Как найти периметр параллелограмма если известна высота

The perimeter of a parallelogram is the sum of the length of its boundaries/sides. A parallelogram is a type of quadrilateral with four equal sides with opposite sides equal. Its sides do not intersect each other. There are two diagonals of a parallelogram that intersect each other at the center. A diagonal divides the parallelogram into two equal parts or triangles. Following are the properties of parallelogram:

  1. A parallelogram has four sides.
  2. Opposite sides of parallelograms are equal and parallel.
  3. Opposite angles of parallelograms are equal.
  4. Diagonals of parallelograms intersect each other.

Parallelogram

What is the Perimeter of a Parallelogram?

The perimeter of a parallelogram is the length of the outline or its boundaries, and the sum of all the sides of a parallelogram is the perimeter of the parallelogram. However, not every time the length of all the sides will be given to us, sometimes some other information regarding a parallelogram is given. Therefore, there are different formulas for the perimeter of a parallelogram. Let’s understand the different formulas for the perimeter of a parallelogram.

Perimeter of Parallelogram Formula

The perimeter of the parallelogram is the sum of the length of all the sides. Perimeter refers to the closed boundary of any geometrical object. For a quadrilateral, perimeter refers to the sum of the length of the four sides. So, the perimeter of a parallelogram will be the sum of its four sides. The perimeter of a parallelogram can be calculated using three cases. The three cases are:

  • When the adjacent sides of the parallelogram are known: The formula for the perimeter when sides are known as P = 2(a + b) units, where a and b are the sides of the parallelogram.
  • When one side and the lengths of the diagonals are known: The formula for the perimeter when one side and the lengths of diagonals are known, P = 2a + √(2x2 + 2y2 – 4a2), where x and y are the lengths of diagonals and a is the length of the side.
  • When any angle, base, and height are known: The formula for the perimeter when one side and height along with one of the angles is given, P = 2a + 2h/sinθ, where a is the side of the parallelogram, h is the height of the parallelogram, θ is the angle of the parallelogram.

Perimeter of parallelogram formulas

Now that the formulas of all three cases are known let’s derive the formulas of the perimeter of a parallelogram for all three cases,

Perimeter of Parallelogram Formula with Sides

The perimeter of the parallelogram formula with sides is the formula to calculate the perimeter. Below is the derivation for the perimeter of the parallelogram. Let’s say the sides of the parallelogram are “a” and “b”.

perimeter of parallelogram formula with sides

Perimeter = side 1 + side 2 + side 3 + side 4

Side 1 is also known as the base of a parallelogram.  

Side 1 = a

Side 2 = b

The opposite sides of a parallelogram are equal.

Side 1 = side 3

Side 2 = side 4

Side 3 = a

Side 4 = b

Perimeter = a + b + a + b

Perimeter = 2 (a + b)

Hence, the perimeter of a parallelogram is twice the sum of its two adjacent sides.  

Perimeter of Parallelogram Formula with One Side and Diagonals

The perimeter of the parallelogram formula when one side and the length of both diagonals are given is derived below. Let’s say the length of the diagonals are “x” and “y” and the length of the side is “a”, from the law of cosines, the cosine formula is applied:

perimeter of parallelogram formula with one side and diagonals

In △ABD:

x2 = a2 + b2 -2ab cos∠BAD

In △ADC:

y2 = a2 + b2 -2ab cos∠ADC

Adding the equations:

x2 + y2 = 2 (a2 + b2) – 2ab (cos∠BAD + cos∠ADC)

Now since according to the properties of parallelogram, the adjacent angles of a parallelogram are supplementary, therefore, ∠BAD + ∠ADC = 180. 

