Содержание:
- Формула
- Примеры вычисления периметра равностороннего треугольника
Формула
Чтобы найти периметр равностороннего треугольника, надо длину его стороны умножить на три.
Периметр равностороннего треугольника – это сумма длин его сторон. У равностороннего треугольника
все стороны равны. Поэтому чтобы найти периметр равностороннего треугольника
$ABC$, со стороной
$a$ нужно воспользоваться формулой
$$P_{Delta A B C}=a+a+a=3 a$$
Примеры вычисления периметра равностороннего треугольника
Пример
Задание. Найти периметр треугольника
$ABC$ со стороной, равной 5 дм.
Решение. Воспользуемся формулой для нахождения периметра равностороннего треугольника:
$$P_{Delta A B C}=3a$$
Тогда искомый периметр равен:
$P_{Delta A B C}=3 cdot 5=15$ (дм)
Ответ. $P_{Delta A B C}=15$ (дм)
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Периметр равностороннего треугольника
$ABC$ равен
27 см. Найти длины его стороны.
Решение. Периметр равностороннего треугольника вычисляется по формуле:
$$P_{Delta A B C}=3 a$$
Подставим в нее заданное значение периметра и выразим из полученного уравнения искомую длину
$a$:
$27=3 a Rightarrow a=27: 3=9$ (см)
Ответ. $a=9$ (см)
Читать дальше: как найти периметр круга.
Выбирайте формулу в зависимости от известных величин.
1. Как найти периметр треугольника, зная три стороны
Просто посчитайте сумму всех сторон.
- P — искомый периметр;
- a, b, c — стороны треугольника.
2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности
Умножьте площадь треугольника на 2.
Разделите результат на радиус вписанной окружности.
- P — искомый периметр;
- S — площадь треугольника;
- r — радиус вписанной окружности.
3. Как вычислить периметр треугольника, зная две стороны и угол между ними
Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:
- Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
- Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
- Найдите корень из результата.
Теперь прибавьте к найденной стороне две ранее известные стороны.
- P — искомый периметр;
- b, c — известные стороны треугольника;
- ɑ — угол между известными сторонами;
- a — неизвестная сторона треугольника.
4. Как найти периметр равностороннего треугольника, зная одну сторону
Умножьте сторону на 3.
- P — искомый периметр;
- a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).
5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание
Умножьте боковую сторону на 2.
Прибавьте к результату основание.
- P — искомый периметр;
- a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
- b — основание треугольника (это сторона, которая отличается длиной от остальных).
6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту
Найдите квадраты боковой стороны и высоты.
Отнимите от первого числа второе.
Найдите корень из результата и умножьте его на 2.
Прибавьте к полученному числу две боковые стороны.
- P — искомый периметр;
- a — боковая сторона треугольника;
- h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).
7. Как вычислить периметр прямоугольного треугольника, зная катеты
Найдите квадраты катетов и посчитайте их сумму.
Извлеките корень из полученного числа.
Прибавьте к результату оба катета.
- P — искомый периметр;
- a, b — катеты треугольника (стороны, которые образуют прямой угол).
8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу
Посчитайте квадраты гипотенузы и катета.
Отнимите от первого числа второе.
Найдите корень из результата.
Прибавьте катет и гипотенузу.
- P — искомый периметр;
- a — любой катет прямоугольника;
- c — гипотенуза (сторона, которая лежит напротив прямого угла).
Чтобы найти периметр равностороннего треугольника(или найти периметр правильного треугольника), нужно знать его сторону.
В общем случае для нахождения периметра треугольника используют формулу
Поскольку в равностороннем треугольнике все три стороны равны, формула упрощается:
Таким образом, формула периметра равностороннего треугольника:
(а — длина его стороны).
Примеры.
1) Найти периметр равностороннего треугольника, сторона которого равна 10 см.
Решение:
По формуле Р=3а имеем: Р=3∙10=30 (см).
2) Периметр равностороннего треугольника равен 21 см. Найти его сторону.
Решение:
Р=3а, значит, а=Р:3. Таким образом, длина стороны треугольника равна а=21:3= 7 (см).
3) Найти периметр правильного треугольника АВС, если АВ=25 см.
Решение:
По формуле P=3a, P=3∙АВ=3∙25=75 (см).
