Как найти периметр равностороннего треугольника через высоту

Так как изначально периметр для любой фигуры – это сумма длин всех ее сторон, то периметр треугольника найти проще всего, зная все три стороны: P=a+b+c. Для равнобедренного треугольника формула периметра будет выглядеть несколько иначе в силу того, что две из сторон у него конгруэнтны, то есть равны по значению: P=2a+b. С равносторонним треугольником все еще незатейливей – у него все три стороны одинаковые, поэтому периметр будет равен утроенной стороне: P=3a.


Для треугольников, обладающих особыми свойствами, как например, вышеупомянутые равнобедренный и равносторонний треугольники, могут быть выведены и другие формулы. Например, периметр равнобедренного треугольника можно найти и через высоту. Высота в данном случае делит основание пополам, исходя из чего можно найти неизвестную сторону по теореме Пифагора из получившихся прямоугольных треугольников. Если дана боковая сторона, то половина основания будет равна , а само основание, соответственно, . Подставив его в формулу для нахождения периметра равнобедренного треугольника, получим . Если дано основание, то по той же теореме Пифагора находим боковую сторону . Формула периметра равнобедренного треугольника через основание и высоту тогда принимает вид .


Найти периметр равностороннего треугольника становится возможным, уже зная одну лишь высоту. Используя теорему Пифагора, выражаем сторону треугольника через высоту . Подставляем в формулу периметра равностороннего треугольника и получаем


Периметр прямоугольного треугольника можно найти, зная две стороны из трех. Если известны два катета a и b, то гипотенуза c по теореме Пифагора равна , и периметр получается . Если дана гипотенуза и один из катетов, формула периметра прямоугольного треугольника принимает уже другой вид:

Как найти периметр равностороннего треугольника

Как найти периметр равностороннего треугольника

Поиск периметра равностороннего треугольника означает расчет расстояния вокруг самой фигуры. Самый простой способ – это сложить все стороны. Однако бывают случаи, когда известна лишь высота треугольника или одна сторона, как быть в таких ситуациях? Статья подскажет, как быстро  находить периметр треугольника при разных условиях.

1

Равносторонний треугольник – что собой представляет

Такой треугольник имеет три конгруэнтные стороны и три равных угла. Зная размер одной из сторон, можно найти остальные. Поскольку треугольник имеет три соразмерные стороны, он автоматически имеет три идентичных угла. Они в сумме дают 180º, которую, согласно их идентичности, следует разделить на 3. Это означает, что любой угол треугольника равен 60 º. Можно сделать заключение, что равносторонний треугольник является острой фигурой.

2

Как найти периметр равностороннего треугольника

Поскольку стороны равностороннего треугольника конгруэнтны, для вычисления его периметра требуется длина одной стороны. Можно сказать, что простая формула периметра равносторонней фигуры : Р = c+c+c, где  с – длина одной из сторон.

  • Узнайте периметр треугольника с конгруэнтными сторонами, если размер одной – 7 дм.
  • Из условия известно, что сторона фигуры 7 дм, т.е. другие стороны идентичны.
  • Согласно формулы периметр треугольника: Р = с + с + с, Р = 7+7+7 = 21 дм.

3

Упрощенный способ нахождения периметра равностороннего треугольника

Конечно, более простой способ найти границы треугольника – это умножить длину каждой стороны на три. Формула будет состоять: P = 3 х а, где а – длина стороны.

  • Оцените периметр равностороннего треугольника с заданной стороной 7 дм.
  • Подставьте значения согласно формулы:  P = 3 х а , P = 3 х 7
    P = 21
  • Периметр треугольника составляет 21 дм.
  • Когда изначально стороны треугольника заданы в сантиметрах, ваш ответ также должен быть в сантиметрах. В приведенном примере длина сторон составляет 7 дм, поэтому правильное значение  периметра будет 21 дм.

4

Как найти периметр равностороннего треугольника через высоту

Рассчитать периметр равностороннего треугольника возможно, если дана одна высота. Следуя теореме Пифагора, найдите одну из сторон через высоту.

