Как найти периметр прямоугольника трапеции

Трапеция – это такой четырехугольник, у которого 2 параллельных основания, а остальные стороны не параллельны друг другу. У прямоугольной трапеции один угол прямой, как вы уже наверняка догадались.

Шаг 1. Формула вычисления периметра прямоугольной трапеции

Периметр прямоугольной трапеции вычисляется с помощью суммирования длин всех сторон, что весьма логично. Тут она от остальных фигур ну ничем не отличается:

Шаг 2. Решение задач на тему определения периметра прямоугольной трапеции

Задача №1

Нужно найти периметр прямоугольной трапеции, когда даны длины всех сторон. Тут всё просто. Складываем все 4 значения, и готово. Это самый лёгкий вариант нахождения периметра. Остальные задачи в итоге всё равно сводятся к нему, но нужно рассмотреть и остальные варианты, интересно же!

Задача №2

Нужно найти периметр всё той же прямоугольной трапеции, но в этом случае мы знаем длину нижнего основания AD, которая равна a. Одна из боковых сторон CD, которая не перпендикулярна ему, равна d. Угол между этим основанием и стороной равен Альфа.

Решение задачи №2

Катеты находятся по таким формулам: CE = CD*sin(ADC), в свою очередь ED = CD*cos(ADC). Верхнее основание вычисляется так: BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа). Длина перпендикулярной стороны считается по формуле: AB = CE = d*sin(Альфа). После этих действий вы будете обладать драгоценными знаниями о длине всех сторон трапеции.

Задача №3

Требуется найти периметр трапеции, когда даны длины его оснований. AD = a, BC=c. Также мы знаем длину перпендикулярной стороны AB, которая равна b. Острый угол при неперпендикулярной стороне равен Альфа.

Решение задачи №3

Для начала проведите высоту трапеции на большее основание, начало которой будет лежать в вершине С. После этого восхитительного действия мы получаем отрезок CE и делим трапецию на 2 фигуры: прямоугольник ABCE, а также треугольник ECD (прямоугольный). Гипотенузой треугольника в нашем случае будет известная нам сторона CD, один из катетов будет равен перпендикулярной боковой стороне нашей трапеции (опираемся на правило прямоугольника, по которому параллельные стороны равны). Длина другого отрезка будет равна разности оснований трапеции. И опять вроде всё просто.

Для начала снова проводим перпендикуляр CE и так же получаем прямоугольник ABCE вместе с треугольником CED. Осталось найти длину гипотенузы того треугольника, который мы получили, мы с уверенностью можем сказать, что CD = AB/sin(ADC) = b/sin(Альфа). Мы снова нашли все длины сторон. Осталось только их сложить. Надеемся, вы сможете сделать это без нас.

Комментариев к данному материалу пока нет.

Как найти периметр прямоугольной трапеции

Трапеция – четырехугольник с двумя параллельными основаниями и не параллельными боковыми сторонами. Прямоугольная трапеция имеет прямой угол при одной боковой стороне.

Как найти периметр прямоугольной трапеции

Инструкция

Периметр прямоугольной трапеции равен сумме длин сторон двух оснований и двух боковых сторон. Задача 1. Найдите периметр прямоугольной трапеции, если известны длины всех его сторон. Для этого сложите все четыре значения: P (периметр) = a + b + c + d.Это самый простой вариант нахождения периметра, задачи с другими начальными данными, в конечном итоге, сводятся к ней. Рассмотрим варианты.

Задача 2.Найдите периметр прямоугольной трапеции, если известно нижнее основание AD = a, не перпендикулярная ему боковая сторона CD = d, а угол при этой боковой стороне ADC равен Альфа.Решение.Проведите высоту трапеции из вершины C на большее основание, получим отрезок CE, трапеция разделилась на две фигуры – прямоугольник ABCE и прямоугольный треугольник ECD. Гипотенуза треугольника – это известная нам боковая сторона трапеции CD, один из катетов равен перпендикулярной боковой стороне трапеции (по правилу прямоугольника две параллельные стороны равны – AB = CE), а другой – отрезок, длина которого равна разности оснований трапеции ED = AD – BC.

Найдите катеты треугольника: по существующим формулам CE = CD*sin(ADC) и ED = CD*cos(ADC).Теперь вычислите верхнее основание – BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа).Узнайте длину перпендикулярной боковой стороны – AB = CE = d*sin(Альфа).Итак, вы получили длины всех сторон прямоугольной трапеции.