Периметр равностороннего треугольника
4.4
Средняя оценка: 4.4
Всего получено оценок: 325.
4.4
Средняя оценка: 4.4
Всего получено оценок: 325.
Равносторонний треугольник занимает особое место среди треугольников. Для того, чтобы найти значение периметра, площади, углов или радиусов окружностей вписанной и описанной у равнобедренного треугольника, достаточно знать величину стороны. С одной стороны, это значительно облегчает решение, с другой составители задач редко дают значение стороны и приходится искать обходные пути решения.
Формула нахождения периметра равностороннего треугольника
Формула периметра равностороннего треугольника вытекает из определений. Что такое периметр? Периметр это сумма всех сторон фигуры. Равносторонний треугольник – это треугольник, все стороны которого равны.
Значит,для того, чтобы найти значение периметра достаточно умножить величину стороны на количество сторон:
P=3*a
Решим несколько разных по сложности задач, чтобы разобраться, какие проблемы могут встречаться на пути нахождения периметра.
Задача 1
- В равностороннем треугольнике сторона равна 6. Найти периметр треугольника.
Это самый простой вариант задачи. Достаточно подставить значение в формулу и получить результат. Такая задача не должна вызывать затруднений:
P=3*a=3*6=18
Задача 2
- В равнобедренном треугольнике острый угол при основании равен 60 градусам, площадь треугольника равна $${64oversqrt{3}}$$.
Особое внимание нужно обращать на вид фигуры, который указан в условии задачи.
В данной задаче дан равнобедренный треугольник. Чтобы воспользоваться общей формулой, необходимо доказать, что этот равнобедренный треугольник является еще и равносторонним.
Обратим внимание на величину угла. Угол при основании равен 60. При этом углы у основания равнобедренного треугольника равны, а сумма углов любого треугольника равна 180 градусов. Значит у основания два угла по 60 градусов. Рассчитаем угол при вершине:
180-60-60=60 – угол при вершине так же равен 60 градусам.
Значит, данный треугольник будет равносторонним, так как все углы равны 60 градусам.
Углы по 60 градусов характерны только для равностороннего треугольника. Именно сочетание 3 равных сторон образует 3 равных угла. В любых других ситуациях, хотя бы один угол будет отличаться.
Для площади равностороннего треугольника имеется отдельная формула:
$$S=a^2*{sqrt{3}over 4}={64oversqrt{3}}$$ – где а значение стороны, которое нам и нужно выразить из этой формулы.
$$а^2={Sover{sqrt{3}over 4}}$$
$$a^2={4Soversqrt{3}}$$
$$a=sqrt{4Soversqrt{3}}$$
$$a={sqrt{4*{64oversqrt{3}^2}}oversqrt{3}}=sqrt{4*64}=16$$
Подставим полученное значение в формулу:
P=3*a=3*16=48
Задача 3
- В равностороннем треугольнике высота равна $$3*sqrt{3}$$. Найти периметр треугольника.
Для данной задачи нужно воспользоваться методом решения, который часто используется в задачах с равнобедренным треугольником. Из любой вершины опустим высоту, которая будет медианой и биссектрисой.
В одном из получившихся треугольников выразим значение высоты через сторону с помощью теоремы Пифагора:
$$h^2=a^2-({aover2})^2$$
$$h^2=a^2-{a^2over4}$$
Вычтем подобные слагаемые:
$$h^2={3over4}*a^2$$
Из получившейся формулы выразим значение стороны:
$$a^2={4over3}*h^2$$
$$a=sqrt{{4over3}*h^2}$$
$$a=sqrt{{4over3}*(3*sqrt{3})^2}$$
$$a=sqrt{{4over3}*(9*3)}$$
$$a=sqrt{4*9}$$
a=6
Подставим получившееся значение в формулу периметра равностороннего треугольника.
P=3*a=3*6=18
Что мы узнали?
Мы обсудили формулу для нахождения периметра равностороннего треугольника. Выделили проблемы, которые приходится решать при нахождении стороны равностороннего треугольника для дальнейшего решения задачи. Рассмотрели различные пути решения задач на нахождение периметра равностороннего треугольника.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Марго Дудченко
4/5
-
Татьяна Коробейникова
5/5
-
Наташа Новак
4/5
-
Марина Безобразова
4/5
-
Даниил Толыпин
5/5
-
Ибрагим Вафя-Сулим
5/5
-
Наталия Левина
4/5
-
Исмаил Тагиев
5/5
Оценка статьи
4.4
Средняя оценка: 4.4
Всего получено оценок: 325.