∠BAD = 180 – ∠ADC

Adding cosine on both sides:

cos∠BAD = cos(180 – ∠ADC)

cos∠BAD = -cos∠ADC

Substituting the angle,

x2 + y2 = 2 (a2 + b2) – 2ab (-cos∠ADC + cos∠ADC)

x2 + y2 = 2 (a2 + b2) – 2ab (0)

x2 + y2 = 2 (a2 + b2)

Now finding the value of the b side from the equation formulated above:

b = √[(x2 + y2 – 2a2)/2]

Now that both sides of the parallelogram are known, using the formula for the perimeter of a parallelogram with sides,

P = 2(a + b)

P = 2a + 2(√[(x2 + y2 – 2a2)/2])

P = 2a + √(2x2 + 2y2 – 4a2)

Perimeter of Parallelogram with Base, Height, and Angle

In order to find the perimeter of a parallelogram with base, height, and angle, let’s assume the base of the parallelogram is “b”, the height of the parallelogram is “h”, and the angle of the parallelogram is “θ”. 

perimeter of parallelogram formula with base, height, and angle

Applying sin function:

sin θ = h/b

b = h/sin θ

Now, the length of the side “b” is known to us in terms of angle. Substituting the value of “b” in the formula:

P = 2(a + b)

P = 2a + 2h/sin θ

Note: θ can be the angle of any vertex of the parallelogram and the formula will remain the same.

Area and Perimeter of Parallelogram

We can find the relation between the area and perimeter of a parallelogram because both the formulas contain sides of the parallelogram, the formula for the area of parallelogram and perimeter of a parallelogram is:

Area of parallelogram = A = b × h square units ⇢ (1)

Perimeter of a parallelogram = P = 2a + 2b units ⇢ (2)

Finding the value of b from equation (2)

P/2 = a + b

b = P/2 – a

Substituting the value of “b” obtained in equation (1)

A = (P/2 – a) h square units

How to Find Perimeter of Parallelogram?

In order to find the perimeter of a parallelogram, the formulas must be known to us. The perimeter of a parallelogram is the sum of all four sides of the parallelogram. However, not every time all the sides are provided. In some cases, only one side and diagonals are given. In some case, height, angle, and a side is given. We have discussed the different formulas required for the different cases. Following are the steps that should be taken in order to find the perimeter of parallelogram:

  • Note down the values given in the question.
  • Based on the values given, apply the formula for the perimeter of parallelogram accordingly:
Values Given Formula
When the sides (a and b) are given P = 2(a + b)
When one side and diagonals are given P = 2a + √(2x2 + 2y2 – 4a2)
When base, height, and angle are given P = 2a + 2h/sin θ

Related Articles

  • Perimeter of Square
  • Perimeter of Triangle
  • Perimeter of Rectangle

Solved Examples on Perimeter of Parallelogram 

Example 1: Find the perimeter of a parallelogram with side length = 14m, base = 10m.

Solution

The perimeter of parallelogram is given by:

2(a + b)

Where, a and b are its two adjacent sides

Perimeter = 2 (14 + 10)

Perimeter = 2 (24)

Perimeter = 48m

Example 2: Find the perimeter of a parallelogram whose base is 5cm, and the side length is 6cm.

Solution

The perimeter of a parallelogram is given by:

2(a + b)

Where, a is the base and b is its adjacent side

Perimeter = 2 (5 + 6)

Perimeter = 2 (11)

Perimeter = 22cm

Example 3: What is the perimeter of a parallelogram with a side length of 8 in, and diagonals are 12in and 10in? 

Solution

The formula for the perimeter when one side and the lengths of diagonals are known, 

P = 2a + √(2x2 + 2y2 – 4a2)

P = 2 × 8 + √(2(12)2 + 2(10)2 – 4(8)2)

P = 16 + √(288 + 200 – 4(64))

P = 31.23 in.

Example 4: What is the perimeter of a parallelogram when the height is 20cm, the vertex angle is 45°, and one of the sides is 12cm?

Solution

The perimeter of a parallelogram is given by:

P = 2a + 2h/sinθ

P = 2 × 12 + 2 × 20/sin45

P = 24 + 40 × 2

P = 24 + 80

P = 104 cm

Example 5: The perimeter of a parallelogram is 100cm, and one of the sides of the parallelogram is 32cm; find the length of the other side.

Solution

The perimeter of a parallelogram is given by:

P = 2(a + b)

Where a and b are its two adjacent sides

Given: P = 100cm, a = 32cm

100 = 2 (32 + b)

50 = 32 + b

b = 18cm

The length of the other side of the parallelogram is 18cm.

