Как найти периметр авсд параллелограмм

Что такое периметр параллелограмма

Периметр параллелограмма — это сумма длин всех его сторон.

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно равны и параллельны друг другу. Таким образом, его периметр — это удвоенная сумма двух его смежных ребер.

Свойства

  • противоположные стороны равны и параллельны;
  • противоположные углы попарно равны;
  • сумма соседних углов равна 180 градусов;
  • сумма всех углов равна 360 градусов;
  • диагонали фигуры делятся пополам в точке пересечения;
  • точка пересечения диагоналей — центр симметрии параллелограмма;

Свойства параллелограмма

Источник: egemaximum.ru
  • биссектриса образует равнобедренный треугольник.

Биссектриса

Источник: egemaximum.ru

Как найти периметр

Существует несколько основных способов, с помощью которых можно найти сумму длин всех сторон заданной фигуры. Все они зависят от изначально известных параметров.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

По сумме всех сторон

Периметр по сумме всех сторон

Источник: microexcel.ru

Так как периметр параллелограмма — это удвоенная сумма двух его смежных ребер, используем  формулу:

P=2(a+b),

где a и b — это две смежные стороны данного четырехугольника.

По стороне и двум диагоналям

По стороне и двум диагоналям

 

Если в задаче дана лишь одна сторона, но обе диагонали четырехугольника, мы можем найти вторую сторону. Для этого используем формулу:

(a=frac{sqrt{2d_1^2+2d_2^2-4b^2}}2,)

где (d_1) и (d_2) — это обе диагонали фигуры.

Получается, что расчет суммы длин всех сторон для параллелограмма будет выглядеть так:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b).)

По стороне, высоте и синусу угла

По стороне, высоте и углу

Источник: ru.onlinemschool.com

В случае, если нам известны лишь одно ребро, высота и один из углов, можем узнать длину второго ребра таким образом:

(a=frac{h_b}{sinalpha})

где (h_b) — высота, проведенная к известной стороне, а (sinalpha) — известный нам угол.

Таким образом, формула для нахождения периметра параллелограмма будет выглядеть так:

(P=2(frac{h_b}{sinalpha}+b))

Примеры решения задач

Попробуем применить полученные знания на практике и рассмотрим несколько задач на периметр параллелограмма.

Задача 1

Дан параллелограмм со сторонами 5 см и 9 см. Вычислить его периметр.

Решение:

Воспользуемся формулой P=2(a+b), так как нам известны обе стороны фигуры. Подставляем значения: P=2(5+9)=28 см.

Ответ: 28 см.

Задача 2

Известно, что одна из сторон параллелограмма равна 4 см, а две его диагонали равны 6 см и 8 см. Найти периметр фигуры.

Решение:

Для расчета суммы длин всех сторон используем формулу:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b))

Подставляем известные значения:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b)=2(frac{sqrt{2times6^2+2times8^2-4times4^2}}2+4)=2(frac{sqrt{72+128-64}}2+4)=2(frac{2sqrt{34}}2+4)=2sqrt{34}+8) см.

Ответ:( 2sqrt{34}+8) см.

Задача 3

Сторона b параллелограмма равна 2 см, высота, проведенная к b 1 см, а угол α равен (fracpi6). Найти сумму длин всех сторон фигуры.

Решение:

Для расчета будем использовать уравнение:

(P=2(frac{h_b}{sinalpha}+b))

Подставим известные величины:

(P=2(frac1{sin{displaystylefracpi6}}+2)=2(frac1{displaystylefrac12}+2)=8;)см.

Ответ: 8 см.

В данной публикации мы рассмотрим, каким образом можно посчитать периметр параллелограмма и разберем примеры решения задач.

  • Формула вычисления периметра

  • Примеры задач

Формула вычисления периметра

Периметр (P) параллелограмма равняется сумме длин всех его сторон. А т.к. противоположные стороны данной фигуры равны, формулу можно представить в следующем виде:

P = 2 * (a + b) или P = 2a + 2b

Периметр параллелограмма

Примеры задач

Задание 1
Найдите периметр параллелограмма, если его стороны равны 6 и 8 см.

Решение:
Воспользуемся одной из двух формул выше, подставив в нее известные значения: P = 2 * 6 см + 2 * 8 см = 28 см.
Тот же самый результат получится, если применить вторую формулу: P = 2 * (6 см + 8 см) = 28 см.

Задание 2
Периметр параллелограмма равен 50 см. Найдите его вторую сторону, если известно, что первая равна 7 см.

Решение:
Нам известно, что периметр считается по формуле: P = 2a + 2b.
Допустим a – это известная сторона, и нам нужно найти b. Ее длина, умноженная на два, равна: 2b = P – 2a = 50 см – 2 * 7 см = 36 см.
Следовательно, длина неизвестной стороны составляет: b = 36 см / 2 = 18 см.

Определение параллелограмма

Параллелограмм — геометрическая фигура, четырехугольник, у которого противоположные стороны попарно параллельны.

Прямоугольник, квадрат и ромб являются частными случаями параллелограмма.

Онлайн-калькулятор периметра параллелограмма

Свойства параллелограмма

Перечислим некоторые свойства параллелограмма:

  1. Противоположные стороны параллелограмма попарно равны и параллельны.
  2. Противоположные углы параллелограмма равны.
  3. Диагонали параллелограмма точкой пересечения делятся пополам.

Формула периметра параллелограмма

Чтобы найти периметр параллелограмма, нужно сложить длины всех его сторон.