А какая ваша оценка?
Ирина Алексеевна Антоненко
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Предварительные сведения
Периметр любой плоской геометрической фигур на плоскости определяется как сумма длин всех его сторон. Исключением из этого не является и треугольник. Сначала приведем понятие треугольника, а также виды треугольников в зависимости от сторон.
Определение 1
Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками
(рис. 1).
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Определение 2
Точки в рамках определения 1 будем называть вершинами треугольника.
Определение 3
Отрезки в рамках определения 1 будем называть сторонами треугольника.
Очевидно, что любой треугольник будет иметь 3 вершины, а также три стороны.
В зависимости от отношении сторон друг к другу, треугольники делятся на разносторонние, равнобедренные и равносторонние.
Определение 4
Треугольник будем называть разносторонним, если ни одна из его сторон не равняется никакой другой.
Определение 5
Треугольник будем называть равнобедренным, если две его стороны равны друг другу, но не равняются третьей стороне.
«Как найти периметр треугольника» 👇
Определение 6
Треугольник будем называть равносторонним, если все его стороны равняются друг другу.
Все виды этих треугольников Вы можете видеть на рисунке 2.
Как найти периметр разностороннего треугольника?
Пусть нам дан разносторонний треугольник, у которого длины сторон будут равняться $α$, $β$ и $γ$.
По определению периметра плоской геометрической фигуры, получим, что
$P=α+β+γ$
Вывод: Для нахождения периметра разностороннего треугольника надо все длин его сторон сложить между собой.
Пример 1
Найти периметр разностороннего треугольника равняются $34$ см, $12$ см и $11$ см.
Решение.
По рассмотренному выше примеру, видим, что
$P=34+12+11=57$ см
Ответ: $57$ см.
Пример 2
Найти периметр прямоугольного треугольника, у которого катеты равняются $6$ и $8$ см.
Решение.
Сначала найдем длину гипотенуз этого треугольника по теореме Пифагора. Обозначим ее через $α$, тогда
$α^2=6^2+8^2$
$α^2=100$
$α=10$
По правилу вычисления периметра разностороннего треугольника, получим
$P=10+8+6=24$ см
Ответ: $24$ см.
Как найти периметр равнобедренного треугольника?
Пусть нам дан равнобедренный треугольник, у которого длины боковых сторон будут равняться $α$, а длина основания равняется $β$.
По определению периметра плоской геометрической фигуры, получим, что
$P=α+α+β=2α+β$
Вывод: Для нахождения периметра равнобедренного треугольника надо удвоенную длину его сторон сложить с длиной его основания.
Пример 3
Найти периметр равнобедренного треугольника, если его боковые стороны равняются $12$ см, а основание $11$ см.
Решение.
По рассмотренному выше примеру, видим, что
$P=2cdot 12+11=35$ см
Ответ: $35$ см.
Пример 4
Найти периметр равнобедренного треугольника, если его высота, проведенная на основание, равняется $8$ см, а основание $12$ см.
Решение.
Рассмотрим рисунок по условию задачи:
Так как треугольник равнобедренный, то $BD$ также является и медианой, следовательно, $AD=6$ см.
По теореме Пифагора, из треугольника $ADB$, найдем боковую сторону. Обозначим ее через $α$, тогда
$α^2=6^2+8^2$
$α^2=100$
$α=10$
По правилу вычисления периметра равнобедренного треугольника, получим
$P=2cdot 10+12=32$ см
Ответ: $32$ см.
Как найти периметр равностороннего треугольника?
Пусть нам дан равносторонний треугольник, у которого длины всех сторон будут равняться $α$.
По определению периметра плоской геометрической фигуры, получим, что
$P=α+α+α=3α$
Вывод: Для нахождения периметра равностороннего треугольника надо длину стороны треугольника умножить на $3$.
Пример 5
Найти периметр равностороннего треугольника, если его сторона равняется $12$ см.
Решение.
По рассмотренному выше примеру, видим, что
$P=3cdot 12=36$ см
Ответ: $36$ см.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме