Как найти периметр трапеции с вписанной окружностью

Нахождение периметра трапеции: формула и задачи

В данной публикации мы рассмотрим, каким образом можно посчитать периметр трапеции и разберем примеры решения задач.

Формула вычисления периметра

Периметр (P) трапеции равняется сумме длин всех ее сторон.

P = a + b + c + d

  • b и d – основания трапеции;
  • a и с – ее боковые стороны.

Периметр равнобедренной трапеции

В равнобедренной трапеции боковые стороны равны (a=c), из-за чего ее, также, называют равнобокой. Периметр считается так:

P = 2a + b + d или P = 2с + b + d

Периметр прямоугольной трапеции

Для расчета периметра используется такая же формула, что и для разносторонней трапеции.

P = a + b + c + d

Примеры задач

Задание 1
Найдите периметр трапеции, если ее основания равны 7 и 10 см, а боковые стороны – 4 и 5 см.

Решение:
Используем стандартную формулу, подставив в нее известные нам длины сторон: P = 7 см + 10 см + 4 см + 5 см = 26 см.

Задание 2
Периметр равнобедренной трапеции равняется 22 см. Найдите длину боковой стороны, если основания фигуры равны 3 см и 9 см.

Решение:
Как мы знаем, периметр равнобедренной трапеции вычисляется по формуле: P = 2a + b + d, где а – боковая сторона.
Ее длина, умноженная на два равна: 2a = P – b – d = 22 см – 3 см – 9 см = 10 см.
Следовательно, длина боковой стороны составляет: a = 10 см / 2 = 5 см.

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 – 2 ad· cos β

d 2 = √ a 2 + c 2 – 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab – a ( d 2 – c 2 )
a – b
d 2 = c 2 + ab – a ( c 2 – d 2 )
a – b

d 1 = √ h 2 + ( a – h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a – h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab – d 2 2

d 2 = √ c 2 + d 2 + 2 ab – d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 – ( ( a – b ) 2 + c 2 – d 2 ) 2
2 2( a – b )

5. Формула Герона для трапеции

S = a + b √ ( p – a )( p – b )( p – a – c )( p – a – d )
| a – b |

где

p = a + b + c + d – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p – a )( p – c )( p – d 1)

где

a – большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Периметр трапеции

Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:

Периметр плоской фигуры — есть сумма всех сторон фигуры.

Чему равен периметр равнобедренной трапеции — то же самое — сумме всех ее сторон.

Найти периметр трапеции в задачах ЕГЭ

В задачах ЕГЭ вы найдете периметр трапеции. Например,

Задача 1

Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.

Решение:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:

Где PABCD — периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2

Средняя линия трапеции — это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .

Ответ: 15.

Задача 2

Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.

Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.

Ответ: 11.

То есть мы сами с вами вывели лайфхак для решения этой задачи:

И обратный лайфхак:

Применим наш лайфхак 1 к решению следующей задачи?

Задача 3

Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.

Ответ: 7,5.

Задача 4

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.

Решение. Периметр трапеции равен: АD+DC+CB+AB=PABCD (1)

В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB (2)

С учетом (2) равенство (1) можно записать в виде: 2(АD+CB)=PABCD (3)

Теперь давайте посмотрим на вот такой рисунок:

Видно, что сторона AD=2R, где R — радиус окружности.

Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.

Решаем уравнение, относительно R:

Ответ: 6,5

Задача 5

Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/trapezium/

http://repetitor-mathematics.ru/perimetr-trapetsii/

[/spoiler]

Трапеция. Формулы, признаки и свойства трапеции

Определение.

Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

Элементы трапеции:

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.

Виды трапеций:

  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

AB + CD = BC + AD

2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.

5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

BC : AD = OC : AO = OB : DO

7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

d12 + d22 = 2ab + c2 + d2

Сторона трапеции

Формулы определения длин сторон трапеции:

1. Формула длины оснований трапеции через среднюю линию и другую основу:

a = 2mb

b = 2ma

2. Формулы длины основ через высоту и углы при нижнем основании:

a = b + h · (ctg α + ctg β)

b = ah · (ctg α + ctg β)

3. Формулы длины основ через боковые стороны и углы при нижнем основании:

a = b + cos α + cos β

b = acos αcos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Определение.

Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

1. Формула высоты через сторону и прилегающий угол при основании:

h = sin α = sin β

2. Формула высоты через диагонали и углы между ними:

h =  sin γ · d1 d2  =  sin δ · d1 d2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =  sin γ · d1 d2  =  sin δ · d1 d2
2m 2m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

1. Формулы диагоналей по теореме косинусов:

d1 = √a2 + d2 – 2ad·cos β

d2 = √a2 + c2 – 2ac·cos α

2. Формулы диагоналей через четыре стороны:

d1 =  d 2 + ab –  a(d 2c2)
ab
d2 =  c2 + ab –  a(c2d 2)
ab

3. Формула длины диагоналей через высоту:

d1 = √h2 + (ah · ctg β)2 = h2 + (b + h · ctg α)2

d2 = √h2 + (ah · ctg α)2 = h2 + (b + h · ctg β)2

4. Формулы длины диагонали через сумму квадратов диагоналей:

d1 = √c2 + d 2 + 2abd22

d2 = √c2 + d 2 + 2abd12

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

2. Формула площади через среднюю линию и высоту:

S = m · h

3. Формула площади через диагонали и угол между ними:

S =  d1d2 · sin γ  =  d1d2 · sin δ
2 2

4. Формула площади через четыре стороны:

S =  a + b c2 ( (ab)2 + c2d 2 ) 2
2 2(ab)

5. Формула Герона для трапеции

S =  a + b (p – a)(p – b)(p – a – c)(p – a – d)
|a – b|

где

p =  a + b + c + d   – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

P = a + b + c + d

Окружность описанная вокруг трапеции

Окружность можно описать только вокруг равнобедренной трапеции!!!

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =  a·c·d1
4√p(pa)(pc)(pd1)

где

a – большее основание

Окружность вписанная в трапецию

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

a + b = c + d

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =  b    KN = ML =  a    TO = OQ =  a · b
2 2 a + b

Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:

Периметр плоской фигуры – есть сумма всех сторон фигуры.

Периметр трапеции

Периметр трапеции – есть сумма всех сторон трапеции.

Чему равен периметр равнобедренной трапеции – то же самое – сумме всех ее сторон.

Найти периметр трапеции в задачах ЕГЭ

В задачах ЕГЭ вы найдете периметр трапеции. Например,

Задача 1

Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.

Решение:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:

Периметр трапеции и средняя линия

АD+CD=DC+AB=PABCD /2,

Где PABCD  – периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2

Средняя линия трапеции – это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .

Ответ: 15.

Задача 2

Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.

Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.

Ответ: 11.

То есть мы сами с вами вывели лайфхак для решения этой задачи:

Лайфхак 1

Если в трапецию вписана окружность, и дан периметр трапеции, то для того чтобы найти среднюю линию трапеции, нужно периметр разделить на 4.

И обратный лайфхак:

Лайфхак 2

Если в трапецию можно вписать окружность, и дана средняя линия трапеции (l), то формула периметра трапеции P:

P=4l

Применим наш лайфхак 1 к решению следующей задачи?

Задача 3

Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.

Вычисление

Делим периметр на 4 и получаем среднюю линию трапеции: 30/4=7,5.

Ответ: 7,5.

Задача 4

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.

Периметр прямоугольной трапеции описанной около окружности

Решение. Периметр трапеции равен:  АD+DC+CB+AB=PABCD       (1)

В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB   (2)

С учетом (2) равенство (1) можно записать в виде:  2(АD+CB)=PABCD       (3)

Теперь давайте посмотрим на вот такой рисунок:

Периметр трапеции 6 задание ЕГЭ рис 2

Видно, что сторона AD=2R, где R – радиус окружности.

Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.

Решаем уравнение, относительно R:

4R+74=100

4R=100-74

4R=26

R=26/4

R= 6,5

Ответ: 6,5

Задача 5

Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.

как найти периметр трапеции если знаем два основания и что в нее можно вписать окружность?

