Как найти периметр треугольника с помощью высоты

Выбирайте формулу в зависимости от известных величин.

1. Как найти периметр треугольника, зная три стороны

Просто посчитайте сумму всех сторон.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b, c — стороны треугольника.

2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности

Умножьте площадь треугольника на 2.

Разделите результат на радиус вписанной окружности.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • S — площадь треугольника;
  • r — радиус вписанной окружности.

3. Как вычислить периметр треугольника, зная две стороны и угол между ними

Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:

  • Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
  • Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
  • Найдите корень из результата.

Теперь прибавьте к найденной стороне две ранее известные стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • b, c — известные стороны треугольника;
  • ɑ — угол между известными сторонами;
  • a — неизвестная сторона треугольника.

4. Как найти периметр равностороннего треугольника, зная одну сторону

Умножьте сторону на 3.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).

5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание

Умножьте боковую сторону на 2.

Прибавьте к результату основание.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
  • b — основание треугольника (это сторона, которая отличается длиной от остальных).

6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту

Найдите квадраты боковой стороны и высоты.

Отнимите от первого числа второе.

Найдите корень из результата и умножьте его на 2.

Прибавьте к полученному числу две боковые стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника;
  • h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).

7. Как вычислить периметр прямоугольного треугольника, зная катеты

Найдите квадраты катетов и посчитайте их сумму.

Извлеките корень из полученного числа.

Прибавьте к результату оба катета.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b — катеты треугольника (стороны, которые образуют прямой угол).

8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу

Посчитайте квадраты гипотенузы и катета.

Отнимите от первого числа второе.

Найдите корень из результата.

Прибавьте катет и гипотенузу.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любой катет прямоугольника;
  • c — гипотенуза (сторона, которая лежит напротив прямого угла).

Как найти периметр треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.

Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр:

Как узнать периметр треугольника

Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.

Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.

P = a + b + c, где a, b, c — длина стороны.

Если известна площадь и радиус вписанной окружности:

P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.

Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:

P = √ b 2 + с 2 – 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.

Если известна одна сторона в равностороннем треугольнике:

P = 3 * a, где a — длина стороны.

Все стороны в равносторонней фигуре равны.

Если известна боковая сторона и основание в равнобедренном треугольнике:

P = 2 * a + b, где a — боковая сторона, b — основание.

Боковые стороны в равнобедренной фигуре равны.

Если известна боковая сторона и высота в равнобедренном треугольнике:

P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.

Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.

Если известны катеты в прямоугольном треугольнике:

P = √ a 2 + b 2 + (a + b), где a, b — катеты.

Катет — одна из двух сторон, которые образуют прямой угол.

Если известны катет и гипотенуза в прямоугольном треугольнике:

P = √ c 2 – a 2 + (a + c), где a — любой катет, c — гипотенуза.

Гипотенуза — сторона, которая лежит напротив прямого угла.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Урок геометрии: как найти по формуле периметр треугольника

Одной из базовых геометрических фигур является треугольник. Он образуется при пересечении трех отрезков прямых. Данные отрезки прямых формируют стороны фигуры, а точки их пересечения называются вершинами. Каждый школьник, изучающий курс геометрии, обязан уметь находить периметр этой фигуры. Полученное умение будет полезным для многих и во взрослой жизни, к примеру, пригодится студенту, инженеру, строителю, дизайнеру.

Существуют разные способы найти периметр треугольника. Выбор необходимой для вас формулы зависит от имеющихся исходных данных. Чтобы записать данную величину в математической терминологии используют специальное обозначение – Р. Рассмотрим, что такое периметр, основные способы его расчета для треугольных фигур разных видов.

Классическая формула

Самым простым способом найти периметр фигуры, если есть данные всех сторон. В этом случае используется следующая формула:

Буквой «P» обозначается сама величина периметра. В свою очередь «a», «b» и «c» – это длины сторон.

Зная размер трех величин, достаточно будет получить их сумму, которая и является периметром.

Это интересно! Что значит вертикально и как выглядит вертикальная линия

Альтернативный вариант

В математических задачах все данные длины редко бывают известны. В таких случаях рекомендуется воспользоваться альтернативным способом поиска нужной величины. Когда в условиях указана длина двух прямых, а также угол, находящийся между ними, расчет производится через поиск третьей. Для поиска этого числа необходимо добыть квадратный корень по формуле:

.