Сложите полученные значения, это и будет периметр прямоугольной трапеции:P = AB + BC + CD + AD = d*sin(Альфа) + (a – d*cos(Альфа)) + d + a = 2*a + d*(sin(Альфа) – cos(Альфа) + 1).

Задача 3.Найдите периметр прямоугольной трапеции, если известны длины его оснований AD = a, BC = c, длина перпендикулярной боковой стороны AB = b и острый угол при другой боковой стороне ADC = Альфа.Решение.Проведите перпендикуляр CE, получите прямоугольник ABCE и треугольник CED.Теперь найдите длину гипотенузы треугольника CD = AB/sin(ADC) = b/sin(Альфа).Итак, вы получили длины всех сторон.

Сложите полученные значения:P = AB + BC + CD + AD = b + c + b/sin(Альфа) + a = a + b*(1+1/sin(Альфа) + с.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

В данной публикации мы рассмотрим, каким образом можно посчитать периметр трапеции и разберем примеры решения задач.

  • Формула вычисления периметра

  • Примеры задач

Формула вычисления периметра

Периметр (P) трапеции равняется сумме длин всех ее сторон.

P = a + b + c + d

Периметр трапеции

  • b и d – основания трапеции;
  • a и с – ее боковые стороны.

Периметр равнобедренной трапеции

В равнобедренной трапеции боковые стороны равны (a=c), из-за чего ее, также, называют равнобокой. Периметр считается так:

P =  2a + b + d или P = 2с + b + d

Периметр равнобедренной трапеции

Периметр прямоугольной трапеции

Для расчета периметра используется такая же формула, что и для разносторонней трапеции.

P = a + b + c + d

Периметр прямоугольной трапеции

Примеры задач

Задание 1
Найдите периметр трапеции, если ее основания равны 7 и 10 см, а боковые стороны – 4 и 5 см.

Решение:
Используем стандартную формулу, подставив в нее известные нам длины сторон: P = 7 см + 10 см + 4 см + 5 см = 26 см.

Задание 2
Периметр равнобедренной трапеции равняется 22 см. Найдите длину боковой стороны, если основания фигуры равны 3 см и 9 см.

Решение:
Как мы знаем, периметр равнобедренной трапеции вычисляется по формуле: P = 2a + b + d, где а – боковая сторона.
Ее длина, умноженная на два равна: 2a = P – b – d = 22 см – 3 см – 9 см = 10 см.
Следовательно, длина боковой стороны составляет: a = 10 см / 2 = 5 см.

Совет 1: Как обнаружить периметр прямоугольной трапеции

Трапеция – четырехугольник с двумя параллельными основаниями и не параллельными боковыми сторонами. Прямоугольная трапеция имеет прямой угол при одной боковой стороне.

Как обнаружить периметр прямоугольной трапеции

Инструкция

1. Периметр прямоугольной трапеции равен сумме длин сторон 2-х оснований и 2-х боковых сторон. Задача 1. Обнаружьте периметр прямоугольной трапеции , если вестимы длины всех его сторон. Для этого сложите все четыре значения: P (периметр) = a + b + c + d.Это самый примитивный вариант нахождения периметра, задачи с другими исходными данными, в финальном выводе, сводятся к ней. Разглядим варианты.

2. Задача 2.Обнаружьте периметр прямоугольной трапеции , если знаменито нижнее основание AD = a, не перпендикулярная ему боковая сторона CD = d, а угол при этой боковой стороне ADC равен Альфа.Решение.Проведите высоту трапеции из вершины C на большее основание, получим отрезок CE, трапеция разделилась на две фигуры – прямоугольник ABCE и прямоугольный треугольник ECD. Гипотенуза треугольника – это вестимая нам боковая сторона трапеции CD, один из катетов равен перпендикулярной боковой стороне трапеции (по правилу прямоугольника две параллельные стороны равны – AB = CE), а иной – отрезок, длина которого равна разности оснований трапеции ED = AD – BC.

3. Обнаружьте катеты треугольника: по присутствующим формулам CE = CD*sin(ADC) и ED = CD*cos(ADC).Сейчас вычислите верхнее основание – BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа).Узнайте длину перпендикулярной боковой стороны – AB = CE = d*sin(Альфа).Выходит, вы получили длины всех сторон прямоугольной трапеции .

