Как найти период электрических колебаний в контуре

Электромагнитные колебания

  • Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

  • Колебательный контур

  • Энергетические превращения в колебательном контуре

  • Электромеханические аналогии

  • Гармонический закон колебаний в контуре

  • Вынужденные электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через T. Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: t=0. Заряд конденсатора равен q_0, ток через катушку отсутствует (рис. 1). Конденсатор сейчас начнёт разряжаться.

Рис. 1. t=0

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину x_0 и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : 0 < t < T/4. Конденсатор разряжается, его заряд в данный момент равен q. Ток I через катушку нарастает (рис. 2).

Рис. 2. 0 < t < T/4

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость v маятника постепенно увеличивается. Деформация пружины x (она же — координата маятника) уменьшается.

Конец первой четверти : t = T/4. Конденсатор полностью разрядился. Сила тока достигла максимального значения I_0 (рис. 3). Сейчас начнётся перезарядка конденсатора.

Рис. 3. t = T/4

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения v_0. Деформация пружины равна нулю.

Вторая четверть: T/4 < t < T/2. Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4).

Рис. 4. T/4 < t < T/2

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти t = T/2. Конденсатор полностью перезарядился, его заряд опять равен q_0 (но полярность другая). Сила тока равна нулю (рис. 5). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5. t = T/2

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна x_0.

Третья четверть: T/2 < t < 3T/4. Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6).

Рис. 6. T/2 < t < 3T/4

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: t = 3T/4. Конденсатор полностью разрядился. Ток максимален и снова равен I_0, но на сей раз имеет другое направление (рис. 7).

Рис. 7. t = 3T/4

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью v_0, но на сей раз в обратном направлении.

Четвёртая четверть: 3T/4 < t < T. Ток убывает, конденсатор заряжается (рис. 8).

Рис. 8. 3T/4 < t < T

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: t = T. Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9).

Рис. 9. t = T

Данный момент идентичен моменту t = 0, а данный рисунок — рисунку 1. Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

к оглавлению ▴

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость C, индуктивность катушки равна L.

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен q_0, а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия W контура сосредоточена в конденсаторе:

W = frac{displaystyle q_0^2}{displaystyle 2C vphantom{1^a}}.

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен I_0, а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

W = frac{displaystyle LI_0^2}{displaystyle 2 vphantom{1^a}}.

В произвольный момент времени, когда заряд конденсатора равен q и через катушку течёт ток I, энергия контура равна:

W = frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}}.

Таким образом,

frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}} = frac{displaystyle q_0^2}{displaystyle 2C vphantom{1^a}} = frac{displaystyle LI_0^2}{displaystyle 2 vphantom{1^a}}. (1)

Соотношение (1) применяется при решении многих задач.

к оглавлению ▴

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1):

frac{displaystyle kx^2}{displaystyle 2 vphantom{1^a}} + frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle kx_0^2}{displaystyle 2 vphantom{1^a}} = frac{displaystyle mv_0^2}{displaystyle 2 vphantom{1^a}}. (2)

Здесь, как вы уже поняли, k — жёсткость пружины, m — масса маятника, x и v — текущие значения координаты и скорости маятника, x_0 и v_0 — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2), мы видим следующие соответствия:

q longleftrightarrow x; (3)

I longleftrightarrow v; (4)

L longleftrightarrow m; (5)

1/C longleftrightarrow k. (6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

T = 2 pi sqrt{frac{displaystyle m}{displaystyle k}}.

B соответствии с аналогиями (5) и (6) заменяем здесь массу m на индуктивность L, а жёсткость k на обратную ёмкость 1/c. Получим:

T = 2 pi sqrt{LC}. (7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

к оглавлению ▴

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10).

Рис. 10. Положительное направление обхода

Сила тока считается положительной (I > 0), если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной (I < 0).

Заряд конденсатора q — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае q — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: dot{q} = I (при ином выборе знаков могло случиться dot{q} = -I). Действительно, знаки обеих частей совпадают: если I > 0, то заряд q левой пластины возрастает, и потому dot{q} > 0.

Величины q = q(t) и I = I(t) меняются со временем, но энергия контура остаётся неизменной:

frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}} = W = const. (8)

Стало быть, производная энергии по времени обращается в нуль: dot{W} = 0. Берём производную по времени от обеих частей соотношения (8); не забываем, что слева дифференцируются сложные функции (Если y = y(x) — функция от x, то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: {(y^2)}):

frac{displaystyle 2q dot{q}}{displaystyle 2C vphantom{1^a}}+frac{displaystyle L cdot 2I dot{I}}{displaystyle 2 vphantom{1^a}} = W =0.