  • Высота треугольника с равными сторонами 7 см, найдите периметр.
  • Согласно условия h = 7 см, следуя формуле:
  • Р= 2√3 х 7 = 24,249 см.

5

Онлайн расчет периметра равностороннего треугольника

Существует несколько сайтов (например, справочный портал Калькулятор или познавательный портал 2mb), которые помогут быстро рассчитать периметр треугольника, достаточно лишь ввести его параметры.

6

Как найти периметр равностороннего треугольника – обратный расчет

Бывают случаи, когда в школе требуется найти сторону равностороннего треугольника, когда в условии указан периметр фигуры. Примените полученные знания : Р = 3 х с, значит с = Р : 3

  • Найдите длину стороны равностороннего треугольника, когда периметр 24 см.
  • Исходя из формулы: с = Р : 3, с = 24 : 3 = 8 см
  • Длина сторон заданного треугольника 8 см.

Нахождение периметра равностороннего треугольника не составит труда, если правильно применять основные формулы расчета.

Периметр равностороннего треугольника


Периметр равностороннего треугольника

4.4

Средняя оценка: 4.4

Всего получено оценок: 324.

4.4

Средняя оценка: 4.4

Всего получено оценок: 324.

Равносторонний треугольник занимает особое место среди треугольников. Для того, чтобы найти значение периметра, площади, углов или радиусов окружностей вписанной и описанной у равнобедренного треугольника, достаточно знать величину стороны. С одной стороны, это значительно облегчает решение, с другой составители задач редко дают значение стороны и приходится искать обходные пути решения.

Формула нахождения периметра равностороннего треугольника

Формула периметра равностороннего треугольника вытекает из определений. Что такое периметр? Периметр это сумма всех сторон фигуры. Равносторонний треугольник – это треугольник, все стороны которого равны.

Рис. 1. Равносторонний треугольник

Значит,для того, чтобы найти значение периметра достаточно умножить величину стороны на количество сторон:

P=3*a

Решим несколько разных по сложности задач, чтобы разобраться, какие проблемы могут встречаться на пути нахождения периметра.

Задача 1

  • В равностороннем треугольнике сторона равна 6. Найти периметр треугольника.

Это самый простой вариант задачи. Достаточно подставить значение в формулу и получить результат. Такая задача не должна вызывать затруднений:

P=3*a=3*6=18

Задача 2

  • В равнобедренном треугольнике острый угол при основании равен 60 градусам, площадь треугольника равна $${64oversqrt{3}}$$.

Особое внимание нужно обращать на вид фигуры, который указан в условии задачи.

В данной задаче дан равнобедренный треугольник. Чтобы воспользоваться общей формулой, необходимо доказать, что этот равнобедренный треугольник является еще и равносторонним.

Обратим внимание на величину угла. Угол при основании равен 60. При этом углы у основания равнобедренного треугольника равны, а сумма углов любого треугольника равна 180 градусов. Значит у основания два угла по 60 градусов. Рассчитаем угол при вершине:

180-60-60=60 – угол при вершине так же равен 60 градусам.

Значит, данный треугольник будет равносторонним, так как все углы равны 60 градусам.

Углы по 60 градусов характерны только для равностороннего треугольника. Именно сочетание 3 равных сторон образует 3 равных угла. В любых других ситуациях, хотя бы один угол будет отличаться.

Для площади равностороннего треугольника имеется отдельная формула:

$$S=a^2*{sqrt{3}over 4}={64oversqrt{3}}$$ – где а значение стороны, которое нам и нужно выразить из этой формулы.

$$а^2={Sover{sqrt{3}over 4}}$$

$$a^2={4Soversqrt{3}}$$

$$a=sqrt{4Soversqrt{3}}$$

$$a={sqrt{4*{64oversqrt{3}^2}}oversqrt{3}}=sqrt{4*64}=16$$

Подставим полученное значение в формулу:

P=3*a=3*16=48

Задача 3

  • В равностороннем треугольнике высота равна $$3*sqrt{3}$$. Найти периметр треугольника.

Рис. 2. Рисунок к задаче 3

Для данной задачи нужно воспользоваться методом решения, который часто используется в задачах с равнобедренным треугольником. Из любой вершины опустим высоту, которая будет медианой и биссектрисой.

В одном из получившихся треугольников выразим значение высоты через сторону с помощью теоремы Пифагора:

$$h^2=a^2-({aover2})^2$$

$$h^2=a^2-{a^2over4}$$

Вычтем подобные слагаемые:

$$h^2={3over4}*a^2$$

Из получившейся формулы выразим значение стороны:

$$a^2={4over3}*h^2$$

$$a=sqrt{{4over3}*h^2}$$

$$a=sqrt{{4over3}*(3*sqrt{3})^2}$$

$$a=sqrt{{4over3}*(9*3)}$$

$$a=sqrt{4*9}$$

a=6

Рис. 3. Периметр равностороннего треугольника

Подставим получившееся значение в формулу периметра равностороннего треугольника.

P=3*a=3*6=18

Заключение

Что мы узнали?

Мы обсудили формулу для нахождения периметра равностороннего треугольника. Выделили проблемы, которые приходится решать при нахождении стороны равностороннего треугольника для дальнейшего решения задачи. Рассмотрели различные пути решения задач на нахождение периметра равностороннего треугольника.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Марго Дудченко

    4/5

  • Татьяна Коробейникова

    5/5

  • Наташа Новак

    4/5

  • Марина Безобразова

    4/5

  • Даниил Толыпин

    5/5

  • Ибрагим Вафя-Сулим

    5/5

  • Наталия Левина

    4/5

  • Исмаил Тагиев

    5/5

Оценка статьи

4.4

Средняя оценка: 4.4

Всего получено оценок: 324.


А какая ваша оценка?

Выбирайте формулу в зависимости от известных величин.

1. Как найти периметр треугольника, зная три стороны

Просто посчитайте сумму всех сторон.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b, c — стороны треугольника.

2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности

Умножьте площадь треугольника на 2.

Разделите результат на радиус вписанной окружности.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • S — площадь треугольника;
  • r — радиус вписанной окружности.

3. Как вычислить периметр треугольника, зная две стороны и угол между ними

Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:

  • Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
  • Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
  • Найдите корень из результата.

Теперь прибавьте к найденной стороне две ранее известные стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • b, c — известные стороны треугольника;
  • ɑ — угол между известными сторонами;
  • a — неизвестная сторона треугольника.

4. Как найти периметр равностороннего треугольника, зная одну сторону

Умножьте сторону на 3.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).

5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание

Умножьте боковую сторону на 2.

Прибавьте к результату основание.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
  • b — основание треугольника (это сторона, которая отличается длиной от остальных).

6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту

Найдите квадраты боковой стороны и высоты.

Отнимите от первого числа второе.

Найдите корень из результата и умножьте его на 2.

Прибавьте к полученному числу две боковые стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника;
  • h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).

7. Как вычислить периметр прямоугольного треугольника, зная катеты

Найдите квадраты катетов и посчитайте их сумму.

Извлеките корень из полученного числа.

Прибавьте к результату оба катета.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b — катеты треугольника (стороны, которые образуют прямой угол).

8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу

Посчитайте квадраты гипотенузы и катета.

Отнимите от первого числа второе.

Найдите корень из результата.

Прибавьте катет и гипотенузу.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любой катет прямоугольника;
  • c — гипотенуза (сторона, которая лежит напротив прямого угла).

Как узнать периметр равностороннего треугольника, если известна высота?

  1. Вениамин

    24 января, 16:55


    0

    Пусть а – сторона

    высота h

    высота в равностроннем треуг. является и медианой, применим теорему пифагора

    a² = h² + (a/2) ²

    a² = h² + a²/4

    3a²/4 = h²

    a² = 4h²/3

    a = 2h / (√3)

    периметр = сумме всех сторон

    P=3a = (√3) ·2h

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Как узнать периметр равностороннего треугольника, если известна высота? …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Новые вопросы по математике

Главная » Математика » Как узнать периметр равностороннего треугольника, если известна высота?

Добавить комментарий