Ответ:
10 ед.
Объяснение:
Дано: Правильная призма ABCDA₁B₁C₁D₁;
A₁M=MD₁; D₁K=KC₁;
AA₁=√14; AD=√8
Найти: Рс – периметр сечения.
Решение:
Призма правильная ⇒ в основании квадрат.
1) Рассмотрим ΔA₁C₁D₁ – прямоугольный, равнобедренный.
A₁M=MD₁; D₁K=KC₁ (условие)
⇒ МК – средняя линия
МК=А₁С₁:2=4:2=2 (средняя линия равна половине основания)
2) Рассмотрим ΔMDD₁ – прямоугольный.
По теореме Пифагора:
Аналогично
3) Найдем периметр сечения.
Периметр – сумма длин всех сторон треугольника.
(ед)
Приложения:
Правильная четырехугольная призма
Определение.
Правильная четырехугольная призма – это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники
Боковое ребро – это общая сторона двух смежных боковых граней
Высота призмы – это отрезок, перпендикулярный основаниям призмы
Диагональ призмы – отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани
Диагональная плоскость – плоскость, которая проходит через диагональ призмы и ее боковые ребра
Диагональное сечение – границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
Перпендикулярное сечение (ортогональное сечение) – это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам
Элементы правильной четырехугольной призмы
На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:
- Основания ABCD и A1B1C1D1 равны и параллельны друг другу
- Боковые грани AA1D1D, AA1B1B, BB1C1C и CC1D1D, каждая из которых является прямоугольником
- Боковая поверхность – сумма площадей всех боковых граней призмы
- Полная поверхность – сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
- Боковые ребра AA1, BB1, CC1 и DD1.
- Диагональ B1D
- Диагональ основания BD
- Диагональное сечение BB1D1D
- Перпендикулярное сечение A2B2C2D2 .
Свойства правильной четырехугольной призмы
- Основаниями являются два равных квадрата
- Основания параллельны друг другу
- Боковыми гранями являются прямоугольники
- Боковые грани равны между собой
- Боковые грани перпендикулярны основаниям
- Боковые ребра параллельны между собой и равны
- Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
- Углы перпендикулярного сечения – прямые
- Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
- Перпендикулярное (ортогональное сечение) параллельно основаниям
Формулы для правильной четырехугольной призмы
Указания к решению задач
При решении задач на тему “правильная четырехугольная призма” подразумевается, что:
Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия – призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .
Задача.
В правильной четырёхугольной призме площадь основания 144 см2, а высота 14 см. Найти диагональ призмы и площадь полной поверхности.
Решение.
Правильный четырехугольник – это квадрат.
Соответственно, сторона основания будет равна
√144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√( 122 + 122 ) = √288 = 12√2
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√( ( 12√2 )2 + 142 ) = 22 см
Ответ: 22 см
Задача
Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.
Решение.
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a2 + a2 = 52
2a2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .
Ответ: 25 + 10√7 ≈ 51,46 см2 .
15306.1214
Прямая призма |
Описание курса
| Куб
В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).
Как выглядит призма
Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.
Рисунок, на котором изображена четырёхугольная призма, показан ниже.
На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:
- Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
- Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
- Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
- Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).
Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.
Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.
Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).
Площадь поверхности и объём
Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:
V = Sосн·h
Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:
V = a²·h
Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:
V = a³
Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.
Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:
Sбок = Pосн·h
С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:
Sбок = 4a·h
Для куба:
Sбок = 4a²
Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:
Sполн = Sбок + 2Sосн
Применительно к четырёхугольной правильной призме формула имеет вид:
Sполн = 4a·h + 2a²
Для площади поверхности куба:
Sполн = 6a²
Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.
Нахождение элементов призмы
Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:
- длина стороны основания: a = Sбок / 4h = √(V / h),
- длина высоты или бокового ребра: h = Sбок / 4a = V / a²,
- площадь основания: Sосн = V / h,
- площадь боковой грани: Sбок. гр = Sбок / 4.
Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:
Sдиаг = ah√2
Для вычисления диагонали призмы используется формула:
dприз = √(2a² + h²)
Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.
Примеры задач с решениями
Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.
Задание 1.
В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?
Решение.
Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:
V₁ = ha² = 10a²
Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:
V₂ = h (2a)² = 4ha²
Поскольку V₁ = V₂, можно приравнять выражения:
10a² = 4ha²
После сокращения обеих частей уравнения на a² получается:
10 = 4h
В результате новый уровень песка составит h = 10 / 4 = 2,5 см.
Задание 2.
ABCDA₁B₁C₁D₁ правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.
Решение.
Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.
Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.
Длина любого ребра определяется через известную диагональ:
a = d / √2 = 6√2 / √2 = 6
Площадь полной поверхности находится по формуле для куба:
Sполн = 6a² = 6·6² = 216
Задание 3.
В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?
Решение.
Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.
Длина комнаты составляет a = √9 = 3 м.
Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².
Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.
Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.
Как найти площадь куба
Проститутки Ростов на Дону rostovchanotki.ru
В правильной четырехугольной призме ABCDA1B1C1D1 точка K — середина ребра АВ, точка Р — середина ребра ВС. Через точки K, P, D1 проведена плоскость α.
а) Докажите, что сечение призмы плоскостью α можно разбить на две части, одна из которых равнобедренный треугольник, а другая — равнобокая трапеция.
б) Найдите периметр сечения призмы плоскостью α, если известно, что сторона основания призмы равна 8, а боковое ребро равно 6.
Решение.
а) Пусть плоскость KPD1 пересекает AA1 в точке M, а CC1 в точке N. KP параллельна AC, следовательно, KPD1 параллельна AC. MN лежит в плоскости и значит, MN параллельна AC. Таким образом, AMNC — параллелограмм MA = NC, AK = PC, поэтому, MK = NC, MN, AC и KP параллельны между собой, то есть KMNP — равнобедренная трапеция.
Заметим, что A1M1 = C1N, A1D1 = D1C1, таким образом, треугольник равнобедренный,
б) Найдём соотношение в котором MN делит ребра и Рассмотрим плоскость R — точка пересечения плоскости с KP, а Q — с MN, O — центр грани ABCD. Имеем:
Значит,
Тогда:
Ответ: б)
Содержание:
Ранее вы уже знакомились с призмой, т. е. многогранником, две грани которого — равные
Что такое призма
Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.
Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.
Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.
Прямая призма, основаниями которой являются правильные многоугольники, называется правильной призмой. В прямой призме все боковые грани — прямоугольники, а в правильной — равные прямоугольники.
Перпендикуляр, проведенный из какой-либо точки одного основания призмы к плоскости другого основания, называется высотой призмы. На рисунке 3 показаны две высоты и призмы . У прямой призмы ее высота равна боковому ребру.
Боковые грани составляют боковую поверхность призмы, а боковые грани вместе с основаниями — полную поверхность призмы.
Теорема 1.
Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра:
Доказательство:
Пусть имеется -угольная призма . Пересечем ее плоскостью , перпендикулярной боковому ребру. Получим перпендикулярное сечение , стороны которого перпендикулярны сторонам параллелограммов, составляющим боковую поверхность призмы. Поэтому для боковой поверхности получим:
При переходе (1) мы учли, что все боковые ребра призмы равны друг другу, при переходе (2) — то, что сумма выражает периметр перпендикулярного сечения призмы, а множитель — длину бокового ребра.
Следствие 1.
Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты.
Действительно, перпендикулярное сечение прямой призмы равно ее основанию, а боковое ребро является высотой.
Частным видом призмы является параллелепипед, т. е. призма, основанием которой является параллелограмм. Параллелепипед, как и призма, может быть прямым или наклонным. Прямой параллелепипед, основаниями которого являются прямоугольники, называется прямоугольным параллелепипедом. Прямоугольный параллелепипед, у которого три ребра, выходящие из одной вершины, равны друг другу, называется кубом.
У параллелепипеда все грани — параллелограммы, из которых у прямого параллелепипеда прямоугольниками являются боковые грани, а у прямоугольного параллелепипеда — все грани.
12 ребер параллелепипеда разделяются на три четверки равных ребер (рис. 5), его 6 граней — на три пары равных граней (рис. 6), а 4 диагонали пересекаются в одной точке, являющейся центром симметрии параллелепипеда (рис. 7).
Прямой параллелепипед еще имеет ось симметрии (рис. 8) и плоскость симметрии (рис. 9). Прямоугольный параллелепипед имеет три оси симметрии (рис. 10) и три плоскости симметрии (рис. 11).
