Как найти периметр основания призмы прямоугольной

You can see prisms in both math class and throughout your everyday life. A brick is a rectangular prism. A carton of orange juice is a type of prism. A tissue box is a rectangular prism. Barns are a type of pentagonal prism. The pentagon is a pentagonal prism. A fish tank is a rectangular prism. This list goes on and on.

Prisms by definition are solid objects with identical end shapes, identical cross sections and flat side faces (no curves). And while most math problems and real world examples regarding prism calculations have to do with a volume formula or a surface area formula, there’s one calculation that you need to understand first before you can do that: ​the perimeter of a prism​.

What Is a Prism?

The general definition of a prism is a 3-dimensional solid shape that has the following characteristics:

  • It is a ​polyhedron​ (meaning it is a solid figure).
  • The ​cross section​ of the object is the exact same throughout the length of the object.
  • It is a ​parallelogram​ (a 4-sided shape where the opposite sides are parallel to each other).
  • The faces of the object are ​flat​ (no curved faces).
  • The two end shapes are ​identical​.

The name of the prism comes from the shape of the two ends, which are known as the bases. This can be any shape (besides curves or circles). For example, a prism with triangular bases is called a triangular prism. A prism with rectangular bases is called a rectangular prism. This list goes on.

Looking at the characteristics of prisms, this eliminates spheres, cylinders and cones as prisms because they have curved faces. This also eliminates pyramids because they don’t have identical base shapes or identical cross sections throughout.

Perimeter of Prism

When talking about the perimeter of the prism, you’re actually referring to the perimeter of the base shape. The perimeter of the base of a prism is the same as the perimeter along any cross section of the prism since all cross sections are the same along the length of the prism.

Perimeter measures the sum of the lengths of any polygon. So for each prism type, you’d find the sum of the lengths of whatever shape is the base, and that would be the perimeter of the prism.

The formula for finding the perimeter of a triangular prism, for example, would be the sum of the three lengths of the triangle that makes up the base, or:

text{Perimeter of triangle } = a + b + c

where ​a​, ​b​ and ​c​ are the three lengths of the triangle.

This would be the perimeter of a rectangular prism formula:

text{ Perimeter of rectangle } = 2l + 2w

where ​l​ is the length of the rectangle and ​w​ is the width.

Apply standard perimeter calculations to the base shape of the prism, and that gives you the perimeter.

Why Would You Need to Calculate the Perimeter of a Prism?

Finding the perimeter of a prism doesn’t seem too complex once you understand what’s being asked. However, the perimeter is an important calculation that factors into surface area and volume formulas for some prisms.

For example, this is the formula for finding the surface area of a right prism (a right prism has identical bases and sides that are all rectangular):

text{Surface Area } = 2b + ph

where ​b​ is equal to area of the base, p is equal to the perimeter of the base and ​h​ is equal to the height of the prism. You can see that perimeter essential for finding the surface area.

Example Problem: Perimeter of a Rectangular Prism

Let’s say you’re given a problem with a right rectangular prism and you’re asked to find the perimeter. You’re given the following values:

Length = 75 cm

Width = 10 cm

Height = 5 cm

To find the perimeter, use the formula for finding the perimeter of a rectangular prism since the name tells you the base is a rectangle:

begin{aligned} text{Perimeter } &= 2l + 2w \ &= 2(75 text{ cm}) + 2(10 text{ cm} ) \ &= 150 text{ cm} + 20 text{ cm} \ &= 170 text{ cm} end{aligned}

You can then go on to find the surface area because you’re given the height, you have the perimeter of the base and it’s given that this prism is a ​right​ prism.

The area of the base is equal to length × width (as it always is for a rectangle), which is:

begin{aligned} text{ Area of base } &= 75 text{ cm} × 10 text{ cm} \ &= 750 text{ cm}^2 end{aligned}

Now you have all the values for a surface area calculation:

begin{aligned} text{ Surface Area } &= 2b + ph \ &= 2(750 text{ cm}^2) + 170 text{ cm}(5 text{ cm}) \ &= 1500 text{ cm}^2 + 850 text{ cm}^2 \ &= 2350 text{ cm}^2 end{aligned}

Вы можете увидеть призмы как на уроке математики, так и на протяжении всей вашей повседневной жизни. Кирпич – это прямоугольная призма. Упаковка апельсинового сока – это тип призмы. Коробка из ткани представляет собой прямоугольную призму. Амбары представляют собой тип пятиугольной призмы. Пентагон – это пятиугольная призма. Аквариум представляет собой прямоугольную призму. Этот список можно продолжать и продолжать.

Призмы по определению – это сплошные объекты с одинаковыми концевыми формами, одинаковыми сечениями и плоскими боковыми гранями (без кривых) И хотя большинство математических задач и примеров из реальной жизни, касающихся вычислений призмы, связаны с формулой объема или формулой площади поверхности, прежде чем вы сможете это сделать, вам нужно сначала понять один расчет: периметр призмы.

Что такое призма?

Общее определение призмы – это трехмерная сплошная форма, которая имеет следующие характеристики:

  • Это многогранник (то есть это сплошная фигура).
  • Поперечное сечение объекта является одинаковым по всей длине объекта.
  • Это параллелограмм (четырехсторонняя форма, в которой противоположные стороны параллельны друг другу).
  • Грани объекта плоские (без изогнутых граней).
  • Две концевые формы идентичны.

Название призмы происходит от формы двух концов, которые известны как основания. Это может быть любая форма (кроме кривых или кругов). Например, призма с треугольными основаниями называется треугольной призмой. Призма с прямоугольными основаниями называется прямоугольной призмой. Этот список можно продолжить.