Подставляя сюда dot{q} = I и dot{I} = ddot{q}, получим:

frac{displaystyle qI}{displaystyle C vphantom{1^a}} + LI ddot{q} = 0,

Ileft ( frac{displaystyle q}{displaystyle C vphantom{1^a}} + L ddot{q} right ) = 0.

Но сила тока не является функцией, тождественно равной нулю; поэтому

frac{displaystyle q}{displaystyle C vphantom{1^a}} + L ddot{q} = 0.

Перепишем это в виде:

ddot{q} + frac{displaystyle 1}{displaystyle LC vphantom{1^a}}q = 0. (9)

Мы получили дифференциальное уравнение гармонических колебаний вида ddot{q} + omega^2_0 q = 0, где omega^2_0 = 1/LC. Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

omega_0 = frac{displaystyle 1}{displaystyle sqrt{LC} vphantom{1^a}}. (10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

T = frac{displaystyle 2 pi}{displaystyle omega_0 vphantom{1^a}}= 2 pisqrt{LC}.

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

q = q_0 cos left ( omega_0t + alpha right ). (11)

Циклическая частота omega_0 находится по формуле (10); амплитуда q_0 и начальная фаза alpha определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при t = 0 заряд конденсатора максимален и равен q_0 (как на рис. 1); ток в контуре отсутствует. Тогда начальная фаза alpha = 0, так что заряд меняется по закону косинуса с амплитудой q_0:

q = q_0 cos omega_0t = q_0 cos left ( frac{displaystyle t}{displaystyle sqrt{LC} vphantom{1^a}} right ). (12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12), опять-таки не забывая о правиле нахождения производной сложной функции:

I = dot{q} = -q_0 omega_0 sin omega_0t.

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

I = -I_0 sin omega_0t = -I_0 sin left ( frac{displaystyle t}{displaystyle sqrt{LC} vphantom{1^a}} right ). (13)

Амплитуда силы тока равна:

I_0 = q_0 omega_0 = frac{displaystyle q_0}{displaystyle sqrt{LC} vphantom{1^a}}.

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени 0 < t < T/4 (рис. 2).

Ток течёт в отрицательном направлении: I < 0. Поскольку omega_0 = 2 pi/T, фаза колебаний находится в первой четверти: 0 < omega_0 t < pi /2. Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13).

А теперь посмотрите на рис. 8. Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13). Для наглядности представим эти графики в одних координатных осях (рис. 11).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

cos left ( varphi + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = - sin varphi,

запишем закон изменения тока (13) в виде:

I = -I_0 sin omega_0 t = I_0 cos left ( omega_0 t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ).

Сопоставляя это выражение с законом изменения заряда q = q_0 cos omega_0 t, мы видим, что фаза тока, равная omega_0 t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}, больше фазы заряда omega_0 t на величину pi/2. В таком случае говорят, что ток опережает по фазе заряд на pi/2; или сдвиг фаз между током и зарядом равен pi/2; или разность фаз между током и зарядом равна pi/2.

Опережение током заряда по фазе на pi/2 графически проявляется в том, что график тока сдвинут влево на pi/2 относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз pi/2).

к оглавлению ▴

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

U = U_0 sin omega t,

то в контуре происходят колебания заряда и тока с циклической частотой omega (и с периодом, соответственно, T = 2 pi/ omega). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте omega_0 = 1/sqrt{LC}.

Амплитуда вынужденных колебаний заряда и тока зависит от частоты omega: амплитуда тем больше,чем ближе omega к собственной частоте контура omega_0.При omega = omega_0 наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Если вам нравятся наши материалы – записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Электромагнитные колебания» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Колебательный контур:

Явление возникновения ЭДС индукции при изменении магнитного потока через площадь, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре. Правило Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, при котором созданный им собственный магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение внешнего магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, содержащую конденсатор электроемкостью С и катушку (соленоид) индуктивностью L (рис. 15). Такая цепь называется идеальным колебательным контуром или LC-контуром.

Колебательный контур в физике - формулы и определения с примерами

В отличие от реального колебательного контура, который всегда обладает некоторым электрическим сопротивлением (RКолебательный контур в физике - формулы и определения с примерами

Пусть в начальный момент времени (t = 0) конденсатор С заряжен так, что на его первой обкладке находится заряд +Колебательный контур в физике - формулы и определения с примерами, а на второй —Колебательный контур в физике - формулы и определения с примерами. При этом конденсатор обладает энергией Колебательный контур в физике - формулы и определения с примерами

С течением времени конденсатор начнет разряжаться, и в цепи появится электрический ток, сила l(t) которого будет меняться с течением времени. Поскольку при прохождении такого электрического тока в катушке индуктивности возникнет изменяющийся во времени магнитный поток, то это вызовет появление ЭДС самоиндукции, препятствующей изменению силы тока.