Ребра прямоугольного параллелепипеда, выходящие из одной вершины, называют измерениями прямоугольного параллелепипеда. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (рис. 12), и все его диагонали равны друг другу.
Важной характеристикой плоской фигуры является ее площадь. Подобной характеристикой тела является его объем. Будем считать, что изучаемые нами тела имеют объем.
За единицу объема принимают объем куба с ребром 1. На практике пользуются разными единицами объема: как метрическими — кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр, кубический километр, так и неметрическими — галлон, барель, бушель, кварта.
Для объема тела выполняются его основные свойства:
- равные тела имеют равные объемы;
- если тело разделено на части, то его объем равен сумме объемов этих частей.
При этом равными фигурами называют фигуры, которые преобразуются друг в друга определенным движением. Например, равными являются две шестиугольные правильные призмы, у которых соответственно равны стороны оснований и высоты (рис. 13), или два цилиндра с соответственно равными радиусами оснований и образующими (рис. 14). Тело, изображенное на рисунке 15, можно разделить на цилиндр и конус, и его объем равен сумме объемов этих цилиндра и конуса.
Два тела с равными объемами называют равновеликими телами. Равные тела являются равновеликими, но не наоборот.
Вы знаете, что объем прямоугольного параллелепипеда равен произведению трех его измерений , , (рис. 16): .
Учитывая, что в формуле произведение выражает площадь основания прямоугольного параллелепипеда, а число — его высоту , получим, что объем прямоугольного параллелепипеда равен произведению площади его основания и высоты: .
Теорема 2.
Объем произвольного параллелепипеда равен произведению площади его основания и высоты:
Доказательство:
Пусть имеется произвольный параллелепипед (рис. 17). Через ребро проведем плоскость, перпендикулярную ребру , она отсечет от параллелепипеда треугольную призму (рис. 18). После параллельного сдвига этой призмы в направлении отрезка получим призму . Параллелепипед равновелик с данным параллелепипедом . Выполненное преобразование параллелепипеда также сохраняет объем параллелепипеда, площадь его основания и высоту.
У параллелепипеда его боковые грани и перпендикулярны плоскости основания. К граням и , которые не перпендикулярны плоскости основания, применим такое же преобразование, в результате которого получим прямой параллелепипед (рис. 19), в котором сохраняются объем, площадь основания и высота.
Наконец, применив еще раз такое преобразование к граням и прямого параллелепипеда , получим прямоугольный параллелепипед (рис. 20), сохранив объем параллелепипеда, площадь его основания и высоту.
Значит,
Множитель есть площадь основания параллелепипеда , а множитель выражает его высоту, так как есть перпендикуляр, возведенный из точки основания к другому основанию . Значит, объем произвольного параллелепипеда равен произведению площади его основания и высоты.
Теорема 3.
Объем призмы равен произведению площади ее основания и высоты:
Доказательство:
Рассмотрим сначала треугольную призму (рис. 21). Дополним ее до параллелепипеда (рис. 22). Точка пересечения диагоналей диагонального сечения этого параллелепипеда является его центром симметрии. Это означает, что достроенная призма симметрична данной призме относительно центра , а потому эти призмы равны друг другу. Значит, объем параллелепипеда равен удвоенному объему данной призмы.
Объем параллелепипеда равен произведению площади его основания и высоты. Но площадь его основания равна удвоенной площади основания данной призмы, а высота параллелепипеда равна высоте призмы.
Отсюда следует, что объем призмы равен площади ее основания и высоты. Теперь рассмотрим произвольную призму (рис. 23).
Диагональными сечениями, проходящими через вершину , разобьем ее на треугольные призмы-части , , …, , , которые все имеют одну и ту же высоту, равную высоте данной призмы. Объем данной призмы равен сумме объемов призм-частей. По уже доказанному для объема данной призмы получим:
Учитывая, что сумма в скобках выражает площадь S основания данной призмы, получим:
Следствие 2.
Объем прямой призмы равен произведению площади ее основания и бокового ребра.
Призма и её сечения
С призмой вы уже знакомы. Несмотря на это, мы напомним определение призмы и её свойства.
Призма -это многогранник, две грани которого равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (рис. 22).
В зависимости от того перпендикулярны ли боковые грани призмы его основаниям или нет, призмы делят на прямые или наклонные. На рисунке 23.а изображена прямая призма, а на рисунке 23.b – наклонная. Очевидно, что боковые грани прямой призмы – прямоугольники.
Если основания прямой призмы являются правильными многоугольниками, то её называют правильной (рис. 24). Боковые грани правильной призмы это равные между собой прямоугольники.
Перпендикуляр, опущенный из некоторой точки одного основания к другому, называют его перпендикуляром (рис. 23.b).
Сечение призмы, проходящее через соответствующие диагонали его оснований, называют диагональным сечением (рис. 24.а) и их число равно числу диагоналей одного из оснований.
Перпендикулярным сечением призмы называют сечение перпендикулярное всем его боковым рёбрам (рис. 25). так как число диагоналси выпуклого n-угольника, то число диагональных сeчeний n-угольной призмы также равно .
В каждом диагональном сечении призмы можно провести две диагонали. Следовательно, n-угольная призма имеет диагоналей.
Пример:
В наклонной треугольной призме расстояния между боковыми ребрами соответственно равны 7 см, 15 см и 20 см. Найдите расстояние между большей боковой гранью и противолежащим боковым ребром.
Решение:
Известно, что расстояние между параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки одной прямой на другую. Тогда длины сторон перпендикулярного сечения ABC (рис. 26). Наибольшая грань призмы проходит через наибольшую сторону АС= 20 см этого сечения. Расстояние от рёбра призмы В2В1 до плоскости грани равно высоте BD треугольника ABC.
Тогда по формуле Герона получаем:
,
.
С другой стороны, .
Отсюда или см.
Ответ: 4,2 см.
Параллелепипед и куб
Призма, основаниями которой являются параллелограммы, называют параллелепипедом (рис. 27). Параллелепипеды также как и призмы могут быть прямыми (рис. 27.а) и наклонными (рис. 27.b).
Грани параллелепипеда, не имеющие общую вершину, называют противоположными гранями.
У параллелепипеда:
- —12 рёбер, каждые четыре из которых равны (рис. 28.а),
- —6 граней, которые попарно параллельны и равны (рис. 28.b),
- —4 диагонали, которые пересекаются и точкой пересечения делятся пополам (рис. 28.с),
- —точка пересечения диагоналей – центр его симметрии (рис. 28.с). Прямой параллелепипед имеет ось симметрии (рис. 28.d) и плоскость симметрии (рис. 28.e).
Прямой параллелепипед, основания которого являются прямоугольники, называют прямоугольным параллелепипедом (рис. 29). Очевидно, что все грани прямоугольного параллелепипеда являются прямоугольниками.
Прямоугольный параллелепипед имеет три оси симметрии (рис. 30) и три плоскости симметрии (рис. 31).
Длины трех рёбер, исходящих из одной вершины прямоугольного параллелепипеда называют его измерениями.
Свойство: В прямоугольном параллелепипеде квадрат любой диагонали d равен сумме квадратов его измерений: а, b и с (рис.32):
.
Прямоугольный параллелепипед, все измерения которого равны, называют кубом. Очевидно, что все грани куба являются равными квадратами. Куб имеет один центр симметрии, 9 осей симметрии и 9 плоскостей симметрии.
Выше были перечислены свойства призмы. Некоторые из них были показаны в 10 классе. Доказательства остальных свойств проще, поэтому их доказательства вы можете провести самостоятельно.
Площади боковой и полной поверхности призмы
На рисунке 33 проведены высоты НН1 DD1 призмы
АВСDЕ–А1В1С1D1Е1. Очевидно, что высоты правильной призмы будут равны её боковому рёбру.
Боковая поверхность призмы (точнее, площадь боковой поверхности)равна сумме боковых поверхностей ее граней, а полная поверхнасть равна сумме боковой поверхности и площадей двух ее оснований.
Теорема. Боковая поверхность прямой призмы равна произведению периметра ее основания на высоту:
Доказательство. Пусть высота данной прямой призмы равна , а периметр основания (рис. 34). Известно, что каждая грань прямой призмы является прямоугольником. Основания прямоугольников равны соответствующим сторонам основания призмы, а высоты равны высоте призмы.
