Периметр куба является суммой длин всех его ребер. Так как такой периметр состоит из двенадцати ребер, то для того чтобы найти ребро, нужно разделить периметр на двенадцать.
a=P/12
Площадь стороны куба – это площадь квадрата, являющегося гранью куба. Поэтому чтобы вычислить площадь грани, нужно просто возвести во вторую степень ребро, представленное через периметр.
S=(P/12)^2=P^2/144
Чтобы вычислить площадь боковой поверхности куба, нужно найденную площадь одной грани умножить на четыре, то есть на количество граней, входящих в боковую поверхность. Аналогично вычисляется площадь полной поверхности куба.
S_(б.п.)=4 P^2/144=P^2/36
S_(п.п.)=6 P^2/144=〖3P〗^2/24
Чтобы найти объем куба, нужно перемножить его длину, ширину и высоту, – то есть возвести в третью степень ребро куба, так как все его ребра между собой равны.
V=a^3=(P/12)^3=P^3/1728
Диагональ боковой грани куба является диагональю квадрата, которая вычисляется как произведение ребра куба на корень из двух. Диагональ стороны куба через периметр выглядит как отношение периметра к двум корням из двух.
d=a√2=P/12 √2=P/(6√2)
Чтобы вычислить диагональ куба через периметр, нужно сначала вывести саму формулу диагонали из прямоугольного треугольника с боковым ребром и диагональю стороны куба. (рис.2.1)
a^2+d^2=D^2
D^2=a^2+2a^2
D^2=3a^2
D=a√3=(P√3)/12
Радиус сферы, вписанной в окружность, равен половине ребра куба, поэтому если подставить вместо ребра куба соответствующее выражение через периметр грани, то радиус вписанной сферы будет представлен в виде периметра, деленного на 8. (рис. 2.2)
r=a/2=P/24
Сфера, описанная вокруг куба, пересекается с ним в его вершинах, а ее диаметр, соединяя две противоположные вершины, совпадает с диагональю куба. Таким образом, радиус описанной вокруг куба сферы равен половине диагонали или периметру стороны куба, умноженному на корень из трех и деленному на 8. (рис.2.3)
R=D/2=(P√3)/24
как найти периметр куба
Наша Группа
Знаток
(466),
закрыт
4 года назад
Дре
Знаток
(355)
9 лет назад
Чтобы найти периметр куба, определите длину одного из его ребер и умножьте это число на 12. В виде формулы это правило можно записать следующим образом: P = 12 * a,где: Р – периметр куба, а – длина его стороны. Подобная формула может понадобиться если нужно собрать каркас куба, равного существующему.
Как найти периметр куба
Строго говоря, такого понятия как периметр куба, в математике не существует. Однако по аналогии с площадью поверхности куба, равной суммарной площади всех граней, можно ввести и понятие периметра куба. Наиболее логичным определением этого термина будет “сумма длин всех ребер куба”. Эта величина может пригодиться, например, при изготовлении каркаса куба.
Вам понадобится
- – куб;
- – линейка.
Инструкция
Чтобы найти периметр куба, определите длину одного из его ребер и умножьте это число на 12. В виде формулы это правило можно записать следующим образом:P = 12 * a,где:Р – периметр куба,а – длина его стороны.Подобная формула может понадобиться если нужно собрать каркас куба, равного существующему.
Пример: учитель решил изготовить наглядное пособие «кубометр» – каркас куба с длиной ребра 1 метр.Вопрос: сколько метров трубы понадобится для изготовления модели куба?Решение: 1 (м) * 12 = 12 метров.
Если нужно рассчитать размер куба, каркас которого можно сделать из имеющегося материала (проволоки, арматуры, трубы, уголка и т.п.), разделите эту длину на 12. Или, в виде формулы:а = Р / 12
Пример: имеется отрезок проволоки длиной 1 м 20 см.Требуется: определить максимальный размер каркаса куба, который можно согнуть из этой проволоки.Решение:1 м 20 см = 120 см. (переводим значение длины в одну систему измерения).120 см / 12 = 10 см. (находим максимальную длину ребра куба).
Если известен объем куба, то для нахождения его периметра умножьте на 12 корень кубический из его объема.P = 12 * √³V,где: V – объем куба,√³ – обозначение кубического корня.
Пример: сколько метров уголка понадобится для изготовления кубического аквариума объемом 27 литров?Решение: переведите литры в кубические метры: 27/1000=0,027м³.Найдите из 0,027 кубический корень (это будет длина одного ребра): √³0,027=0,3 (м).Умножьте длину ребра на 12: 0,3 * 12 = 3,6 (метров).