4. Сложите полученные значения, это и будет периметр прямоугольной трапеции :P = AB + BC + CD + AD = d*sin(Альфа) + (a – d*cos(Альфа)) + d + a = 2*a + d*(sin(Альфа) – cos(Альфа) + 1).

5. Задача 3.Обнаружьте периметр прямоугольной трапеции , если вестимы длины его оснований AD = a, BC = c, длина перпендикулярной боковой стороны AB = b и острый угол при иной боковой стороне ADC = Альфа.Решение.Проведите перпендикуляр CE, получите прямоугольник ABCE и треугольник CED.Сейчас обнаружьте длину гипотенузы треугольника CD = AB/sin(ADC) = b/sin(Альфа).Выходит, вы получили длины всех сторон.

6. Сложите полученные значения:P = AB + BC + CD + AD = b + c + b/sin(Альфа) + a = a + b*(1+1/sin(Альфа) + с.

Совет 2: Как обнаружить длину и ширину периметра

О том, что такое периметр, всякий из нас узнал еще в младших классах. нахождением сторон квадрата при вестимом периметре задач обыкновенно не появляется даже у тех, кто завершил школу давным-давно и поспел позабыть курс математики. Впрочем решить аналогичную задачу в отношении прямоугольника либо прямоугольного треугольника получается без подсказки не каждом.

Как обнаружить длину и ширину периметра

Инструкция

1. Как решить задачу по геометрии, в условии которой приведены только периметр и углы? Безусловно, если речь идет о остроугольном треугольнике либо многоугольнике, то такую задачу без умения длины одной из сторон решить нереально. Впрочем, если речь идет о прямоугольном треугольнике либо прямоугольнике, то по заданному периметру дозволено обнаружить его стороны. Прямоугольник имеет длину и ширину . Если провести диагональ прямоугольника, дозволено найти, что она разбивает прямоугольник на два прямоугольных треугольника. Диагональ является гипотенузой, а длина и ширина – катетами этих треугольников. У квадрата, являющегося частным случаем прямоугольника, диагональ является гипотенузой прямоугольного равнобедренного треугольника.

2. Представим, что имеется прямоугольный треугольник со сторонами a, b и c, у которого один из углов равен 30 , а 2-й 60. На рисунке видно, что a = c*sin?, а b = c*cos?. Зная, что периметр всякий фигуры, в том числе и треугольника, равен сумме всех его сторон, получаем:a+b+c=c*sin ?+c*cos+c=pИз этого выражения дозволено обнаружить незнакомую сторону c, которая является гипотенузой для треугольника. Потому что угол ? = 30, позже реформирования получим:c*sin ?+c*cos ?+c=c/2+c*sqrt(3)/2+c=pОтсюда следует, что с=2p/[3+sqrt(3)]Соответственно a = c*sin ?=p/[3+sqrt(3)],b=c*cos ?=p*sqrt(3)/[3+sqrt(3)]

Как обнаружить <strong>длину</strong> и <b>ширину</b> <em>периметра</em>

3. Как теснее сказано выше, диагональ прямоугольника делит его на два прямоугольных треугольника с углами 30 и 60 градусов. От того что периметр прямоугольника равен p=2(a + b), ширину a и длину b прямоугольника дозволено обнаружить, исходя из того, что диагональ является гипотенузой прямоугольных треугольников:a = p-2b/2=p[3- sqrt(3)]/2[3+sqrt (3)]b= p-2a/2=p[1 +sqrt(3) ]/2[3+ sqrt(3)]Эти два уравнения выражены через периметр прямоугольника. По ним вычисляются длина и ширина этого прямоугольника с учетом получившихся углов при проведении его диагонали.

Видео по теме

Обратите внимание!
Как обнаружить длину прямоугольника,если знаменит периметр и ширина? Вычесть из периметра удвоенную ширину, тогда получим удвоенную длину. Потом разделяем её напополам, дабы обнаружить длину.

Полезный совет
Еще из исходной школы многие помнят, как обнаружить периметр всякий геометрической фигуры: довольно узнать длину всех ее сторон и обнаружить их сумму.  Вестимо, что в такой фигуре, как прямоугольник, длины сторон равны попарно. Если ширина и высота прямоугольника имеют идентичную длину, то он именуется квадратом. Обыкновенно длиной прямоугольника называют крупнейшую из сторон, а шириной – наименьшую.