Далее рассчитывайте Р по такой формуле:

.

Периметр по двум сторонам

Для расчета периметра не обязательно знать все данные геометрической фигуры. Рассмотрим способы расчета по двум сторонам.

Это интересно! Основы геометрии: что это такое биссектриса треугольника

Равнобедренный треугольник

Равнобедренным называется такой треугольник, не меньше двух сторон которого имеют одинаковую длину. Они называются боковыми, а третья сторона – основанием. Равные прямые образовывают вершинный угол. Особенностью в равнобедренном треугольнике является наличие одной оси симметрии. Ось – вертикальная линия, выходящая из вершинного угла и заканчивающаяся посредине основания. По своей сути ось симметрии включает в себя такие понятия:

  • биссектриса вершинного угла,
  • медиана к основанию,
  • высота треугольника,
  • срединный перпендикуляр.

Чтобы определить периметр равнобедренного вида треугольной фигуры, воспользуйтесь формулой.

В данном случае вам необходимо знать только две величины: основание и длину одной стороны. Обозначение «2а» подразумевает умножение длины боковой стороны на 2. К полученной цифре нужно добавить величину основания – «b».

В исключительном случае, когда длина основания равнобедренного треугольника равна его боковой прямой, можно воспользоваться более простым способом. Он выражается в следующей формуле:

Для получения результата достаточно умножить это число на три. Эта формула используется для того, чтобы найти периметр правильного треугольника.

Это интересно! Изучаем символы: как обозначается в математике площадь

Полезное видео: задачи на периметр труегольника

Треугольник прямоугольный

Главным отличием прямоугольного треугольника от других геометрических фигур этой категории является наличие угла 90°. По этому признаку и определяется вид фигуры. Прежде, чем определить, как найти периметр прямоугольного треугольника, стоит заметить, что данная величина для любой плоской геометрической фигуры составляет сумму всех сторон. Так и в этом случае самый простой способ узнать результат – суммировать три величины.

В научной терминологии те стороны, которые прилегают к прямому углу, имеют название «катеты», а противоположная к углу 90º – гипотенуза. Особенности этой фигуры исследовались еще древнегреческим ученым Пифагором. Согласно с теоремой Пифагора, квадрат гипотенузы равен сумме квадратов катетов.

.

На основании данной теоремы выведена еще одна формула, объясняющая, как найти периметр треугольника по двум известным сторонам. Рассчитать периметр при указанной длине катетов можно, используя следующий способ.

.

Чтобы узнать периметр, имея информацию о размере одного катета и гипотенузы, нужно определить длину второй гипотенузы. С этой целью используют такие формулы:

.

Также периметр описанного вида фигуры определяется и без данных о размерах катетов.

.

Вам потребуется знать длину гипотенузы, а также угол, прилегающий к ней. Зная длину одного из катетов, если имеется угол, прилегающий к нему, периметр фигуры рассчитывают по формуле:

.

Это интересно! Как найти и чему будет равна длина окружности

Расчет через высоту

Рассчитать периметр таких категорий, как равнобедренные и прямоугольные треугольники, можно через показатель их средней линии. Как известно, высота треугольника разделяет его основание пополам. Таким образом, она образует две прямоугольных фигуры. Далее, нужный показатель вычисляется при помощи теоремы Пифагора. Формула будет иметь следующий вид:

.

Если известна высота и половина основания, используя этот способ, вы получите нужное число без поиска остальных данных о фигуре.

Формулы определения периметра, площади и сторон треугольника

Треугольник — это элементарная геометрическая фигура, содержащая минимально возможное количество составляющих — три.

Точки соприкосновения сторон являются вершинами его углов, обозначаются заглавными латинскими символами A; B и C. Отрезки между вершинами являются сторонами или гранями треугольника и обозначаются названиями этих вершин: AB; BC; CA или прописной буквой противолежащего угла (вершины): AB=c; BC=a; CA=b.

Периметр равен длине всех сторон фигуры, у треугольника он равен сумме трех сторон:

Высота треугольника — это перпендикуляр от прямой, на которой лежит основание, до одноименной вершины, обозначается h.

Площадь составляет величину поверхности, заключенной внутри фигуры, обозначается S. Произведение основания на высоту дает значение площади. Ее можно определить и по формуле Герона:

Из этого видео вы узнаете, как найти площадь треугольника.

Классификация треугольников

Треугольник состоит из сторон и углов, сумма его углов всегда равна 180 градусов: A+B+C=180°.

  1. Равноугольный: все вершины равны 60°, будет и равносторонним.
  2. Равнобедренный: при равенстве двух граней углы на основании равны.
  3. Разноугольный: все вершины разные, ребра у него тоже разные.
  4. Прямоугольный: один угол равен 90°, примыкающие грани называются катеты, противолежащая — гипотенуза. Бывает равнобедренным (катеты равны) или разноугольным (катеты разные).
  5. Тупоугольный: один угол больше 90°. Может быть равнобедренным или разноугольным.

Описание

Чтобы описать любой треугольник, достаточно указать:

  1. Одну сторону и прилегающие к ней углы.
  2. Две стороны и угол между ними.
  3. Три стороны.

Данных из любого пункта достаточно для построения заданной фигуры и вычисления всех ее параметров, используя теорему косинусов:

Подставляя известные значения, получим уравнение, решив которое узнаем неизвестные величины.

Cos90°=0, поэтому для прямоугольного треугольника c*c=a*a+b*b, где a и b — катеты, c — гипотенуза, сторона, лежащая напротив прямого угла.

Примеры

Известно, что одна грань равна 9 см и прилегающие углы по 60 градусов. Тогда из того, что сумма углов всегда равна 180°, получаем: 180=60+60+x; x=180—120=60. Все три вершины по 60°, значит, все стороны равны. Периметр составляет P=9+9+9=27 см, полупериметр p=13,5 см. Чтобы найти высоту, нужно опустить перпендикуляр из вершины на основание, получим прямоугольный треугольник с гипотенузой 9 см, катетом 4,5 см и катетом неизвестной длины, равным искомой высоте: 9*9—4,5*4,5=60,75=h 2 .

Высота равна корню квадратному из 60,75 или 7,79422863406 см. Умножаем основание на высоту, делим пополам и получаем площадь: 7,79422863406*9/2=35,074028853 см 2 . Если находить площадь по формуле Герона через полупериметр и ребра, ответ будет одинаковый:

S=√(13,5·(13,5—9)·(13,5—9)·(13,5—9))=35,074028853 см 2 .

Следующий пример с разносторонним треугольником. Дано: AB=12 см, BC=10 см, CA=8 см. Требуется найти периметр и площадь фигуры. P=a+b+c=BC+CA+AB=10 см+8 см+12 см=30 см. Площадь находим по формуле Герона, подставляя в нее уже известные значения, учитывая, что p=0,5Р; p=15 см. S=√(p·(p—a)·(p—b)·(p—c))=√(15·(15—10)·(15—8)·(15—12))=√15·5·7·3=√1575=39,686269666 см 2 .

Рассмотрим пример, когда известны два катета прямоугольного треугольника. Допустим, они имеют значения два и четыре метра. Тогда гипотенуза будет равна корню квадратному из суммы квадратов катетов √2 2 +4 2 =4,472135955 м. Периметр 2+4+4,472135955=10,472135955. Площадь равна половине произведения катетов S=2·4=8м 2 .

Когда известны две стороны и угол между ними, остается найти только третью сторону по теореме косинусов. Пусть известные стороны составляют значения 16 и 28 метров, а угол между ними будет в 60 градусов, тогда третья сторона будет равна корню квадратному из этого выражения 16 2 +28 2 — 2·16·28·0,5, что составит значение в 24,3310501212 м. Периметр равен 16+28+24,3310501212=68,3310501212≈68,33 м. Полупериметр будет 34,165 м. Подставляя полученные значения в формулу Герона, найдем площадь S=√(34,165·(34,165—16)·(34,165—28)·(34,165—24,33))=193,982314238 м 2 .

Если известно три параметра любого треугольника — два угла и сторона или две стороны и угол между ними, то ничего особенно сложного в нахождении неизвестных параметров треугольника — периметра, площади или высоты — нет. Нужно только внимательно производить простые вычисления. Иногда можно проявить и смекалку, разбив фигуру на несколько более простых в вычислении, например, прямоугольных треугольников. В каждом конкретном случае все зависит от исходных данных. Все формулы и вычисления, приведенные выше, верны для плоских фигур; для расположенных на сферической поверхности ход вычислений будет иным.