Ruslan Sultanov



Ученик

(139),
закрыт



5 лет назад

Дополнен 11 лет назад

трапеция не равнобедренная

Дивергент

Высший разум

(1537700)


11 лет назад

Периметр равен удвоенной сумме оснований.
P=2*(a+b)
Да хоть и ВООБЩЕ не ТРАПЕЦИЯ, и не равнобедренная, а просто четырехугольник! Периметр будет равен удвоенной сумме противоположных сторон этого ЧЕТЫРЕХУГОЛЬНИКА! ЛЮБОГО!

Как найти периметр трапеции

Содержание:

  • Основные свойства трапеции
  • Способы нахождений периметра

    • По всем сторонам
    • По сторонам равнобедренной трапеции
    • Через среднюю линию
  • Примеры решения задач

Определения

​Трапеция — это четырехугольник, у которого лишь одна пара противолежащих сторон параллельна.

Периметр трапеции — это сумма длин всех его сторон.

Основные свойства трапеции

  • средняя линия трапеции параллельна ее основаниям, а также равна половине их суммы;

Свойство 1

 
  • биссектриса любого угла данного четырехугольника отсекает на его основании отрезок, равный боковой стороне;

Свойство 2

 
  • треугольники ABO и DCO (на картинке), образованные диагоналями фигуры и ее основаниями, подобны;

Свойство 3

 
  • треугольники OAB и OCD, образованные диагоналями трапеции и ее боковыми сторонами, имеют одинаковую площадь;

Свойство 4

 
  • если сумма длин оснований четырехугольника равна сумме его боковых ребер, то в фигуру можно вписать окружность;

Свойство 5

 
  • точки M и N середины диагоналей лежат на одной прямой со средней линией фигуры. Также отрезок MN равен полуразность оснований четырехугольника;

Свойство 6

 
  • середины оснований фигуры, точка пересечения ее диагоналей, а также точка пересечения продолжений ее боковых сторон лежат на одной прямой;

Свойство 7

 

Свойства равнобедренной трапеции

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  • в равнобедренной трапеции углы при обоих ее основаниях одинаковы;
  • диагонали равны;
  • равнобедренную трапецию всегда можно вписать в окружность или описать окружность вокруг;
  • если диагонали перпендикулярны, то высота фигуры равна полусумме ее оснований.

Способы нахождений периметра

Рассмотрим способы, с помощью которых можно найти сумму длин всех сторон данного четырехугольника.

По всем сторонам

Периметр по всем сторон

 

Формула для нахождения периметра выглядит так:

P=a+b+c+d

где a, b, c, d — стороны трапеции.

По сторонам равнобедренной трапеции

Периметр по сторон 2

 

Если нам известны ребра этого четырехугольника с одинаковыми боковыми сторонами, то находить ее P можно по следующей формуле:

(P=2times a+b+c)

или

(P=2times c+a+b)

Через среднюю линию

Через среднюю линию

 

Так как средняя линия трапеции равна полусумме ее оснований, то формулу P можно выразить так:

(P=2times l+AB+CD)

где l — средняя линия фигуры.

Примеры решения задач

Давайте рассмотрим наглядные примеры решения задач на нахождение суммы длин всех ребер этой фигуры.

Задача 1

Дана трапеция с боковыми сторонами 4 см и 5 см, а ее основания равны 7 см и 10 см. Найти периметр данного многоугольника.

Решение:

Нам пригодится самая первая формула для расчета:

P=a+b+c+d.

Подставляем значения и получаем:

P=4+7+5+10=26;см.

Ответ: 26 см.

Задача 2

Известно, что у трапеции две боковые стороны равны 7 см, а ее основания равны 5 см и 8 см. Нужно найти P четырехугольника.

Решение:

Так как трапеция равнобедренная, удобнее всего будет использовать формулу:

(P=2times a+b+c)

Таким образом, получается:

(P=2times 7+5+8=27) см.

Ответ: 27 см.

Задача 3

Средняя линия l трапеции равна 6 см, а боковые стороны 5 см и 9 см. Вычислить P фигуры.

Решение:

Считать будем по формуле

(P=2times l+a+c)

(P=2times 6+5+9=26) см.

Ответ: 26 см.

Насколько полезной была для вас статья?

Рейтинг: 3.82 (Голосов: 11)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Добавить комментарий