Совет 3: Как узнать периметр прямоугольника

Периметр (Р) – сумма длин всех сторон фигуры, а у четырехугольника их четыре. Значит, дабы обнаружить периметр четырехугольника, необходимо легко сложить длины всех его сторон. Но вестимы такие фигуры, как прямоугольник, квадрат, ромб, то есть положительные четырехугольники. Их периметры определяются специальными методами.

Как узнать периметр прямоугольника

Инструкция

1. Если данная фигура – прямоугольник (либо параллелограмм) АВСД, то он владеет следующими свойствами: параллельные стороны попарно равны (см. рисунок). АВ = СД и АС = ВД. Зная такое отношение сторон в этой фигуре, дозволено вывести периметр прямоугольника (и параллелограмма): Р = АВ + СД + АС+ ВД. Пускай одни стороны будут равны числу а, другие – числу в, тогда Р = а + а + в + в = 2*а = 2* в = 2*(а + в). Пример 1. В прямоугольнике АВСД стороны равны АВ = СД = 7 см и АС = ВД = 3 см. Обнаружить периметр такого прямоугольника. Решение: Р = 2*(а + в). Р = 2*(7 +3) = 20 см.

2. Решая задачи на сумму длин сторон с фигурой, называемой квадрат либо ромб, следует использовать несколько видоизмененную формулу периметра. Квадрат и ромб – фигуры , имеющие идентичные четыре стороны. Исходя из определения периметра, Р = АВ + СД + АС+ ВД и допуская обозначение длины буквой а, то Р = а + а + а + а = 4*а. Пример 2. Ромб имеет длину стороны 2 см. Обнаружить его периметр. Решение: 4*2 см = 8 см.

3. Если данный четырехугольник является трапецией, то в этом случае легко необходимо сложить длины четырех ее сторон. Р = АВ + СД + АС+ ВД. Пример 3. Обнаружить периметр трапеции АВСД, если ее стороны равны: АВ = 1 см, СД = 3 см, АС = 4 см, ВД = 2 см. Решение: Р = АВ + СД + АС+ ВД = 1 см + 3 см + 4 см + 2 см = 10 см. Может случиться такое, что трапеция окажется равнобокой (у нее две боковые стороны равны), тогда ее периметр может свестись к формуле: Р = АВ + СД + АС+ ВД = а + в +а + с = 2*а + в + с. Пример 4. Обнаружить периметр равнобокой трапеции, если ее боковые грани равны 4 см, а основания – 2 см и 6 см. Решение: Р = 2*а + в + с = 2 *4см + 2 см + 6 см = 16 см.

Видео по теме

Полезный совет
Никто не мешает находить периметр четырехугольника (и всякий иной фигуры), как сумму длин сторон, не применяя выведенные формулы. Они даны для комфорта и облегчения вычисления. Не является оплошностью способ решения, значим верный результат и умение математической терминологии.

Совет 4: Как обнаружить основания прямоугольной трапеции

Математическая фигура с четырьмя углами именуется трапецией, если пара противоположных ее сторон параллельна, а иная пара – нет. Параллельные стороны называют основаниями трапеции , две другие – боковыми. В прямоугольной трапеции один из углов при боковой стороне – прямой.

Как обнаружить основания прямоугольной трапеции

Инструкция

1. Задача 1.Обнаружьте основания BC и AD прямоугольной трапеции , если вестима длина диагонали AC = f; длина боковой стороны CD = c и угол при ней ADC = ?.Решение:Разглядите прямоугольный треугольник CED. Знамениты гипотенуза c и угол между гипотенузой и катетом EDC. Обнаружьте длины сторон CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Выходит: CE = c*sin?; ED=c*cos?.

2. Разглядите прямоугольный треугольник ACE. Гипотенуза AC и катет CE вам вестимы, обнаружьте сторону AE по правилу прямоугольного треугольника: сумма квадратов катетов равна квадрату гипотенузы. Выходит: AE(2) = AC(2) – CE(2) = f(2) – c*sin?. Вычислите квадратный корень из правой части равенства. Вы обнаружили верхнее основание прямоугольной трапеции .

3. Длина основания AD является суммой длин 2-х отрезков AE и ED. AE = квадратный корень(f(2) – c*sin?); ED = c*cos?).Выходит: AD = квадратный корень(f(2) – c*sin?) + c*cos?.Вы обнаружили нижнее основание прямоугольной трапеции .

4. Задача 2.Обнаружьте основания BC и AD прямоугольной трапеции , если вестима длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = ?.Решение:Разглядите прямоугольный треугольник CED. Обнаружьте длины сторон CE и ED: CE = CD*sin(ADC) = c*sin?; ED = CD*cos(ADC) = c*cos?.

5. Разглядите прямоугольник ABCE. По свойству прямоугольника AB = CE = c*sin?.Разглядите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Следственно AD(2) = BD(2) – AB(2) = f(2) – c*sin?.Вы обнаружили нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) – c*sin?).

6. По правилу прямоугольника BC = AE = AD – ED = квадратный корень(f(2) – c*sin?) – с*cos?.Вы обнаружили верхнее основание прямоугольной трапеции .

Совет 5: Как находить периметр трапеции

Трапеция представляет собой четырехугольник с двумя параллельными и двумя не параллельными сторонами. Дабы вычислить ее периметр, надобно знать размеры всех сторон трапеции. При этом данные в задачах могут быть различными.

Как находить периметр трапеции

Вам понадобится

  • – калькулятор;
  • – таблицы синусов, косинусов и тангенсов;
  • – бумага;
  • – чертежные принадлежности.

Инструкция

1. Самый примитивный вариант задачи – когда даны все стороны трапеции. В этом случае их надобно легко сложить. Дозволено воспользоваться дальнейшей формулой: p=a+b+c+d, где p – периметр, а буквами a, b, c и d обозначены стороны, противолежащие углам, обозначенным соответствующими прописными буквами.

2. Есть дана равнобедренная трапеция, довольно сложить два ее основания и прибавить к ним удвоенный размер стороны. То есть периметр в этом случае вычисляется по формуле: p=a+c+2b, где b – сторона трапеции, а и с – основания.

3. Расчеты будут несколько больше долгими, если какую-то из сторон нужно вычислить. Скажем, вестимо длинное основание, прилежащие к нему углы и высота. Вам надобно вычислить короткое основание и сторону. Для этого начертите трапецию ABCD, из верхнего угла B проведите высоту BE. У вас получится треугольник АВЕ. Вам вестим угол А, соответственно, вы знаете его синус. В данных задачи указана также высота BE, которая единовременно является катетом прямоугольного треугольника, противолежащим знаменитому вам углу. Дабы обнаружить гипотенузу АВ которая единовременно является стороной трапеции, довольно BE поделить на sinA. Верно так же обнаружьте длину 2-й стороны. Для этого надобно провести высоту из иного верхнего угла, то есть CF. Сейчас вам вестимы большее основание и стороны. Для вычисления периметра этого немного, надобен еще размер меньшего основания. Соответственно, в 2-х образовавшихся внутри трапеции треугольниках нужно обнаружить размеры отрезков AE и DF. Это дозволено сделать, скажем, через косинусы вестимых вам углов А и D. Косинус – это отношение прилежащего катета к гипотенузе. Дабы обнаружить катет, необходимо гипотенузу умножить на косинус. Дальше периметр вычислите по той же формуле, что и в первом шаге, то есть сложив все стороны.

4. Еще один вариант: даны два основания, высота и одна из сторон, необходимо обнаружить вторую сторону. Это также отличнее делать с применением тригонометрических функций. Для этого начертите трапецию. Возможен, вам вестимы основания АD и ВС, а также сторона АВ и высота BF. По этим данным вы можете обнаружить угол A (через синус, то есть отношение высоты к знаменитой стороне), отрезок АF (через косинус либо тангенс, от того что угол вам теснее знаменит. Припомните также свойства углов трапеции – сумма углов, прилежащих к одной стороне, составляет 180°. Проведите высоту CF. У вас получился еще один прямоугольный треугольник, в котором вам надобно обнаружить гипотенузу CD и катет DF. Начните с катета. Вычтите из длины нижнего основания длину верхнего, а из полученного итога – длину теснее вестимого вам отрезка АF. Сейчас в прямоугольном треугольнике СFD вам знамениты два катета, то есть вы можете обнаружить тангенс угла D, а по нему – и сам угол. Позже этого останется через синус этого же угла вычислить сторону CD, как теснее было описано выше.

