Как найти периметр описаной окружности

Как рассчитать периметр круга или длину окружности

На данной странице калькулятор поможет рассчитать периметр круга или длину окружности онлайн. Для расчета задайте радиус или диаметр.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Онлайн калькулятор периметра круга. Как узнать длину круга, окружности.

Вычислить периметр круга через:

Длина радиуса R:

Что такое длина окружности или периметр круга и как ее вычислить? Для того что бы это понять нам необходимо разобраться с тем чему равна длина окружности.

Длина окружности всегда равна числу π (Пи)

Давайте с вами разберемся что же такое число пи. Π – это постоянная величина равная 3,14159265…

Но обычно Пи приравнивают к 3,14 и это число используют для математических расчетов в которых не требуется оооооооооочень точное вычисление.

Откуда же взялось это число и почему оно всегда равно одному и тому же? Для того что бы нам понять что такое число пи нам необходимо разобрать простой пример. Допустим у нас имеется окружность с диаметром равному единицы, так вот длина окружности — это число «пи».

Иными словами Пи ≈ 3,14 диаметрам круга или окружности.

Теперь зная и понимая что такое π мы можем с легкостью высчитать периметр или длину окружности которая равна

P = D * π
или
P = 2 πR
где R –это радиус, а D – это диаметр

Периметры фигур. Периметр круга. Длина окружности.

Круг – геометрическое пространство точек плоскости, расстояние от которых до данной точки, называемой

центром круга, не превосходит данного неотрицательного числа, именуемого радиусом круга.

Если радиус соответствует нулю, то круг становится точкой.

Границей круга, сообразно определению, есть окружность.

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от предоставленной точки

(центра), лежащей в той же плоскости, что и кривая. Еще круг можно найти как часть плоскости,

Отношение длины окружности к её диаметру идентично для всех окружностей. Это отношение и есть

трансцендентное число, означаемое буквой греческого алфавита пи:

π = 3.14159.

Периметр геометрической фигуры – суммарная длина пределов плоской геометрической фигуры.

У периметра та же размерность величин, что и длина.

Связанные с кругом обозначения:

  • Радиус — 1) расстояние от центра круга до его границы; 2) отрезок, который соединяет центр круга с его границей.
  • Диаметр — 1) самое большое расстояние между точками границы круга; 2) отрезок, который

соединяет две точки границы круга и содержащий его центр.

  • Секторкруга — пересечение круга и некоторого его центрального угла, т.е. часть круга, которая

ограничена дугой и двумя радиусами, соединяющими концы дуги с центром круга.

  • Сегмент — часть круга, ограниченная дугой и стягивающей ее хордой.
  • При вращении плоскости относительно центра круг переходит
  • Круг является выпуклой фигурой.
  • Периметр круга (длина окружности, ограничивающей

круг) можно найти по формуле:

где R – радиус круга.

Содержание:

  • Формула
  • Примеры вычисления периметра круга

Формула

Чтобы найти периметр круга, необходимо вычислить длину окружности, которая его ограничивает.

Для нахождения длины окружности можно использовать одну из формул

$l=2 pi r$ или $l=pi d$

где $r$ и $d$ соответственно радиус и диаметр круга, а
$pi approx 3,1415926535 ldots$. Радиусом окружности называется отрезок,
соединяющий центр окружности с точкой окружности. Диаметр – это отрезок, который соединяет две точки окружности и проходящий
через её центр. Число $pi$ – математическая константа,
выражающая отношение длины окружности к длине её диаметра.

Примеры вычисления периметра круга

Пример

Задание. Найти периметр круга, радиус которого равен 2 см.

Решение. Периметр круга – это не что иное, как длина ограничивающей его окружности. Так как
нам задан радиус круга, то для вычисления длины окружности будем использовать формулу:

$l=2 pi r$

Получим:

$P_{k}=l=2 cdot pi cdot 2=4 pi approx 12,56$ (см)

Ответ. $P_{k}=4 pi approx 12,56$ (см)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Круг вписан в квадрат со стороной
$a=5$ мм. Найти периметр круга.

Решение. Сторона квадрата для круга является диаметром, то есть $a=d=5$ мм. Периметр круга равен длине окружности его
ограничивающей. Вычислим указанную длину по формуле:

$l=pi d$

Тогда искомый периметр равен:

$P_{k}=l=5 pi approx 15.7$ (мм)

Ответ. $P_{k}=l=5 pi approx 15.7$ (мм)

Читать дальше: как найти длину окружности.

Периметр круга

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Периметр круга

Чтобы посчитать периметр круга просто воспользуйтесь нашим онлайн калькулятором:

Онлайн калькулятор

Периметр круга

Для того чтобы рассчитать периметр круга (длину граничной окружности) вам необходимо знать его радиус или диаметр, либо его площадь.

Ликбез: Круг — часть плоскости, лежащая внутри окружности.

Как посчитать периметр круга зная радиус

Чему равен периметр круга если

его радиус ?

Ответ:

0

Каков периметр круга (L) если его радиус r ?

Формула

L = 2⋅π⋅r, где π ≈ 3.14

Пример

Если радиус круга равен 0.5 см, то его периметр равен числу π, то есть ≈ 3.14 см.

Как посчитать периметр круга зная диаметр

Чему равен периметр круга если

его диаметр ?

Ответ:

0

Каков периметр круга (L) если его диаметр d?

Формула

L = π⋅d, где π ≈ 3.14

Пример

Если диаметр круга d = 1 см, то его периметр равен числу π, то есть ≈ 3.14 см.