FAQs on Perimeter of Parallelogram

Question 1: What is the formula for the perimeter of a parallelogram?

Answer:

The formula for the perimeter of a parallelogram is given:

P = 2(a + b)

Where a and b are the adjacent sides of the parallelogram.

Question 2: How to find the perimeter of a parallelogram with a missing side?

Answer:

When one side of the parallelogram is missing, the perimeter of the parallelogram can be found in either the length of the diagonals given or if the height along with the vertex angle is given. 

Perimeter of a parallelogram with diagonals = 2a + √(2x2 + 2y2 – 4a2).

Perimeter of a parallelogram with height and vertex angle = 2a + 2h/sin θ.

Question 3: What is the perimeter of a parallelogram using base and height?

Solution:

We can find the perimeter of a parallelogram using the base and height when, along with the base and height, the vertex angle is also given. The formula for the perimeter of a parallelogram is,

P = 2a + 2h/sin θ

Where,

  • a = side length
  • h = height of the parallelogram
  • θ = vertex angle

Question 4: What is the area of a parallelogram?

Answer:

The area of the parallelogram is the region covered by the parallelogram in 2-D space. The formula for the area of a parallelogram is given as,

A = b × h square units

Where,

A = Area of the parallelogram

b = Base of the parallelogram

h = Height of the parallelogram

Как найти стороны параллелограмма, если даны высоты параллелограмма и угол между ними? Как найти периметр и площадь параллелограмма по его высотам и углу между высотами?

Задача.

Высоты параллелограмма равны m и n, а угол между ними — . Найти стороны параллелограмма, его периметр и площадь.

vysoty-parallelogramma-i-ugol-mezhdu-nimiI. Так как угол между высотами параллелограмма, проведёнными из вершины тупого угла, равен острому углу параллелограмма,

    [angle A = angle C = angle MBN = alpha .]

Рассмотрим прямоугольный треугольник ABM.

По определению синуса,

    [sin angle A = frac{{BM}}{{AB}},]

следовательно,

    [AB = frac{{BM}}{{sin angle A}} = frac{m}{{sin alpha }}.]

Аналогично, из треугольника BCN

    [BC = frac{{BN}}{{sin angle C}} = frac{n}{{sin alpha }}.]

Периметр параллелограмма

    [{P_{ABCD}} = 2(AB + BC)]

    [{P_{ABCD}} = 2(frac{m}{{sin alpha }} + frac{n}{{sin alpha }}) = frac{{2(m + n)}}{{sin alpha }}.]

Площадь параллелограмма

    [{S_{ABCD}} = AB cdot AD cdot sin angle A]

    [{S_{ABCD}} = frac{m}{{sin alpha }} cdot frac{n}{{sin alpha }} cdot sin alpha  = frac{{mn}}{{sin alpha }}.]

dany-vysoty-parallelogramma-i-ugol-mezhdu-nimiII. Так как угол между высотами параллелограмма, проведёнными из вершины острого угла, равен тупому углу параллелограмма,

    [angle ABC = angle ADC = angle KCF = alpha .]

Рассмотрим прямоугольный треугольник BKC.

    [angle KBC = {180^o} - angle ABC = {180^o} - alpha ]

(как смежные).

    [BC = frac{{KC}}{{sin angle KBC}}]

Так как

    [sin ({180^o} - alpha ) = sin alpha ,]

    [BC = frac{m}{{sin alpha }}.]

Аналогично, из треугольника DCF

    [CD = frac{n}{{sin alpha }}.]

Вывод:

чтобы найти стороны параллелограмма, надо его высоты разделить на синус угла между высотами;

периметр параллелограмма равен частному от деления удвоенной суммы высот на синус угла между ними;

площадь параллелограмма равна произведению высот, деленному на синус угла между ними.

Любой многоугольник имеет периметр, который можно определить как сумму всех сторон фигуры. Для
вычисления выведены формулы, опирающиеся на отдельные свойства геометрического объекта, упрощающие
расчеты. Величина обозначается буквой P. Выражается в единицах измерения длины.