Видео

Это видео поможет вам закрепить полученные знания.

[spoiler title=”источники:”]

http://tvercult.ru/nauka/urok-geometrii-kak-nayti-po-formule-perimetr-treugolnika

http://liveposts.ru/articles/education-articles/matematika/formuly-opredeleniya-perimetra-ploshhadi-i-storon-treugolnika

[/spoiler]

Основные определения

Наверное, каждый из нас сталкивался с треугольником. Это могло быть в школе, вузах, колледжах, на работе, во время помощи детям. Треугольник – это одна из самых простых геометрических фигур, но в то же время она выполняет очень важную роль. Множество свойств хранит треугольник. Но сегодня не будем вдаваться в подробности, а поговорим про периметр и порешаем задачи по нахождению его.

Если мы отметим на плоскости 3 точки и проведём к ним линии, то как раз получим треугольник.

Понятия

Треугольник – это геометрическая фигура, состоящая из трёх точек, которые соединены отрезками – сторонами. В зависимости от отношений между сторонами фигуры, то они бывают равносторонними, разносторонними и равнобедренными (р/б – равнобедренный, р/с – равносторонний).

Вершины треугольника – это точки, где соединяются 2 стороны фигуры.

Р/б треугольник – это треугольник у которого две стороны равны, но не равны третьей.

Р/с треугольник – это треугольник, у которого все стороны равны между собой.

Разносторонний треугольник – это треугольник, у которого все стороны не равны между собой.

Прямоугольный треугольник — это треугольник, у у которого один угол равен 90о. Самая длинная сторона называется гипотенузой, а две другие катетами.

Виды треугольников

Формула нахождения периметра

Из определения следует, что периметр геометрической фигуры – это сумма длин всех сторон, и треугольник не стал исключением. Общая формула имеет вид: Р = а + b + с. Периметр будет обозначаться Р. а, b и с — стороны треугольника. Решим задачу №1.

Задача 1

Пусть нам дан треугольник со сторонами 13 см, 15 см, 12 см. Нужно найти периметр данного треугольника.

Решение: [P=13+15+12=40] см.

Ответ: 40 см.

Периметр разностороннего треугольника

В прошлой задаче мы как раз нашли периметр разностороннего треугольника. Решим похожую задачу №2

Задача 2

Дан треугольник со сторонами 25 дм, 30 дм, 15 дм. Найдите периметр треугольника. Ответ выразите в метрах.

Решение:

P = 30 + 25 + 15 = 70 дм

70 : 10 = 7 м

Ответ: 7 м.

Периметр равнобедренного треугольника

Так как в р/б треугольнике 2 стороны равны (боковые), то формулу нахождения можно представить как: P = 2a + b. Решим 2 задачи.

Задачи 3 — 4

Дан равнобедренный треугольник АВС с биссектрисой, проведённой к основанию и равной 4 см, а также с боковой
стороной, равной 5 см. Найдите периметр данного треугольника.

Нахождение периметра равнобедренного треугольника

Решение:

Так как ВН – биссектриса р/б треугольника АВС, то она является как высотой, так и медианой. Следовательно, ΔАВН прямоугольный и АН = НС.

В ΔАВН по теореме Пифагора [A H^{2}=A B^{2}-B H^{2}=25-16=9]см

АН = НС = √9 = 3 см

АС = АН + НС = 3 + 3 = 6 см

Р = 6 + 2*5 = 16 см

Ответ: 16 см.


Нахождение периметра треугольника

В треугольнике ДСВ ДС = СВ = 15 см, высота СК = 9 см. Найдите периметр этого треугольника.

Решение:

В ΔСКД по теореме Пифагора:

[text { ДК² }=text { ДС }^{2}-mathrm{CK}^{2}=225-81=144]см

ДК = √144 = 12 см.

Так как СК — высота в р/б треугольнике, проведённая к основанию, то она является медианой, следовательно, ДВ = ДК + КВ = 12 + 12 = 24 см.

Р = ДС + СВ + ДВ = 15 + 15 + 24 = 54 см.

Ответ: 54 см.

Нет времени решать самому?

Наши эксперты помогут!

Периметр равностороннего треугольника

А это один из самых “хороших” треугольников, его ещё называют правильным, так как все стороны и углы равны между собой. Формула нахождения периметра будет иметь вид: P = 3a.