Тогда
Теорема. Боковая поверхность произвольной призмы равна произведению периметра перпендикулярного сечения призмы на ее боковое ребро:
Доказательство. Пусть периметр перпендикулярного сечения призмы равен Р (рис. 35). Сечение делит призму на две части (рис. 36.а). Совершим параллельный перенос одной из этих частей так, чтобы основания нашей призмы совпали. В результате мы получим новую прямую призму (рис. 36.b). Очевидно, что, боковая поверхность этой призмы равна боковой поверхности данной. Её основанием является перпендикулярное сечение, а боковое ребро равно .
Тогда по доказанной выше теореме:
Объем призмы
Одним из свойств, характеризующих геометрические тела в пространстве, является понятие объема. Каждый предмет (тело) занимает некоторую часть пространства. Например, кирпич по сравнению со спичечным коробком занимает большую часть пространства. Для сравнения этих частей между собой вводится понятие объёма.
Объём – это величина, численное значение которой обладает следующими свойствами:
- Любое тело имеет определённый объём, выраженный положительным числом.
- Равные тела имеют равные объёмы.
- Если тело разбито на несколько частей, то его объём равен сумме объёмов этих частей.
- Объём куба, ребро которого равно единице, равен единице.
Объём – также как длина и площадь, является величиной. В зависимости от выбора единицы длины, объём единого куба измеряют в кубических единицах:
1 см3, 1 дм3, 1 м3 и т. д.
Объёмы тел измеряют различными способами или вычисляют. Например, объёмы маленьких предметов можно измерить с помощью сосудов (мензурки) с мелкими делениями (шкалами) (рис. 46). А объём ведра можно измерить с помощью сосуда, имеющего единичный объём, наполнив его водой (рис. 47). Но таким способом мы не можем измерить объёмы всех тел. В таких случаях объём вычисляют различными способами. Ниже рассмотрим их без доказательств.
Объём параллелепипеда
Теорема. Объём прямоугольного параллелепипеда равен произведению трех его измерeний (рис.48): .
Следствие. Объём прямоугольного параллелепипеда равен произведению площади его основания на высоту (рис. 49): .
Теорема. Объём произвольного параллелепипеда равен произведению площади его основания на высоту (рис. 50): .
Это свойство вытекает из вышеупомянутого следствия. На рисунке 50 показано как данный параллелепипед преобразовать в прямоугольный параллелепипед. Воспользовавшись этим самостоятельно обоснуйте свойство.
Нахождение объёма призмы
Теорема. Объём прямой призмы равен произведению площади его основания на высоту (рис. 51): .
Доказательство. 1 случай. Пусть основанием призмы будет прямоугольный треугольник (рис 51.а). Эту призму можно дополнить равной ей призмой до прямоугольного параллелепипеда (рис. 51 .b).
Если объём данной призмы, площадь её основания и высота V, S и h, то объём полученного прямоугольного параллелепипеда, площадь его основания и высота будут соответственно равны 2V, 2S и h.
Следовательно или
2 случай. Пусть S – площадь произвольной n – угольной прямой призмы и h – её высота. Основание призмы – n-угольник делится диагоналями на треугольники, каждый из которых можно разделить на прямоугольные треугольники (рис. 52). В результате данная призма разделится на конечное число прямых призм, основания которых являются прямоугольными треугольниками. Высоты этих призм равны h , а сумма площадей оснований этих призм равна площади основания данной призмы:
Объём данной призмы равен сумме объёмов составляющих её треугольных призм:
или
Теорема. Объём произвольной призмы равен произведению площади его основания на высоту:
По рисунку 5.3 докажите эту теорему самостоятельно, сначала для треугольной призмы (рис. 5.3.а), затем для любой призмы (рис. 5.3.b).
Пример:
Стороны основания прямого параллелепипеда равны а и b, а угол между ними 30°. Найдите его объём, если площадь его боковой поверхности равна S.
Решение:
Обозначим высоту параллелепипеда h(рис. 54).
Тогда по условию задачи:
- Цилиндр в геометрии
- Пирамида в геометрии
- Конус в геометрии
- Сфера в геометрии
- Возникновение геометрии
- Геометрические преобразования в геометрии
- Планиметрия – формулы, определение и вычисление
- Стереометрия – формулы, определение и вычисление