Известно, что через две не совпадающие между собой точки можно провести прямую, и притом только одну. Отыщем уравнение прямой, проходящей через точки –
Предположим сначала, что , т. е. прямая PQ не параллельна оси Оу, Поскольку прямая PQ проходит через точку то ее уравнение имеет вид
где k — неизвестный нам угловой коэффициент этой прямой. Однако так как наша прямая проходит также через точку Q , то координаты этой последней точки должны удовлетворять уравнению (1). Отсюда
=
и, следовательно, при имеем
Подставляя выражение (2) для углового коэффициента k в уравнение (1), получим уравнение прямой PQ:
Это уравнение при можно записать также в виде пропорции:
Если , т. е. прямая, проходящая через точки и , параллельна оси Оу, то уравнение этой прямой, очевидно, будет
Пример:
Написать уравнение прямой, проходящей через точки Р(4, -2) и Q(3, -1).
Решение:
На основании уравнения (3) имеем
Уравнение прямой в «отрезках»
Выведем теперь уравнение прямой, положение которой на плоскости задано ненулевыми отрезками, отсекаемыми ею на осях координат. Предположим, например, что прямая АВ отсекает на оси Ох отрезок OA = а, а на оси Оу — отрезок О В = b (рис. 28), причем ясно, что тем самым положение прямой вполне определено.
Для вывода уравнения прямой АВ заметим, что эта прямая проходит через точки А (а, 0) и Б поэтому уравнение ее легко получается из уравнения (3′), если положить в нем . Имеем
Отсюда
и окончательно
Это и есть так называемое уравнение прямой в «отрезках». Здесь х и у, как обычно, — координаты произвольной точки М (х, у), лежащей на прямой АВ (рис. 28).
Пример:
Написать уравнение прямой АВ, отсекающей на оси Ох отрезок OA = 5, а на оси Оу отрезок ОВ = -4.
Полагая в уравнении (1) а = 5 и b = -4, получим , или
Примечание. Уравнение прямой, проходящей через начало координат или параллельной одной из осей координат, не может быть записано как уравнение прямой в «отрезках».
Точка пересечения двух прямых
Пусть имеем две прямые
Точка пересечения этих прямых лежит как на первой прямой, так и на второй. Поэтому координаты точки пересечения должны удовлетворять как уравнению первой, так и уравнению второй прямой. Следовательно, для того чтобы найти координаты точки пересечения двух данных прямых, достаточно решить совместно систему уравнений этих прямых.
Последовательно исключая из уравнений (1) и (2) неизвестные у и х, будем иметь
Отсюда если , то для координат точки пересечения прямых получаем такие выражения: или, введя определители второго порядка, имеем
Для прямых (1) и (2) возможны следующие три случая.
На основании прямые не параллельны. Координаты их единственной точки пересечения определяются из формул (6).
Прямые параллельны и точки пересечения нет. Аналитически это видно из того, что по меньшей мере одно из уравнений (3) или (4) противоречиво и, значит, система (1) и (2) несовместна.
Прямые (1) и (2) сливаются, и, таким образом, существует бесчисленное множество точек пересечения. В этом случае левые части уравнений (1) и (2) отличаются только на постоянный множитель и, следовательно, система этих уравнений допускает бесконечно много решений.
Пример:
Решая совместно систему уравнений прямых
получаем х = 2 и у = 1. Следовательно, эти прямые пересекаются в точке N(2,1).
Расстояние от точки до прямой
Рассмотрим прямую KL, заданную общим уравнением
и некоторую точку М. Под расстоянием от точки М до прямой KL понимается длина перпендикуляра d = , опущенного из точки М на прямую KL (рис. 29).
Уравнение перпендикуляра MN можно записать в виде
Отсюда для основания перпендикуляра N(x2, у2) будем иметь
и, следовательно,
где t — коэффициент пропорциональности. Поэтому
С другой стороны, учитывая, что точка N(*2, i/2) лежит на прямой KL, причем из (4) имеем получаем
Следовательно,
Таким образом, в силу формулы (5) имеем
В частности, полагая , получаем расстояние от начала координат до прямой
Замечание. Разделив обе части уравнения прямой (1) на , получим уравнение
свободный член которого численно равен расстоянию от
начала координат до прямой. Такое уравнение прямой будем называть нормированным.
Из формулы (7) получаем правило:
чтобы определить расстояние от точки до прямой, нужно в левую часть нормированного уравнения этой прямой подставить координаты данной точки и взять модуль полученного результата.