Задачи 5 — 6

Дан равносторонний треугольник со стороной а = 13. Найдите периметр этого треугольника.

Решение:

Р = 3а = 3 * 13 = 39

Ответ: 39.


В равностороннем треугольнике АВС есть стороны: АВ = АС = СВ = 15 см, Найдите периметр данного треугольника.

Решение:

Р = 3АВ = 15 * 3 = 45 см.

Ответ: 45 см.

Периметр прямоугольного треугольника

Вычисляем по стандартной формуле: Р = а + в + с. Но у такого вида треугольников есть огромное преимущество – применение теоремы Пифагора.

Задачи 7 — 8

Дан прямоугольный треугольник с катетами а = 6 и в = 8. Найдите периметр.

Решение:

По теореме Пифагора: [c^{2}=в^{2}+a^{2}=64+36=100]

с = √100 = 10

Р = а + в + с = 6 + 8 + 10 = 24

Ответ: 24.


В прямоугольном треугольнике АВС, [angle mathrm{A}=90^{circ}, mathrm{AB}=9 mathrm{~см}, mathrm{AC} = 12см]. Надо найти периметр и площадь АВС.

Решение

По теореме Пифагора в ΔАВС:

[mathrm{CB}^{2}=mathrm{AC}^{2}+A mathrm{C}^{2}=144+81=225 mathrm{~см}]

СВ = √225 = 15 см

S = (АС * АВ) : 2 = (9 * 12) : 2 = 54 см

P = 15 + 9 + 12 = 36 см

Ответ: 36 см; 54 см.

Нахждение периметра треугольника 1

Как найти периметр равностороннего треугольника

Как найти периметр равностороннего треугольника

Поиск периметра равностороннего треугольника означает расчет расстояния вокруг самой фигуры. Самый простой способ – это сложить все стороны. Однако бывают случаи, когда известна лишь высота треугольника или одна сторона, как быть в таких ситуациях? Статья подскажет, как быстро  находить периметр треугольника при разных условиях.

1

Равносторонний треугольник – что собой представляет

Такой треугольник имеет три конгруэнтные стороны и три равных угла. Зная размер одной из сторон, можно найти остальные. Поскольку треугольник имеет три соразмерные стороны, он автоматически имеет три идентичных угла. Они в сумме дают 180º, которую, согласно их идентичности, следует разделить на 3. Это означает, что любой угол треугольника равен 60 º. Можно сделать заключение, что равносторонний треугольник является острой фигурой.

2

Как найти периметр равностороннего треугольника

Поскольку стороны равностороннего треугольника конгруэнтны, для вычисления его периметра требуется длина одной стороны. Можно сказать, что простая формула периметра равносторонней фигуры : Р = c+c+c, где  с – длина одной из сторон.

  • Узнайте периметр треугольника с конгруэнтными сторонами, если размер одной – 7 дм.
  • Из условия известно, что сторона фигуры 7 дм, т.е. другие стороны идентичны.
  • Согласно формулы периметр треугольника: Р = с + с + с, Р = 7+7+7 = 21 дм.

3

Упрощенный способ нахождения периметра равностороннего треугольника

Конечно, более простой способ найти границы треугольника – это умножить длину каждой стороны на три. Формула будет состоять: P = 3 х а, где а – длина стороны.

  • Оцените периметр равностороннего треугольника с заданной стороной 7 дм.
  • Подставьте значения согласно формулы:  P = 3 х а , P = 3 х 7
    P = 21
  • Периметр треугольника составляет 21 дм.
  • Когда изначально стороны треугольника заданы в сантиметрах, ваш ответ также должен быть в сантиметрах. В приведенном примере длина сторон составляет 7 дм, поэтому правильное значение  периметра будет 21 дм.

4

Как найти периметр равностороннего треугольника через высоту

Рассчитать периметр равностороннего треугольника возможно, если дана одна высота. Следуя теореме Пифагора, найдите одну из сторон через высоту.

  • Высота треугольника с равными сторонами 7 см, найдите периметр.
  • Согласно условия h = 7 см, следуя формуле:
  • Р= 2√3 х 7 = 24,249 см.

5

Онлайн расчет периметра равностороннего треугольника

Существует несколько сайтов (например, справочный портал Калькулятор или познавательный портал 2mb), которые помогут быстро рассчитать периметр треугольника, достаточно лишь ввести его параметры.