Периметр параллелограмма

P=a+b+a+b=2⋅a+2⋅b=2⋅(a+b)P=a+b+a+b=2cdot a+2cdot b=2cdot (a+b)

a,ba, b — длины двух смежных сторон параллелограмма.

Разберем задачу на нахождение периметра параллелограмма.

Задача

Сторона а параллелограмма равна 12 см, а сторона b — 7 см. Чему равен периметр параллелограмма?

Решение

a=12a=12
b=7b=7

Воспользуемся формулой нахождения периметра параллелограмма и подставим вместо aa и bb их численные значения:
P=2⋅(a+b)=2⋅(12+7)=2⋅19=38P=2cdot (a+b)=2cdot (12+7)=2cdot 19=38 см.

Ответ: 38 см.

Не знаете, где можно оформить контрольные работы на заказ? На бирже Студворк сотни авторов, которые готовы выполнить ваше задание!

Тест по теме «Периметр параллелограмма»

Периметр параллелограмма зависит от длины его сторон. И хотя формула для расчета несложная, мы сделали калькулятор, который позволяет рассчитать периметр параллелограмма в режиме онлайн. Наш калькулятор рассчитает периметр параллелограмма по двум сторонам или по двум диагоналям и одной из сторон.

Содержание:
  1. калькулятор периметра параллелограмма
  2. формула периметра параллелограмма через две стороны
  3. формула периметра параллелограмма через диагонали и одну из сторон
  4. примеры задач

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

На сайте вы можете рассчитать периметры других четырехугольников: квадрат, ромб, прямоугольник.

Формула периметра параллелограмма через две стороны

Периметр параллелограмма через две стороны

{P = 2 (a + b)}

a и b – стороны параллелограмма

Формула периметра параллелограмма через диагонали и сторону

Периметр параллелограмма через диагонали и одну сторону

{P = 2a+ sqrt{2{d_1}^2 + 2{d_2}^2 – 4a^2}}

или

{P = 2b+ sqrt{2{d_1}^2 + 2{d_2}^2 – 4b^2}}

a и b – стороны параллелограмма

d1 и d2 – диагонали параллелограмма

Примеры задач на нахождение периметра параллелограмма

Задача 1

Найдите периметр параллелограмма со сторонами 3см и 4.5см.

Решение

Так как из условия задачи мы знаем длины сторон, то воспользуемся первой формулой. Подставим в нее значения длин сторон и произведем расчет:

P = 2 (a + b) = 2 (3 + 4.5) = 2 (7.5) = 15 : см

Ответ: 15см

Воспользуемся калькулятором для проверки полученного ответа.

Задача 2

Найдите периметр параллелограмма, если его стороны равны 5см и 80мм.

Решение

Для начала переведем 80мм в сантиметры и получим, что 80мм = 8см. В остальном задача аналогична предыдущей, так что повторим процесс ее решения:

P = 2 (a + b) = 2 (5 + 8) = 2 (13) = 26 : см

Ответ: 26см

Для проверки снова используем калькулятор . При этом мы можем не переводить 80мм в сантиметры, а просто задать длину стороны в миллиметрах.

Периметр параллелограмма

Формула периметра параллелограмма ABCD со сторонами: (
A B=C D=a, B C=A D=b
) (рис. 1), имеет вид

Примеры решения задач

ПРИМЕР 1

  • Задание

    Стороны параллелограмма ABCD равны соответственно 3 и 5 см. Найти его периметр.

  • Решение

    По условию обозначим a=3 см и b=5 см. Для нахождения периметра параллелограмма воспользуемся формулой

    (
    P_{A B C D}=2(a+b)
    )

    Подставляя исходные данные, получим:

    (
    P_{A B C D}=2 cdot(3+5)=16
    ) (см)

  • Ответ

    Периметр параллелограмма равен

    (
    P_{A B C D}=16
    )см

    ПРИМЕР 2

  • Задание

    Найти периметр параллелограмма, если одна из его сторон равна 2 см, а меньшая диагональ – (
    sqrt{3}
    ) см, а угол между ним (
    30^{circ}
    )

  • Решение

    Сделаем рисунок (рис. 2).

    По условию (
    B D=sqrt{3}, A D=2
    ), а (
    angle B D A=30^{circ}
    ) Рассмотрим (
    Delta A B D
    ). Запишем теорему косинусов, для неизвестной стороны AB:

    (
    A B^{2}=B D^{2}+A D^{2}-2 B D cdot A D cdot cos angle B D A
    )

    Подставляя заданные значения, получим?

    (
    A B^{2}=(sqrt{3})^{2}+2^{2}-2 sqrt{3} cdot 2 cdot cos 30^{circ}
    )

    (
    A B^{2}=3+4-2 sqrt{3} cdot 2 cdot frac{sqrt{3}}{2}
    )

    (
    A B^{2}=7-6 Rightarrow A B=1(mathrm{см})
    )

    Периметр параллелограмма вычислим по формуле

    (
    P_{A B C D}=2(a+b)
    )

    Для данной задачи она запишется следующим образом:

    (
    P_{A B C D}=2(A B+A D)
    )

    Подставляя значения AB=1 и AD=2, получим:

    (
    P_{A B C D}=2 cdot(1+2)=6_{(mathrm{см})}
    )

  • Ответ

    (
    P_{A B C D}=6 mathrm{см}
    )

  • Добавить комментарий