Видео по теме

Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

произвольная трапеция равнобедренная трапеция название
а а нижнее основание
в в верхнее основание
с, d с боковые стороны
н н высота
m m средняя линия
d1, d2 d1 диагонали
s s площадь
α, β α углы при нижнем основании
γ, δ γ, δ углы на пересечении диагоналей

Найти периметр трапеции

Введите данные:

Вводить можно числа или дроби (-2.4, 5/7, …).

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

b = a – 2 h ctg α = a – 2 c cos α

c = h = a – b
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a = d 1 2 – c 2 b = d 1 2 – c 2 c = √ d 1 2 – ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S – b b = 2S – a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

Формулы длины средней линии равнобедренной трапеции:

m = a – h ctg α = b + h ctg α = a – √ c 2 – h 2 = b + √ c 2 – h 2

2. Формула средней линии трапеции через площадь и сторону:

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h = 1 √ 4 c 2 – ( a – b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h = a – b tg β = c sin β
2

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с 2 – (((а – в) 2 + с 2 – d 2 )/(2(а – в))) 2 ). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с 2 – (а – в) 2 /4). Номер 2.

Периметр произвольной трапеции

Периметр произвольной трапеции, в которой AB=a , BC=b , CD=c , AD=d , имеет вид:

[ LARGE P_ = a + b + c + d ]

где:
P – периметр трапеции
a, b, c, d – стороны трапеции

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и она делит боковую сторону точкой касания на два отрезка — и , то , то

Решение задач о прямоугольной трапеции

Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 90 0 . Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.

Задача Даны три стороны, одна из которых перпендикулярная боковая.

Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.

Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.

Находим отрезок КД:

  • КД = АД – АК = 6 – 1 = 5 (см)

Согласно теореме Пифагора:

  • СД 2 =СК 2 +КД 2 =12 2 +5 2 =144+25=169
  • СД = √169 = 13 (см)

Ответ: СД = 13 см

Задача Даны оба основания и угол при основании

Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.

  1. Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
  2. КД = АД – АК = 10 – 6 = 4 см
  3. cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
  4. Получаем СД = 4/√2/2 = 4√2 (см)

Ответ: СД = 4√2 см

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Определение периметра прямоугольной трапеции

Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:

Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.

  • опустим высоту из вершины С, высота CH = AB = 5см;
  • исходя из рисунка 3, AH = BC = 7 см;
  • HD = AD – AH = 10 – 7 = 3 см;
  • далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
  • подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.

Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:

  • формула расчета длины основания через среднюю линию;
  • формулы длин сторон через высоту и угол при нижнем основании трапеции;
  • формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
  • формулы длин сторон равнобедренной трапеции через площадь.

Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d1 2 * sin γ) / (а + в) или н = (d1 2 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d1 2 * sin γ) / 2m или н = (d1 2 * sin δ) / 2m. Номер 6а.

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 – 2 ad· cos β

d 2 = √ a 2 + c 2 – 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab – a ( d 2 – c 2 )
a – b
d 2 = c 2 + ab – a ( c 2 – d 2 )
a – b

d 1 = √ h 2 + ( a – h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a – h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab – d 2 2

d 2 = √ c 2 + d 2 + 2 ab – d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 – ( ( a – b ) 2 + c 2 – d 2 ) 2
2 2( a – b )

5. Формула Герона для трапеции

S = a + b √ ( p – a )( p – b )( p – a – c )( p – a – d )
| a – b |

где

p = a + b + c + d – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p – a )( p – c )( p – d 1)

где

a – большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти периметр прямоугольной трапеции вписанной окружности

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 42. Найдите радиус окружности.

В четырехугольник можно вписать окружность тогда и только тогда, когда

Периметр прямоугольной трапеции, описанной около окружности, равен 32, её большая боковая сторона равна 9. Найдите радиус окружности.

Пусть радиус вписанной окружности равен r, тогда длина меньшей боковой стороны равна 2r. Суммы длин противоположных сторон описанного вокруг окружности четырехугольника равны, поэтому сумма оснований трапеции равна сумме длин ее боковых сторон или 2r + 9. Тогда для периметра трапеции имеем 2(2r + 9) = 32, откуда r = 3,5.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/trapezium/

http://ege.sdamgia.ru/test?likes=27938

[/spoiler]

Добавить комментарий