Если задана площадь поверхности куба, то чтобы найти его периметр, воспользуйтесь следующими соотношениями:S = 6 * а²,Р = 12 * а,где: S – площадь поверхности куба,откуда:Р = 12 * √(S/6) = 2 * 6 * √S / √6 = 2 * √S * √6 * √6 / √6 = 2 * √S * √6 = 2√6√S, то есть:.Р = 2√6√S
Пример: на дачном участке установили емкость для воды, имеющую форму куба. На ее изготовление ушло 25 квадратных метра листового железа. Чтобы бак для воды стал более прочным его решили обварить металлическим уголком.Вопрос: сколько уголка понадобится?Решение: воспользуйтесь выше выведенной формулой:Р = 2√6√25 ≈ 24,5 (метра).
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).
- Определение куба
-
Свойства куба
-
Свойство 1
- Свойство 2
- Свойство 3
-
Свойство 1
-
Формулы для куба
- Диагональ
- Диагональ грани
- Площадь полной поверхности
-
Периметр ребер
- Объем
- Радиус описанного вокруг шара
- Радиус вписанного шара
Определение куба
Куб – это правильный многогранник, все грани которого являются квадратами.
- Вершины куба – это точки, являющиеся вершинами его граней.
Всего их 8: A, B, C, D, A1, B1, C1 и D1. - Ребра куба – это стороны его граней.
Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1. - Грани куба – это квадраты, из которого состоит фигура.
Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.
Примечание: куб является частным случаем параллелепипеда или призмы.
Свойства куба
Свойство 1
Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:
- ABCD || A1B1C1D1
- AA1B1B || CC1D1D
- BB1C1C || AA1D1D
Свойство 2
Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.
- AC1 = BD1 = A1C = B1D (диагонали куба).
- О – точка пересечения диагоналей:
AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.
Свойство 3
Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.
Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.
Формулы для куба
Примем следующие обозначения, которые будут использоваться далее:
- a – ребро куба;
- d – диагональ куба или его грани.
Диагональ
Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.
Диагональ грани
Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.
Площадь полной поверхности
Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.
Периметр ребер
Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.
Объем
Объем куба равен длине его ребра, возведенной в куб.
Радиус описанного вокруг шара
Радиус шара, описанного около куба, равняется половине его диагонали.
Радиус вписанного шара
Радиус вписанного в куб шара равен половине длины его ребра.
Содержание
- – Как найти периметр ромба 2 класс?
- – Как найти периметр ромба по двум диагоналям?
- – Как найти периметр у неправильной фигуры?
- – Как вычислить периметр фигуры?
- – Какое ребро куба?
- – Чему равна длина ребра куба?
- – Какие бывают виды кубов?
- – Как называется сторона куба?
Чтобы найти периметр куба, определите длину одного из его ребер и умножьте это число на 12. В виде формулы это правило можно записать следующим образом:P. = 12 * a,где:Р – периметр куба,а – длина его стороны.
Как найти периметр ромба 2 класс?
Чтобы найти периметр ромба, необходимо длину его стороны умножить на четыре.
Как найти периметр ромба по двум диагоналям?
Ответ
- S = (d1 * d2)/2. S это площадь ромба d это диагонали …
- если взять 1 сторону ромба и по половине 2 диагоналей то можно увидеть прямоугольный треугольник, Сторона ромба будет гипотенузой, а остальные 2 стороны катетами Тогда по теореме Пифагора найдете гипотенузу …
- найдешь сторону и тогда найдешь периметр, P= 4a.
Как найти периметр у неправильной фигуры?
с. Для неправильного многоугольника, если все его стороны равны, мы можем вычислить его периметр, просто добавив длины всех его сторон.
Как вычислить периметр фигуры?
Периметр прямоугольника — сумма длины и ширины, умноженная на два. Формула параллелограмма выглядит соответственно. P = 2 * (a + b), где a — ширина, b — высота.
Какое ребро куба?
Ребро куба – это отрезок, образованный пересечением двух граней куба. – куб имеет двенадцать ребер; – каждый конец ребра соединен с двумя соседними ребрами под прямым углом; – ребра куба имеют одинаковую длину.
Чему равна длина ребра куба?
Р = 12 * а, где а – длина ребра куба. Отсюда находим, что: а = Р / 12.
Какие бывают виды кубов?
κύβος); иногда гекса́эдр или правильный гекса́эдр — правильный многогранник, каждая грань которого представляет собой квадрат.
…
Куб | |
---|---|
Двойственный многогранник | правильный октаэдр |
Вершинная фигура[показать] | |
Развёртка[показать] | |
Классификация |
Как называется сторона куба?
Грани куба – это стороны куба, которые представляют собой квадрат. Ребра куба – это стороны граней куба. Вершина куба– это точка, где сходятся три грани или точка, в которой сходятся три ребра куба.
Интересные материалы:
Как правильно подписать или расписаться?
Как правильно попить чая или чаю?
Как правильно последнюю или последнюю?
Как правильно продать автомобиль чтобы не обманули?
Как правильно произносить Хендай или Хендай?
Как правильно произносить хонор или онор?
Как правильно противень или протвень?
Как правильно растает или растает?
Как правильно развитый или развитой?
Как правильно рубашка поло или футболка поло?