Под параллелограммом понимают четырехугольник, у которого противоположные стороны параллельны.
Расчеты периметра фигуры основываются на следующих теоремах о свойствах данного
четырехугольника:

  1. Противоположные стороны попарно равны.
  2. Диагонали точкой пересечения делятся пополам.
  3. Сумма квадратов диагоналей равна удвоенной сумме квадратов длин сторон.

Прямоугольник, квадрат, ромб являются частными случаями данного четырехугольника. Рассчитывая Р этих
фигур, можно применить те же формулы.

  • Периметр параллелограмма через две стороны
  • Периметр параллелограмма через две диагонали и любую
    известную сторону
  • Периметр параллелограмма через любую известную сторону,
    высоту и острый угол

Через две стороны

Самая простая формула вычисления периметра параллелограмма учитывает то, что его противоположные
стороны попарно равны. Для вычисления достаточно знать основные измерения фигуры.

Рис 1

Используем общепринятые в математике обозначения: a – длина, b – ширина, P – периметр.
Тогда
формула для нахождения выглядит так:

P = 2 * (a + b)

Периметр параллелограмма равен удвоенной сумме длин его смежных сторон.

Цифр после
запятой:

Результат в:

Пример 1. Требуется найти длину ограждения территории. Измерения показали, что
участок имеет следующие размеры 12 м, 11 м, 12 м, 11 м. Можно воспользоваться общим подходом:
сложить полученные величины. Но лучше применить свойство четырехугольника с попарно равными
противоположными сторонами.
P= 12 + 11 + 12 + 11 = 46 м
P = 2 * (12 + 11) = 2 * 23м
В
обоих вариантах результат расчета один – 46 м.

Пример 2. Папа с сыном мастерят фоторамку для большого настенного портрета. Они решили сделать ее в
оригинальной форме – параллелограмм с размерами 54 см и 72 см. Для расчета необходимого количества
багета нужно найти периметр рамки с припуском на угловые стыки в 5%.
P = 2∙(64+72)=2∙136=272 см

С учетом припусков умельцам потребуется 252∙1,05 =285,6 см. Багет продается только в метрах. Придется
приобрести 3 м материала. Папа понимает, что остается 14 см неиспользованного материала. Зная
правила расчета, мастера принимают решение увеличить каждый элемент рамки на 3 см, снизив при этом
потери до 2 см.

Через две диагонали и любую известную сторону

Рис 2

Для нахождения периметра параллелограмма через две диагонали и одну известную сторону следует
воспользоваться формулой:

P = √(2a + 2D² + 2d² — 4a²)

где D, d — диагонали, a — сторона.

Цифр после
запятой:

Результат в:

Пример: Пусть D равна 12, d — 10, a = 11, все величины даны в миллиметрах. Тогда P = √(2*11² +
2*12² + 2*10² — 4*11²) = 24мм

Интересен подход, который основывается на свойствах фигуры и позволяет сделать расчеты при известных
длинах диагоналей и одной из сторон. Введем дополнительные обозначения для диагоналей – c1, c2.
Тогда математическая связь между рассматриваемыми величинами фиксируется следующим образом:
a²+b² = (c1² + c2²)/2. Из данной формулы можно найти неизвестную величину. Если

  • дано a, то b² = ((c1² + c2²) — a²)/2
  • дано b, то a² = ((c1² + c2²) — b²)/2

Найдя корень квадратный из полученной величины, можно воспользоваться стандартным расчетом для
нахождения P. P = 2 * (a + b) Пример. Дан параллелограмм со стороной 6 см, диагоналями 8, 10 см.
Требуется найти P. Квадрат ширины равен: b² = ((8² + 10²) — 6²)/2 = (64+100)/2 — 36 = 46
Вычисляя корень квадратный из 46 с точностью до десятых, получим примерно 6,8. Тогда P = 2 * (6+6,8)
= 25,6 см.

Через любую известную сторону, высоту и острый угол

Рис 3

Воспользуемся известными формулами, связывающими длину известной стороны, высоту, острый угол.
Обозначим:

  • высоту, проведенную к длине a как h;
  • острый угол – α.