Пример:
Определить расстояние от точки М (-2, 7) до прямой
Решение:
Нормируя уравнение этой прямой, будем иметь
Отсюда искомое расстояние есть
- Плоскость в трехмерном пространстве
- Функция одной переменной
- Производная функции одной переменной
- Приложения производной функции одной переменной
- Обратная матрица – определение и нахождение
- Ранг матрицы – определение и вычисление
- Определители второго и третьего порядков и их свойства
- Метод Гаусса – определение и вычисление
Елена Борисовна Калюжная
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Основные сведения о координатной плоскости
Каждый объект (например, дом, место в зрительном зале, точка на карте) имеет свой упорядоченный адрес (координаты), который имеет числовое или буквенное обозначение.
Математики разработали модель, которая позволяет определять положение объекта и называется координатной плоскостью.
Чтобы построить координатную плоскость нужно провести $2$ перпендикулярные прямые, на конце которых указываются с помощью стрелок направления «вправо» и «вверх». На прямые наносятся деления, а точка пересечения прямых является нулевой отметкой для обеих шкал.
Определение 1
Горизонтальная прямая называется осью абсцисс и обозначается х, а вертикальная прямая называется осью ординат и обозначается у.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Две перпендикулярные оси х и у с делениями составляют прямоугольную, или декартовую, систему координат, которую предложил французский философ и математик Рене Декарт.
Координатная плоскость
Координаты точки
Точка на координатной плоскости определяется двумя координатами.
Чтобы определить координаты точки $A$ на координатной плоскости нужно через нее провести прямые, которые будут параллельны координатным осям (на рисунке выделены пунктирной линией). Пересечение прямой с осью абсцисс дает координату $x$ точки $A$, а пересечение с осью ординат дает координату у точки $A$. При записи координат точки сначала записывается координата $x$, а затем координата $y$.
«Координаты на плоскости» 👇
Точка $A$ на рисунке имеет координаты $(3; 2)$, а точка $B (–1; 4)$.
Для нанесения точки на координатную плоскость действуют в обратном порядке.
Построение точки по заданным координатам
Пример 1
На координатной плоскости построить точки $A(2;5)$ и $B(3; –1).$
Решение.
Построение точки $A$:
- отложим число $2$ на оси $x$ и проведем перпендикулярную прямую;
- на оси у отложим число $5$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $A$ с координатами $(2; 5)$.
Построение точки $B$:
- отложим на оси $x$ число $3$ и проведем перпендикулярную оси х прямую;
- на оси $y$ отложим число $(–1)$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $B$ с координатами $(3; –1)$.
Пример 2
Построить на координатной плоскости точки с заданными координатами $C (3; 0)$ и $D(0; 2)$.
Решение.
Построение точки $C$:
- отложим число $3$ на оси $x$;
- координата $y$ равна нулю, значит точка $C$ будет лежать на оси $x$.
Построение точки $D$:
- отложим число $2$ на оси $y$;
- координата $x$ равна нулю, значит, точка $D$ будет лежать на оси $y$.
Замечание 1
Следовательно, при координате $x=0$ точка будет лежать на оси $y$, а при координате $y=0$ точка будет лежать на оси $x$.
Пример 3
Определить координаты точек A, B, C, D.$
Решение.
Определим координаты точки $A$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Таким образом, получаем, что точка $A (1; 3).$
Определим координаты точки $B$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Получаем, что точка $B (–2; 4).$
Определим координаты точки $C$. Т.к. она расположена на оси $y$, то координата $x$ этой точки равна нулю. Координата у равна $–2$. Таким образом, точка $C (0; –2)$.
Определим координаты точки $D$. Т.к. она находится на оси $x$, то координата $y$ равна нулю. Координата $x$ этой точки равна $–5$. Таким образом, точка $D (5; 0).$
Пример 4
Построить точки $E(–3; –2), F(5; 0), G(3; 4), H(0; –4), O(0; 0).$
Решение.
Построение точки $E$:
- отложим число $(–3)$ на оси $x$ и проведем перпендикулярную прямую;
- на оси $y$ отложим число $(–2)$ и проведем перпендикулярную прямую к оси $y$;
- на пересечении перпендикулярных прямых получаем точку $E (–3; –2).$
Построение точки $F$:
- координата $y=0$, значит, точка лежит на оси $x$;
- отложим на оси $x$ число $5$ и получим точку $F(5; 0).$
Построение точки $G$:
- отложим число $3$ на оси $x$ и проведем перпендикулярную прямую к оси $x$;
- на оси $y$ отложим число $4$ и проведем перпендикулярную прямую к оси $y$;
- на пересечении перпендикулярных прямых получаем точку $G(3; 4).$
Построение точки $H$:
- координата $x=0$, значит, точка лежит на оси $y$;
- отложим на оси $y$ число $(–4)$ и получим точку $H(0; –4).$
Построение точки $O$:
- обе координаты точки равны нулю, значит, точка лежит одновременно и на оси $y$, и на оси $x$, следовательно является точкой пересечения обеих осей (началом координат).