6

Как найти периметр равностороннего треугольника – обратный расчет

Бывают случаи, когда в школе требуется найти сторону равностороннего треугольника, когда в условии указан периметр фигуры. Примените полученные знания : Р = 3 х с, значит с = Р : 3

  • Найдите длину стороны равностороннего треугольника, когда периметр 24 см.
  • Исходя из формулы: с = Р : 3, с = 24 : 3 = 8 см
  • Длина сторон заданного треугольника 8 см.

Нахождение периметра равностороннего треугольника не составит труда, если правильно применять основные формулы расчета.

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Предварительные сведения

Периметр любой плоской геометрической фигур на плоскости определяется как сумма длин всех его сторон. Исключением из этого не является и треугольник. Сначала приведем понятие треугольника, а также виды треугольников в зависимости от сторон.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками
(рис. 1).

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершины, а также три стороны.

В зависимости от отношении сторон друг к другу, треугольники делятся на разносторонние, равнобедренные и равносторонние.

Определение 4

Треугольник будем называть разносторонним, если ни одна из его сторон не равняется никакой другой.

Определение 5

Треугольник будем называть равнобедренным, если две его стороны равны друг другу, но не равняются третьей стороне.

«Как найти периметр треугольника» 👇

Определение 6

Треугольник будем называть равносторонним, если все его стороны равняются друг другу.

Все виды этих треугольников Вы можете видеть на рисунке 2.

Как найти периметр разностороннего треугольника?

Пусть нам дан разносторонний треугольник, у которого длины сторон будут равняться $α$, $β$ и $γ$.

По определению периметра плоской геометрической фигуры, получим, что

$P=α+β+γ$

Вывод: Для нахождения периметра разностороннего треугольника надо все длин его сторон сложить между собой.

Пример 1

Найти периметр разностороннего треугольника равняются $34$ см, $12$ см и $11$ см.

Решение.

По рассмотренному выше примеру, видим, что

$P=34+12+11=57$ см

Ответ: $57$ см.

Пример 2

Найти периметр прямоугольного треугольника, у которого катеты равняются $6$ и $8$ см.

Решение.

Сначала найдем длину гипотенуз этого треугольника по теореме Пифагора. Обозначим ее через $α$, тогда

$α^2=6^2+8^2$

$α^2=100$

$α=10$
По правилу вычисления периметра разностороннего треугольника, получим

$P=10+8+6=24$ см

Ответ: $24$ см.

Как найти периметр равнобедренного треугольника?

Пусть нам дан равнобедренный треугольник, у которого длины боковых сторон будут равняться $α$, а длина основания равняется $β$.

По определению периметра плоской геометрической фигуры, получим, что

$P=α+α+β=2α+β$

Вывод: Для нахождения периметра равнобедренного треугольника надо удвоенную длину его сторон сложить с длиной его основания.

Пример 3

Найти периметр равнобедренного треугольника, если его боковые стороны равняются $12$ см, а основание $11$ см.

Решение.

По рассмотренному выше примеру, видим, что

$P=2cdot 12+11=35$ см

Ответ: $35$ см.

Пример 4

Найти периметр равнобедренного треугольника, если его высота, проведенная на основание, равняется $8$ см, а основание $12$ см.

Решение.

Рассмотрим рисунок по условию задачи:

Так как треугольник равнобедренный, то $BD$ также является и медианой, следовательно, $AD=6$ см.

По теореме Пифагора, из треугольника $ADB$, найдем боковую сторону. Обозначим ее через $α$, тогда

$α^2=6^2+8^2$

$α^2=100$

$α=10$

По правилу вычисления периметра равнобедренного треугольника, получим

$P=2cdot 10+12=32$ см

Ответ: $32$ см.

Как найти периметр равностороннего треугольника?

Пусть нам дан равносторонний треугольник, у которого длины всех сторон будут равняться $α$.

По определению периметра плоской геометрической фигуры, получим, что

$P=α+α+α=3α$

Вывод: Для нахождения периметра равностороннего треугольника надо длину стороны треугольника умножить на $3$.

Пример 5

Найти периметр равностороннего треугольника, если его сторона равняется $12$ см.

Решение.

По рассмотренному выше примеру, видим, что

$P=3cdot 12=36$ см

Ответ: $36$ см.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий