Среди геометрических фигур очень большую часть составляют многоугольники. Это квадрат, прямоугольник, параллелограмм, ромб, треугольник, трапеция и другие n-угольники (n — количество сторон многоугольника).
Периметр любого многоугольника – это сумма длин всех его сторон.
Онлайн-калькулятор периметра многоугольника
Формула периметра многоугольника
P=a+b+c+d+e+…P=a+b+c+d+e+…,
где a,b,c,d,e,…a, b, c, d, e,… — длины сторон многоугольника.
Частным случаем многоугольника является так называемый правильный многоугольник.
Правильный многоугольник – это такой многоугольник, у которого все стороны равной длины.
Если говорить о периметре правильного многоугольника, то его можно найти, умножив длину стороны фигуры на количество сторон.
P=n⋅aP=ncdot a
aa — длина стороны многоугольника;
nn — количество сторон многоугольника.
Разберем задачи на нахождение периметра правильного и неправильного многоугольников.
Найти периметр правильного шестиугольника со стороной 10 см.
Решение
a=10a=10
n=6n=6
Воспользуемся формулой для нахождения периметра правильного шестиугольника и подставим вместо aa численное значение:
P=n⋅a=6⋅10=60P=ncdot a=6cdot 10=60 см.
Ответ: P=60P=60 см.
Стороны многоугольника равны 6 см, 5 см, 2 см, 3 см и 1 см. Найти периметр данной фигуры.
Решение
a=6a=6
b=5b=5
c=2c=2
d=3d=3
e=1e=1
В данной задаче нам дан неправильный многоугольник, так как его стороны разной длины. В этом случае нам подходит первая стандартная формула нахождения периметра. Сложим длины всех сторон многоугольника и найдем его периметр:
P=a+b+c+d+e=6+5+2+3+1=17P=a+b+c+d+e=6+5+2+3+1=17 см.
Ответ: P=17P=17 см.
Ищете, где где можно заказать контрольную работу недорого? Обратитесь к нашим экспертам!
Тест по теме “Периметр многоугольника”
Периметр семиугольника Решение
ШАГ 0: Сводка предварительного расчета
ШАГ 1. Преобразование входов в базовый блок
Сторона семиугольника: 10 метр –> 10 метр Конверсия не требуется
ШАГ 2: Оцените формулу
ШАГ 3: Преобразуйте результат в единицу вывода
70 метр –> Конверсия не требуется
8 Периметр семиугольника Калькуляторы
3 Периметр семиугольника Калькуляторы
Периметр семиугольника формула
Периметр семиугольника = 7*Сторона семиугольника
P = 7*S
что такое семиугольник?
Гептагон – это многоугольник с семью сторонами и семью вершинами. Как и любой многоугольник, семиугольник может быть выпуклым или вогнутым, как показано на следующем рисунке. Когда он выпуклый, все его внутренние углы меньше 180 °. С другой стороны, когда он вогнутый, один или несколько его внутренних углов больше 180 °. Когда все стороны семиугольника равны, он называется равносторонним.
Как найти периметр многоугольника
Здравствуйте!
Нужна помощь в вопросе «как найти периметр многоугольника». Помогите, пожалуйста!
Спасибо!
Разберемся, как найти периметр многоугольника.
Поскольку периметр фигуры — это сумма длин сторон этой фигуры, то и для многоугольника это будет длин всех сторон многоугольника или, другими словами, сумма всех расстояний между его углами (или вершинами).
С помощью формулы для общего случая n-угольника можно записать его периметр:
Если все стороны n-угольника равны, то есть имеем дело с правильным n-угольником, то его периметр будет вычисляться по следующей формуле:
Пример 1.
Стороны семиугольника равны 11 см, 13см, 17 см, 19 см, 23 см, 29 см, 31 см. Найдем его периметр.
Решение.
Периметр семиугольника будем находить по формуле:
Подставим известные длины его сторон:
(см).
Ответ. (см).
Пример 2.
Окружность с радиусом см вписана в правильный шестиугольник. Найдем периметр данного шестиугольника.
Решение.
Воспользуемся соотношением, которое связывает радиус вписанной в правильный шестиугольник окружности и его сторону:
Выразим из данного соотношения длину стороны:
(см).
Поскольку по условию задачи имеем правильный шестиугольник, то его периметр найдем с помощью следующей формулы:
(см).
Ответ. (см).
Семиугольник, виды, свойства и формулы
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник, выпуклый и невыпуклый семиугольник:
Семиугольник – это многоугольник с семью углами.
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник может быть выпуклым и невыпуклым.
Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.
Соответственно выпуклый семиугольник – это семиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Звёздчатый семиугольник – семиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого семиугольника могут пересекаться между собой.
Рис. 1. Выпуклый семиугольник
Рис. 2. Невыпуклый семиугольник
Сумма внутренних углов любого выпуклого семиугольника равна 900°.
Правильный семиугольник (понятие и определение):
Правильный семиугольник – это правильный многоугольник с семью сторонами.
В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.
Правильный семиугольник – это семиугольник, у которого все стороны равны, а все внутренние углы равны 128 4/7° ≈ 128,571°.
Рис. 3. Правильный семиугольник
Правильный семиугольник имеет 7 сторон, 7 углов и 7 вершин.
Углы правильного семиугольника образуют семь равнобедренных треугольников .
Правильный семиугольник можно невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).
Свойства правильного семиугольника:
1. Все стороны правильного семиугольника равны между собой.
2. Все углы равны между собой и составляют 128 4/7° ≈ 128,571°.
Рис. 4. Правильный семиугольник
3. Сумма внутренних углов любого правильного семиугольника равна 900°.
4. Все биссектрисы углов между сторонами равны и проходят через центр правильного семиугольника O.
Рис. 5. Правильный семиугольник
5. Количество диагоналей правильного семиугольника равно 14.
Рис. 6. Правильный семиугольник
6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.
Рис. 7. Правильный семиугольник
Формулы правильного семиугольника:
Пусть a – сторона семиугольника, r – радиус окружности, вписанной в семиугольник, R – радиус описанной окружности семиугольника, P – периметр семиугольника, S – площадь семиугольника.
Формулы стороны правильного семиугольника:
Формулы периметра правильного семиугольника:
Формулы площади правильного семиугольника:
Формулы радиуса окружности, вписанной в правильный семиугольник:
Семиугольник в природе, технике и культуре:
В некоторых странах, например, в Великобритании, некоторые монеты имеют правильную криволинейную семиугольную форму.
Формула расчета периметра многоугольника
Периметр многоугольника в геометрии — это результат сложения длин всех его сторон.
Свойства многоугольника
- Все стороны прямые.
- Стороны не пересекаются (кроме звездчатых).
- Двумерная фигура.
- Сумма внешних углов всегда равна 360º.
- Сумма внутренних углов равна (frac2) (для правильных фигур).
Как вычислить периметр правильного многоугольника
Свойства правильного многоугольника
- Все стороны равны.
- Все углы равны.
- Центр равно удален ото всех вершин и сторон.
- Сумма всех углов равна 180º×(n−2).
- Все внешние углы при сложении их градусных мер дадут 360º.
- Все биссектрисы углов между сторонами равны и пересекают центр фигуры.
- Возможно вписать окружность и описать круг. Площадь кольца зависит от длины стороны многоугольника.
Формула
где a — длина стороны, n — количество сторон.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Для неправильного многоугольника
Описание
У неправильного многоугольника все стороны разного размера.
Формула
Его периметр (P) можно рассчитать, сложив все длины его сторон (a, b, c,d и т.д.). Это первый способ.
Второй способ: если есть стороны с одинаковыми длинами, формулу можно сократить, использовав умножение.
Дан прямоугольник со сторонами 4см, 4см, 2см и 2см. Чтобы узнать периметр, можно просто их все сложить, как показано в формуле выше. А можно сделать так: 4×2+2×2, так как стороны попарно равны.
Этот способ подойдет и для фигур с большим количеством сторон, некоторые из которых равны.
Дан восьмиугольник со сторонами 5см, 5см, 3см, 3см, 3см, 2см и 1см. Периметр можно высчитать сложением, а можно считать так: 5×2+3×3+2+1.
По заданным координатам
Как начертить многоугольник
Еще один способ вычисления периметра многоугольника — построить фигуру на координатной прямой.
Для этого нужно:
- Построить координатные оси.
- Нанести на них заданные координаты (длины) сторон. Соединить точки.
Формула для расчета периметра
Далее нужно находить длины всех получившихся сторон.
- Размеры прямых сторон легко узнавать методом подсчета координатных меток между точками сторон. Записать получившиеся значения рядом со сторонами.
- Найти длину наклонных сторон. Это можно сделать по формуле: (d=sqrt)
В формулу нужно подставить вместо x и y координаты сторон.