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Прежде чем перейти к изучению функции «y = kx»
внимательно изучите урок
«Что такое функция в математике»
и
«Как решать задачи на функцию».
Важно!
Функцию вида «y = kx + b» называют линейной функцией.
Буквенные множители «k» и «b»
называют
числовыми коэффициентами.
Вместо «k» и «b»
могут стоять любые числа (положительные, отрицательные или дроби).
Другими словами, можно сказать, что «y = kx + b» — это семейство всевозможных функций, где вместо
«k» и «b» стоят числа.
Примеры функций типа «y = kx + b».
- y = 5x + 3
- y = −x + 1
- y = x − 2
- y = 0,5x
Давайте определим для каждой функций выше, чему равны числовые коэффициенты
«k» и
«b».
Функция | Коэффициент «k» | Коэффициент «b» | ||||
---|---|---|---|---|---|---|
y = 5x + 3 | k = 5 | b = 3 | ||||
y = −x + 1 | k = −1 | b = 1 | ||||
y =
x − 2 |
k =
|
b = −2 | ||||
y = 0,5x | k = 0,5 | b = 0 |
Обратите особое внимание на функцию «y = 0,5x»
в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b».
Рассматривая
функцию «y = 0,5x», неверно утверждать, что числового коэффициента
«b» в функции нет.
Числовый коэффициент «b» присутствет в функции типа «y = kx + b» всегда.
В функции «y = 0,5x»
числовый коэффициент «b» равен нулю.
Как построить график линейной функции
«y = kx + b»
Запомните!
Графиком линейной функции «y = kx + b» является прямая.
Так как графиком функции «y = kx + b»
является прямая линия, функцию называют линейной функцией.
Из геометрии вспомним аксиому (утверждение, которое не требует доказательств),
что через любые две точки можно провести прямую и притом только одну.
Исходя из аксиомы выше следует, что
чтобы построить график функции вида
«у = kx + b» нам достаточно будет найти всего
две точки.
Для примера построим график функции «y = −2x + 1».
Найдем значение функции «y» для двух произвольных значений «x».
Подставим, например, вместо «x» числа «0» и «1».
Важно!
Выбирая произвольные числовые значения вместо «x», лучше брать числа
«0» и «1».
С этими числами легко выполнять расчеты.
x | Расчет «y = −2x + 1» |
---|---|
0 | y(0) = −2 · 0 + 1 = 1 |
1 | y(1) = −2 · 1 + 1 = −2 + 1 = −1 |
Полученные значения «x» и «y» — это координаты точек графика функции.
Запишем полученные координаты точек «y = −2x + 1» в таблицу.
Точка |
Координата по оси «Оx» (абсцисса) |
Координата по оси «Оy» (ордината) |
---|---|---|
(·)A | 0 | 1 |
(·)B | 1 | −1 |
Отметим полученные точки на системе координат.
Теперь проведем прямую через отмеченные точки. Эта прямая будет
являться графиком функции «y = −2x + 1».
Как решать задачи на
линейную функцию «y = kx + b»
Рассмотрим задачу.
Построить график функции «y = 2x + 3». Найти по графику:
- значение «y» соответствующее значению «x» равному −1; 2; 3; 5;
- значение «x», если значение «y» равно
1; 4; 0; −1.
Вначале построим график функции «y = 2x + 3».
Используем правила, по которым мы строили график функции выше.
Для построения графика функции «y = 2x + 3» достаточно найти всего две точки.
Выберем два произвольных числовых значения для «x». Для удобства расчетов выберем числа
«0» и «1».
Выполним расчеты и запишем их результаты в таблицу.
Точка |
Координата по оси «Оx» |
Координата по оси «Оy» |
---|---|---|
(·)A | 0 | y(0) = 2 · 0 + 3 = 3 |
(·)B | 1 | y(1) = 2 ·1 + 3 = 5 |
Отметим полученные точки на прямоугольной системе координат.
Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции
«y = 2x + 3».
Теперь работаем с построенным графиком функции «y = 2x + 3».
Требуется найти значение «y»,
соответствующее значению «x»,
которое равно −1; 2; 3; 5.
Тему
«Как получить координаты точки функции» с графика функции
мы уже подробно рассматривали в уроке
«Как решать задачи на функцию».
В этому уроке для решения задачи выше вспомним только основные моменты.
Запомните!
Чтобы найти значение «y» по известному значению «x» на графике
функции необходимо:
- провести перпендикуляр от оси «Ox»
(ось абсцисс)
из заданного числового значения «x»
до пересечения
с графиком функции; - из полученной точки пересечения перпендикуляра и графика функции провести еще один перпендикуляр к оси
«Oy»
(ось ординат); - полученное числовое значение на оси «Oy» и будет искомым значением.
По правилам выше найдем на построенном ранее графике функции «y = 2x + 3»
необходимые значения функции «y» для
«x» равным −1; 2; 3; 5.
Запишем полученные результаты в таблицу.
Заданное значение «x» | Полученное с графика значение «y» |
---|---|
−1 | 1 |
2 | 7 |
3 | 9 |
5 | 13 |
Переходим ко второму заданию задачи. Требуется найти значение «x»,
если значение «y» равно 1; 4; 0; −1.
Выполним те же действия, что и при решении предыдущего задания.
Разница будет лишь в том, что изначально мы будем проводить перпендикуляры от оси
«Oy».
Запишем полученные результаты в таблицу.
Заданное значение «y» | Полученное с графика значение «x» |
---|---|
−1 | −2 |
0 | −1,5 |
1 | −1 |
4 | 0,5 |
Как проверить, проходит ли график через точку
Рассмотрим другое задание.
Не выполняя построения графика функции
«y = 2x −
», выяснить, проходит ли график
через точки с координатами (0;
− ) и (1; −2).
Запомните!
Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.
Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.
- Если получится верное равенство, значит, точка принадлежит графику функции.
- Если получится неверное равенство, значит, точка
не принадлежит графику функции.
Подставим в функцию
«y = 2x −
»
координаты точки (0;
− ).
− = 2 · 0
−
− =
−
(верно)
Это означает, что график функции «y = 2x −
» проходит через точку с координатами (0;
− ).
Проверим точку с координатами (1; −2).
Также подставим координаты
в функцию «y = 2x −
».
−2 = 2 · 1 −
−2 = 2 −
−2 = 1 −
−2 = 1 (неверно)
Это означает, что график функции «y = 2x −
» не проходит через точку с координатами (1; −2).
Как найти точки пересечения графика с осями
Рассмотрим задачу.
Найти координаты точек пересечения графика функции «y = −1,5x + 3» с осями координат.
Для начала построим график функции «y = −1,5x + 3» и на графике отметим точки пересечения
с осями.
Для построения графика функции найдем координаты двух точек
функции
«y = −1,5x + 3».
Выберем два произвольных числовых значения для «x» и рассчитаем значение
«y» по формуле
функции. Например, для x = 0 и
x = 1.
Точка |
Координата по оси «Оx» |
Координата по оси «Оy» |
---|---|---|
(·)A | 0 | y(0) = −1,5 · 0 + 3 = 3 |
(·)B | 1 | y(1) = −1,5 · 1 + 3 = 1,5 |
Отметим полученные точки на системе координат и проведем через них прямую.
Тем самым мы построим график функции «y = −1,5x + 3».
Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.
Запомните!
Чтобы найти координаты точки пересечения графика функции
с осью
«Oy»
(осью ординат)
нужно:
- приравнять координату точки по оси
«Ox» к нулю
(x = 0); - подставить вместо «x» в формулу функции ноль и найти значение
«y»; - записать полученные координаты точки пересечения с осью
«Oy».
Подставим вместо «x» в формулу функции «y = −1,5x + 3» число ноль.
y(0) = −1,5 · 0 + 3 = 3
(0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Oy».
Запомните!
Чтобы найти координаты точки пересечения графика функции
с осью
«Ox»
(осью абсцисс)
нужно:
- приравнять координату точки по оси
«Oy» к нулю
(y = 0); - подставить вместо «y» в формулу функции ноль и найти значение
«x»; - записать полученные координаты точки пересечения с осью
«Oy».
Подставим вместо «y» в формулу функции «y = −1,5x + 3» число ноль.
0 = −1,5x + 3
1,5x = 3 | :(1,5)
x = 3 : 1,5
x = 2
(2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Ox».
Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните
«правило противоположности».
Важно!
Если нужно найти координаты точки пересечения графика с осью
«Ox», то приравниваем
«y» к нулю.
И наооборот. Если нужно найти координаты точки пересечениа графика с осью
«Oy»,
то приравниваем «x» к нулю.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
19 мая 2023 в 9:06
Михаил Лысенко
Профиль
Благодарили: 0
Сообщений: 1
Михаил Лысенко
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
19 мая 2023 в 13:04
Ответ для Михаил Лысенко
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Добрый день!
Это квадратичная функция. Они разобраны в другом уроке
0
Спасибо
Ответить