Рассматривая характеристики призм, это исключает сферы, цилиндры и конусы как призмы, потому что они имеют изогнутые грани. Это также устраняет пирамиды, потому что они не имеют одинаковых основных форм или идентичных поперечных сечений повсюду.

Периметр призмы

Говоря о периметре призмы, вы на самом деле имеете в виду периметр базовой формы. Периметр основания призмы такой же, как периметр вдоль любого поперечного сечения призмы, поскольку все поперечные сечения одинаковы по всей длине призмы.

Периметр измеряет сумму длин любого многоугольника. Таким образом, для каждого типа призмы вы найдете сумму длин любой формы, являющейся основанием, и это будет периметр призмы.

Например, формула для нахождения периметра треугольной призмы будет суммой трех длин треугольника, составляющего основание, или:

Периметр треугольника = a + b + c, где a , b и c – три длины треугольника.

Это будет периметр формулы прямоугольной призмы:

Периметр прямоугольника: 2l + 2w, где l – длина прямоугольника, а w – ширина.

Примените стандартные расчеты периметра к базовой форме призмы, и это даст вам периметр.

Зачем вам нужно рассчитывать периметр призмы?

Поиск периметра призмы не кажется слишком сложным, если вы понимаете, о чем идет речь. Однако периметр является важным расчетом, который учитывает формулы площади и объема поверхности для некоторых призм.

Например, это формула для определения площади поверхности правой призмы (правая призма имеет идентичные основания и стороны, которые все прямоугольные):

Площадь поверхности = 2b + ph

где b равно площади основания, p равно периметру основания, а h равно высоте призмы. Вы можете видеть этот периметр, необходимый для определения площади поверхности.

Пример задачи: периметр прямоугольной призмы

Допустим, у вас есть проблема с правильной прямоугольной призмой, и вас попросили найти периметр. Вам даны следующие значения:

Длина = 75 см

Ширина = 10 см

Высота = 5 см

Чтобы найти периметр, используйте формулу для нахождения периметра прямоугольной призмы, поскольку имя говорит о том, что основание представляет собой прямоугольник:

Периметр = 2l + 2w = 2 (75 см) + 2 (10 см) = 150 см + 20 см = 170 см

Затем вы можете продолжить, чтобы найти площадь поверхности, потому что у вас есть высота, у вас есть периметр основания, и это считается, что эта призма является правой призмой.

Площадь основания равна длине × ширине (как всегда для прямоугольника), которая равна:

Площадь основания = 75 см × 10 см = 750 см 2

Теперь у вас есть все значения для расчета площади поверхности:

Площадь поверхности = 2b + ph = 2 (750 см 2) + 170 см (5 см) = 1500 см 2 + 850 см = 2350 см 2

Прямая призма

Многогранником называется такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Прямая призма относится к простейшим многогранникам. Каждая грань (многоугольник, ограничивающий многогранник) многогранника расположена в своей плоскости. Пересечение граней многогранника проходит по линии его ребер.

призма

На рис. 18 — пятигранная прямоугольная призма (в основании призмы лежит пятиугольник). У нее 10 вершин; 5 боковых граней; 2 основания (верхнее и нижнее). Для прямоугольной призмы высотой служит любое ребро, расположенное перпендикулярно основанию.

Боковые грани прямоугольной призмы — прямоугольники. Сумма площадей этих прямоугольников составляет площадь боковой поверхности призмы.

Площадь поверхности призмы состоит из суммы площадей двух (одинаковых) оснований и площади боковой поверхности.

Определение. Призма — это многогранник, у которого две грани, называемые основаниями, — равные многоугольники, а все остальные — боковые грани, состоящие из параллелограммов, плоскости которых параллельны одной прямой, называемой ребром многогранника.

Высота призмы — это расстояние между ее основаниями. Для прямой призмы, у которой все ребра перпендикулярны основаниям, — это любое из ребер.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю призмы.

Разверткой призмы называется перенос без искажения размеров всех ее граней в одну плоскость. Развертка призмы, изображенной на рис. 18, приведена на рис. 19.

развертка призмы

На рис. 19 прямоугольник, разделенный ребрами на 5 меньших прямоугольников, составляет развертку боковой поверхности, а сверху и снизу от нее расположены многоугольники верхнего и нижнего оснований. Площадь всей этой фигуры и составит полную площадь поверхности призмы.

Правило. Площадь боковой поверхности призмы равна произведению периметра основания и высоты.

Sбок = p * h

где:
Sбок — площадь боковой поверхности

p — периметр основания призмы (многоугольника, лежащего в основании);
h — высота призмы (для прямоугольной — это длина бокового ребра призмы).

Правило. Объем прямой призмы равен произведению площади основания н длины бокового ребра.

V = Sбок * l

где:
V — объем призмы;
Sбок — площадь основания призмы (многоугольника, лежащего в основании призмы);

l — длина бокового ребра призмы.

Запись опубликована в рубрике Математика с метками призма. Добавьте в закладки постоянную ссылку.

Подскажите формулу периметра основания прямой призмы

Gosudar



Мастер

(1084),
на голосовании



7 лет назад

Голосование за лучший ответ

Grigno76

Мыслитель

(6479)


7 лет назад

Периметр это сумма длин сторон основания призмы. Т. е. тебе нужен периметр многоугольников:)

Похожие вопросы

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ – высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$h$ – высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ – радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a^2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр – это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ – средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Добавить комментарий