Тогда формула для определения периметра следующая:

P = 2 * (a + h / sin α)

Цифр после
запятой:

Результат в:

Пример. Для нахождения известны: сторона  — 7 см, высота, проведенная к смежной стороне –
6 см, острый угол – 30º.
Вычислим ширину по заданным величинам: P = 2 * (7 + 6 / sin30) = 38см

Воспользовавшись свойствами фигуры, дополнительными преобразованиями, основанными на теореме
косинусов, теореме синусов, периметр параллелограмма можно найти при различных исходных данных. В
любом случае, в ходе расчетов необходимо получить значения длины и ширины, а затем подсчитать их
удвоенную сумму.

Когда требуется вычисление периметра параллелограмма

К расчету периметра люди прибегают, определяя количество расходных материалов при проведении работ по
ремонту, облагораживанию помещений, дачных участков, других территорий.

Умение находить сумму длин всех измерений любого четырехугольника пригодится во многих профессиях,
быту. Определение количества отделочной ленты для обработки швейного изделия, плинтуса для комнаты,
ограждения для участка – это те ситуации, в которых понадобятся знания по вычислению периметра
любого четырехугольника.

Как найти площадь и периметр параллелограмма

Любая выпуклая и плоская геометрическая фигура имеет ограничивающую ее внутреннее пространство линию – периметр. У многоугольников он состоит из отдельных отрезков (сторон), сумма длин которых определяет протяженность периметра. Участок плоскости, ограниченный этим периметром, тоже может быть выражен через длины сторон и углы в вершинах фигуры. Ниже приведены соответствующие формулы для одного из видов многоугольников – параллелограмма.

Как найти площадь и периметр параллелограмма

Инструкция

Если в условиях задачи даны длины двух смежных сторон параллелограмма (a и b) и величина угла между ними (γ), то этого будет достаточно для вычисления обоих параметров. Для расчета периметра (P) четырехугольника сложите длины сторон и вдвое увеличьте полученное значение: P = 2*(a+b). Вычислять площадь (S) фигуры придется с помощью тригонометрической функции – синуса. Перемножьте длины сторон, а результат умножьте на синус известного угла: S = a*b*sin(γ).

Если известна длина лишь одной из сторон (a) параллелограмма, но есть данные о высоте (h) и величине угла (α) в любой из вершин многоугольника, то это позволит найти и периметр (P) и площадь (S). Сумма всех углов в любом четырехугольнике равна 360°, а в параллелограмме те из них, что лежат в противоположных вершинах, одинаковы. Поэтому для нахождения величины оставшегося неизвестным угла отнимите от 180° величину известного. После этого рассмотрите треугольник, составленный из высоты и лежащего напротив него угла, величины которых известны, а также неизвестной пока стороны. Примените к нему теорему синусов, и выясните, что длина стороны будет равна отношению высоты к синусу угла, лежащего напротив нее: h/sin(α).

После проведения предварительных расчетов предыдущего шага составьте нужные формулы. Подставьте полученное выражение в формулу нахождения периметра из первого шага и получите такое равенство: P = 2*(a+h/sin(α)). В том случае, если высота соединяет две противоположные стороны параллелограмма, длина которых дана в исходных условиях, для нахождения площади просто перемножьте эти два значения: S=a*h. Если же это условие не соблюдено, то подставьте в формулу выражение для другой стороны, полученное в предыдущем шаге: S=a*h/sin(α).

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Nikita Russian

Гуру

(2818)


5 лет назад

Ну дай условие самой задачи, я может быть попытаюсь решить.

Vlada MudrencoЗнаток (336)

5 лет назад

Высоты параллелограмма равны 8 см и 6 см, а его площадь 72 см^2 . Найдите периметр параллелограмма

Nikita Russian
Гуру
(2818)
Да ххххуй его знает… Я даже не знал, что у параллелограмма высоты разной величины.

Андрей Апельсинов Ученик (139)

1 неделю назад

Тогда нахрен писать про то, что попытаешься решить? Если даже этого не знаешь ?

Добавить комментарий