Как найти периметр ромба по клеткам 1х1

Приложения:

Ответы

Ответ:

20

Пошаговое объяснение:

  • Ромб – параллелограмм, у которого все стороны равны.

AB = BC = CD = AD

Внутри данного ромба построим прямоугольный ΔBOC, где BC – гипотенуза.

Так как 1 клетка = 1 ⇒ OC = 3 (так как 3 клетки) и BO = 4 (так как 4 клетки)

В ΔBOC:

Найдём BC по теореме Пифагора:

BC^2 = BO^2 + OC^2 = 4^2 + 3^2 = 16 + 9 = 25

BC = sqrt{25} = 5

⇒ AB = BC = CD = AD = 5

  • Периметр фигуры – сумма всех её сторон.

P _{ABCD} = AB + BC + CD + AD = 5 + 5 + 5 + 5 = 10 + 10 = 20

Или:

Так как в ромбе все стороны равны и этих сторон всего 4, то:

P_{ABCD} = AB cdot 4 = 5 cdot 4 = 20

Приложения:

Интересные вопросы

Задания

Версия для печати и копирования в MS Word

На клетчатой бумаге с размером клетки 1 × 1 изображён ромб ABCD. Найдите его периметр.

Спрятать решение

Решение.

Диагонали ромба пересекаются под углом 90° и точкой пересечения делятся пополам. Из рисунка видно, что диагонали AC и BD равны 8 и 6 соответственно. Из прямоугольного треугольника, катетами которого являются половины диагоналей ромба, а гипотенузой  — сторона ромба, по теореме Пифагора найдём сторону ромба:  корень из: начало аргумента: 16 плюс 9 конец аргумента =5. Так как все стороны ромба равны, то периметр равен:

P=5 умножить на 4=20.

Ответ: 20.

Найдите периметр четырехугольника ABCD

27851. Найдите периметр четырехугольника ABCD, если стороны квадратных клеток равны √10.

Стороны ромба равны. Вычислим одну сторону и умножим её на 4. Сторона ромба является гипотенузой в прямоугольном треугольнике с катетами 1 и 3. Вычисляем:

Таким образом, периметр равен 40.

Проект “МатематикаЕГЭ” – Решение задач из открытого банка заданий ЕГЭ

Как найти периметр сторон четырехугольника, формула нахождения

Совсем недавно в России родители отправляли своих детей в первый класс и с нетерпением ждали их первых заданий. Они с удовольствием наблюдали за тем, как их дети знакомятся с буквами русского алфавита, учатся считать палочки и точечки, выводить различные кривые и прямые линии. Родители помогали знакомиться своим детям с тем, что тетрадь в клеточку предназначена для написания цифр, а тетрадь в линеечку — для письма.

Сегодня, будучи второклассниками, ученики России достигли больших успехов в сфере начального образования, а точнее, в математическом прогрессе. Учителя научили их складывать и вычитать, умножать, делить, измерять.

Кстати, по поводу измерения: с линейкой ребята вторых классов России уже знакомы, и применение ей, кроме как стрелять с задней парты в соседа бумажки, они тоже знают. Именно об измерениях мы и заведем сегодняшний разговор.

Как мы видим, прогресс обучения нынешних учеников проходит слегка в ускоренном режиме. С теми темами, например, такими как периметр, дети 90-х знакомились позже, а наши ребята узнают сегодня. Конечно, в этом нет ничего страшного. Время меняется, и программа обучения тоже должна не стоять на месте. Зато, как считают многие, наши дети будут умнее нас.

Школьное задание

Наверное, многих родителей сегодня удивляют нынешние задания для второклассников. В учебнике по математике для второго класса можно встретить такое задание, как, например: «Найди периметр четырехугольника, две стороны которого равны по 2 сантиметра, а другие две будут по 3 сантиметра». Как справиться с данным заданием?

Многие родители настоящего времени являются теми самыми детьми девяностых годов, и, естественно, в большинстве случаев, мало кто помнит, что такое периметр. Особенно, если учились не на отлично, да и не совсем на «хорошо».

Естественно, каждому родителю хотелось бы, чтоб его ребенку было проще в обучении, и они всеми силами стараются ему в этом помочь. Некоторым родителям сначала приходится справиться со своей душевной паникой, а уже потом продолжать объяснять своему ребенку. В этом случае многим помогает интернет, место, где можно найти ответы на все тревожные вопросы. Во времена девяностых, к сожалению, такой «роскоши» не было.

Вопросы:

  1. Что такое «периметр»?
  2. Как находить периметр четырехугольника?