3. Найти периметр сложением длин всех сторон по формуле для неправильного многоугольника: P=a+b+c+d. где a,b,c,d. — длины сторон. А если получился правильный: P=a×n, где a — длина стороны, а n — количество сторон фигуры.
Примеры решения задач
Задания приведены разного уровня сложности. Расположены по принципу «от простого к сложному».
Во всех задачах нужно найти периметр фигур. Этот вопрос дублироваться в каждом примере ниже не будет.
Пример 1
Дан треугольник ABC. AB=28см, BC=51см, AC=46см.
Пример 2
В прямоугольнике ABCD длина синей стороны 12 см, а красной 18 см.
Пример 3
Дан квадрат со стороной 12 см.
Мы знаем, что все стороны квадрата одинаковые. Их всего 4. Значит, P=12×4=48см.
Пример 4
Дана фигура (данные на рисунке).
На рисунке мы видим восьмиугольник. У него шесть сторон по 10 см и две стороны по 8 см. Значит, P=10×6+8×2=60+16+76см.
Семиугольник, виды, свойства и формулы.
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник, выпуклый и невыпуклый семиугольник
Правильный семиугольник (понятие и определение)
Свойства правильного семиугольника
Формулы правильного семиугольника
Семиугольник в природе, технике и культуре
Шестиугольник, семиугольник, восьмиугольник
Семиугольник, выпуклый и невыпуклый семиугольник:
Семиугольник – это многоугольник с семью углами.
Семиугольник – это многоугольник, общее количество углов (вершин) которого равно семи.
Семиугольник может быть выпуклым и невыпуклым.
Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.
Соответственно выпуклый семиугольник – это семиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Звёздчатый семиугольник – семиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого семиугольника могут пересекаться между собой.
Рис. 1. Выпуклый семиугольник
Рис. 2. Невыпуклый семиугольник
Сумма внутренних углов любого выпуклого семиугольника равна 900°.
Правильный семиугольник (понятие и определение):
Правильный семиугольник – это правильный многоугольник с семью сторонами.
В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.
Правильный семиугольник – это семиугольник, у которого все стороны равны, а все внутренние углы равны 128 4/7° ≈ 128,571°.
Рис. 3. Правильный семиугольник
Правильный семиугольник имеет 7 сторон, 7 углов и 7 вершин.
Углы правильного семиугольника образуют семь равнобедренных треугольников.
Правильный семиугольник невозможно построить с помощью циркуля и линейки, но можно построить с помощью циркуля и невсиса, то есть размеченной линейки, на которой можно делать отметки и с помощью которой можно проводить прямые, проходящие через какую-нибудь точку, причём отмеченные на линейке точки будут принадлежать данным линиям (прямым или окружностям).
Свойства правильного семиугольника:
1. Все стороны правильного семиугольника равны между собой.
a1 = a2 = a3 = a4= a5 = a6 = a7.
2. Все углы равны между собой и составляют 128 4/7° ≈ 128,571°.
α1 = α2 = α3 = α4 = α5 = α6 = α7 = 128 4/7° ≈ 128,571°.
Рис. 4. Правильный семиугольник
3. Сумма внутренних углов любого правильного семиугольника равна 900°.
4. Все биссектрисы углов между сторонами равны и проходят через центр правильного семиугольника O.
Рис. 5. Правильный семиугольник
5. Количество диагоналей правильного семиугольника равно 14.
Рис. 6. Правильный семиугольник
6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.
Рис. 7. Правильный семиугольник
Формулы правильного семиугольника:
Пусть a – сторона семиугольника, r – радиус окружности, вписанной в семиугольник, R – радиус описанной окружности семиугольника, P – периметр семиугольника, S – площадь семиугольника.
Формулы стороны правильного семиугольника:
Формулы периметра правильного семиугольника:
Формулы площади правильного семиугольника:
Формулы радиуса окружности, вписанной в правильный семиугольник:
Семиугольник в природе, технике и культуре:
В некоторых странах, например, в Великобритании, некоторые монеты имеют правильную криволинейную семиугольную форму.
Некоторые виды кактусовых имеют форму звездчатого семиугольника.
Прямоугольник
Прямоугольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Шестиугольник
Восьмиугольник
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Коэффициент востребованности
2 371
yposoderouch
Вопрос по математике:
Найдите периметр семиугольника каждая сторона которого равна а)2 см б)5 см в)7 см
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
rothedstesep379
Р=а×7
а)2×7=14см
Б)5×7=35см
В)7×7=49см
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.