Как посчитать периметр круга зная его площадь

Чему равен периметр круга если

его площадь ?

Ответ:

0

Каков периметр круга (L) если его площадь S?

Формула

L = 2π⋅S/π, где π ≈ 3.14

Пример

Если площадь круга равна 8 см2, то его периметр ≈ 10 см.

См. также

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Очевидно, что границей любого круга является окружность. Поэтому понятие периметра круга совпадает с таким понятием, как длина окружности. Поэтому вначале вспомним, что является окружностью, и какие понятия с ней связаны.

Понятие окружности

Определение 1

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Определение 2

Центром окружности будем называть точку, которая задается в рамках определения 1.

Определение 3

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки (Рис. 1).

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

В декартовой системе координат $xOy$ мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой $X$, которая будет иметь координаты $(x_0,y_0)$. Пусть радиус этой окружности равняется $τ$. Возьмем произвольную точку $Y$, координаты которой обозначим через $(x,y)$ (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

$|XY|=sqrt{(x-x_0)^2+(y-y_0)^2}$

«Как найти периметр круга» 👇

С другой стороны, $|XY|$ – это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что $|XY|=τ$, следовательно

$sqrt{(x-x_0)^2+(y-y_0)^2}=τ$

$(x-x_0)^2+(y-y_0)^2=τ^2$ (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности $C$ с помощью её радиуса, равного $τ$.

Будем рассматривать две произвольные окружности. Обозначим их длины через $C$ и $C’$, у которых радиусы равняются $τ$ и $τ’$. Будем вписывать в эти окружности правильные $n$-угольники, периметры которых равняются $ρ$ и $ρ’$, длины сторон которых равняются $α$ и $α’$, соответственно. Как мы знаем, сторона вписанного в окружность правильного $n$ – угольника равняется

$α=2τsinfrac{180^0}{n}$

Тогда, будем получать, что

$ρ=nα=2nτfrac{sin180^0}{n}$

$ρ’=nα’=2nτ’frac{sin180^0}{n}$

Значит

$frac{ρ}{ρ’}=frac{2nτsinfrac{180^0}{n}}{2nτ’frac{sin180^0}{n}}=frac{2τ}{2τ’}$

Получаем, что отношение $frac{ρ}{ρ’}=frac{2τ}{2τ’}$ будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

$lim_{ntoinfty}(frac{ρ}{ρ’})=frac{2τ}{2τ’}$

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть $n→∞$), будем получать равенство:

$lim_{ntoinfty}(frac{ρ}{ρ’})=frac{C}{C’}$

Из последних двух равенств получим, что

$frac{C}{C’}=frac{2τ}{2τ’}$

То есть

$frac{C}{2τ}=frac{C’}{2τ’}$

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

$frac{C}{2τ}=const$

Эту постоянную принять называть числом «пи» и обозначать $π$. Приближенно, это число будет равняться $3,14$ (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

$frac{C}{2τ}=π$

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

$C=2πτ$

Пример задач

Пример 1

Найти периметр круга, который вписан в квадрат со стороной, равной $α$.

Решение.

Пусть нам дан квадрат $ABCD$, в который вписана окружность с центром $O$. Изобразим рисунок по условию задачи (рис. 3).

Очевидно, что центр окружности будет совпадать с центром квадрата, в которой она вписана. Так как квадрат описан вокруг окружности, то его стороны будут касательными к ней, то есть радиус, проведенный, к примеру, к стороне $AB$ будет перпендикулярен к ней. Значит, диаметр окружности равняется стороне квадрата. То есть

$τ=frac{α}{2}$

По формуле периметра круга, получим, что

$C=2πcdot frac{α}{2}=πα$

Ответ: $πα$.

Пример 2

Найти периметр круга, который описан у прямоугольного треугольника с катетами, равными $α$ и $β$.

Решение.

Пусть нам дан треугольник $ABC$ с прямым углом $C$, у которой описана окружность с центром $O$. Как мы знаем, диаметром такой окружности является гипотенуза такого треугольника. То есть $|AO|=|OB|=|OC|=τ$ (рис. 4).

По теореме Пифагора, гипотенуза равняется

$|AB|=sqrt{α^2+β^2}$

То есть

$|AO|=τ=frac{sqrt{α^2+β^2}}{2}$

Периметр круга, по формуле, равняется

$C=2πcdot frac{sqrt{α^2+β^2}}{2}=πsqrt{α^2+β^2}$

Ответ: $πsqrt{α^2+β^2}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

При помощи нашего калькулятора вы легко сможете узнать периметр круга или длину окружности.

Что такое длина окружности или периметр круга и как ее вычислить? Для того что бы это понять нам необходимо разобраться с тем чему равна длина окружности.

Длина окружности всегда равна числу π (Пи)

Давайте с вами разберемся что же такое число пи. Π – это постоянная величина равная 3,14159265…

Но обычно Пи приравнивают к 3,14 и это число используют для математических расчетов в которых не требуется оооооооооочень точное вычисление.

Откуда же взялось это число и почему оно всегда равно одному и тому же? Для того что бы нам понять что такое число пи нам необходимо разобрать простой пример. Допустим у нас имеется окружность с диаметром равному единицы, так вот длина окружности — это число «пи».

Иными словами Пи ≈ 3,14 диаметрам круга или окружности.

Теперь зная и понимая что такое π мы можем с легкостью высчитать периметр или длину окружности которая равна

P = D * π
или
P = 2 πR
где R –это радиус, а D – это диаметр

Добавить комментарий