Ответы на вопросы:

Для тех, кто знает, вспоминаем, а кто не знает — объясняем:

  1. Периметр — это сумма всех сторон четырехугольника. Всего лишь каждая грань по отдельности будет равна после сложения единому числу.
  2. Найти периметр, значит, что нужно взять линейку и измерить каждую границу четырехугольника. После выполнения данного действия необходимо сложить полученные числа между собой. Общая полученная сумма и будет являться периметром.

Решение:

В данном случае, по действиям нашей задачи, нам известны суммы сторон четырехугольника, а именно две из них по 2 сантиметра и две по 3 сантиметра. Поэтому нам остается всего лишь перечертить четырехугольник в тетрадь и сложить известные нам суммы каждой грани.

2+2+3+3=10

Как мы видим, периметр нашей четырехугольной фигуры равен 10.

В математике сумму всех сторон (периметр) мы обозначаем символом Р.

Теперь записываем правильное решение этой задачи:

Р=2+2+3+3;

Ответ: Р=10.

В математике существует формула, запомнив которую, вы никогда не будете забывать, как найти периметр (общую сумму всех сторон) четырехугольника и выглядит она так:

P = a + b + c + d (где a , b, c, d являются границами четырехугольника).

Кроме того, хотелось бы обратить внимание, что четырехугольник не обязательно будет являться прямоугольником. Это может быть и квадрат, у которого все стороны равны, и любая другая геометрическая фигура, у которой есть четыре стороны и такое же количество углов.

Грани произвольного четырехугольника могут совсем не совпадать ни с одной из сторон фигуры. Это могут быть совершенно разные числа. И, в итоге, получаются фигуры с четырьмя сторонами и теми же четырьмя углами. Фигура не будет похожа ни на квадрат, ни на прямоугольник, так как углы ее прямыми не будут. И периметр, соответственно мы вычисляем по той же самой единой формуле.

Или взять, например трапецию. Обычно у трапеции две стороны одинаковые, а другие две совсем не совпадают, но между собой параллельные.

На примере трапеция может выглядеть так: верхняя грань равна 2 сантиметра, левая и правая стороны по 3 сантиметра, соединяем их с нижней гранью и получаем трапецию. Высчитываем каждую ее сторону и снова получаем периметр четырехугольника.

Вычислить по формуле всегда будет проще, и не важно, каким числам равна каждая сторона.

Так как современные дети страны уже дошли до таблицы умножения, с периметром квадрата у них проблем не будет. Зная размер одной стороны квадрата, нужно умножить ее на все четыре равные стороны.

В общем, теперь стоит взять линейку с карандашом и лист бумаги. После этого следует начертить произвольные фигуры с четырьмя углами и высчитать общую сумму ее сторон.

Нахождение периметра ромба: формула и задачи

В данной публикации мы рассмотрим, каким образом можно посчитать периметр ромба и разберем примеры решения задач.

Формула вычисления периметра

1. По длине стороны

Периметр (P) ромба равняется сумме длин всех его сторон.

P = a + a + a + a

Т.к. все стороны данной геометрической фигуры равны, формулу можно представить в следующем виде (сторона умноженная на 4):

P = 4*a

2. По длине диагоналей

Диагонали любого ромба пересекаются под углом 90° и в точке пересечения делятся пополам, т.е.:

  • AO=OC=d1/2
  • BO=OD=d2/2

Диагонали делят ромб на 4 равных прямоугольных треугольника: AOB, AOD, BOC и DOC. Давайте подробнее остановимся на AOB.

Найти сторону AB, которая одновременно является гипотенузой прямоугольника и стороной ромба, можно, воспользовавшись теоремой Пифагора:

AB 2 = AO 2 + OB 2

Подставляем в эту формулу длины катетов, выраженные через половины диагоналей, и получаем:

Таким образом, периметр равняется:

Примеры задач

Задание 1
Найдите периметр ромба, если длина его стороны составляет 7 см.

Решение:
Используем первую формулу, подставив в нее известное значение: P = 4 * 7 см = 27 см.

Задание 2
Периметр ромба равен 44 см. Найдите сторону фигуры.

Решение:
Как мы знаем, P = 4*a. Следовательно, чтобы найти одну сторону (a), необходимо периметр разделить на четыре: a = P/4 = 44 см / 4 = 11 см.

Задание 3
Найдите периметр ромба, если известны его диагонали: 6 и 8 см.

Решение:
Воспользовавшись формулой, в которой задействованы длины диагоналей, получаем:

[spoiler title=”источники:”]

http://liveposts.ru/articles/education-articles/matematika/kak-najti-perimetr-storon-chetyrehugolnika-formula-nahozhdeniya

[/spoiler]

Добавить комментарий