Вследствие этого сила тока в колебательном контуре будет возрастать от нуля до максимального значения в течение некоторого промежутка времени, определяемого индуктивностью катушки.

В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального значения Колебательный контур в физике - формулы и определения с примерами. В соответствии с законом сохранения энергии первоначально запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

Колебательный контур в физике - формулы и определения с примерами

После разрядки конденсатора сила тока в катушке начнет убывать. Это также произойдет не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создаст индукционный ток. Он будет иметь такое же направление, как и уменьшающийся ток в цепи, и поэтому будет «поддерживать» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезарядит конденсатор до начального напряжения обратной полярности — знак заряда на каждой обкладке окажется противоположным начальному.

Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения Колебательный контур в физике - формулы и определения с примерами. При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно (см. рис. 15). Далее процесс повторится с той лишь разницей, что электрический ток будет проходить в противоположном направлении.

Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением в катушке ЭДС самоиндукции, которая «обеспечивает» эту перезарядку. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений Колебательный контур в физике - формулы и определения с примерами и Колебательный контур в физике - формулы и определения с примерами в различные моменты времени (см. рис. 15).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в контуре определяется по формуле Томсона:

Колебательный контур в физике - формулы и определения с примерами

Получим эту формулу, используя закон сохранения энергии. Поскольку полная энергия идеального LC-контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

Колебательный контур в физике - формулы и определения с примерами (1)

Поскольку закономерности гармонических колебаний носят универсальный характер, то можно сравнить колебания в LC-контуре с колебаниями пружинного маятника.

Для пружинного маятника полная механическая энергия в любой момент времени    2 ,

Колебательный контур в физике - формулы и определения с примерами (2)

и период его колебаний

Колебательный контур в физике - формулы и определения с примерами

Проанализируем соотношения (1) и (2). Сравним выражения для энергии электростатического поля конденсатора Колебательный контур в физике - формулы и определения с примерами и потенциальной энергии упругой деформации пружины Колебательный контур в физике - формулы и определения с примерами энергии магнитного поля катушки Колебательный контур в физике - формулы и определения с примерами и кинетической энергии груза Колебательный контур в физике - формулы и определения с примерами Аналогом координаты x(t) при колебаниях в электрическом контуре является заряд конденсатора q(t), а аналогом проекции скорости груза Колебательный контур в физике - формулы и определения с примерами служит сила тока I(t) в колебательном контуре.

Следуя аналогии, заменим в формуле для периода колебаний пружинного маятника т на L и k на Колебательный контур в физике - формулы и определения с примерами, тогда для периода свободных колебаний в LC-контуре получим формулу Томсона: 

Колебательный контур в физике - формулы и определения с примерами

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Таблица 4

Сопоставление физических величин, характеризующих электромагнитные и механические колебания

Колебательный контур в физике - формулы и определения с примерами
Соответственно, зависимость заряда конденсатора от времени будет иметь такой же характер, как и зависимость координаты (смещения) тела, совершающего гармонические колебания, от времени:

Колебательный контур в физике - формулы и определения с примерами

Также по гармоническому закону (но с другими начальными фазами) будут изменяться сила тока в цепи, напряжение на конденсаторе.

Для определения начальной фазы Колебательный контур в физике - формулы и определения с примерами и амплитуды колебаний заряда Колебательный контур в физике - формулы и определения с примерами необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени (t = 0).

Полная энергия идеального колебательного контура (R = 0) с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется.

Как уже отмечалось, реальный колебательный контур всегда имеет некоторое сопротивление R, обусловленное сопротивлением катушки, соединительных проводов и т. д. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они «будут происходить» сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без трения, а механическим аналогом реального колебательного контура — пружинный маятник с трением.

Пример №1

При изменении емкости конденсатора идеального LC-контура на Колебательный контур в физике - формулы и определения с примерами = 50 пФ частота свободных электромагнитных колебаний в нем увеличилась с Колебательный контур в физике - формулы и определения с примерами = 100 кГц до Колебательный контур в физике - формулы и определения с примерами= 120 кГц. Определите индуктивность L контура.

Колебательный контур в физике - формулы и определения с примерами

Решение

Частота колебаний в контуре

Колебательный контур в физике - формулы и определения с примерами

Поскольку частота колебаний в контуре увеличилась (Колебательный контур в физике - формулы и определения с примерами), то электроемкость должна уменьшится, т. е. Колебательный контур в физике - формулы и определения с примерами.

Из условия задачи получаем систему уравнений

Откуда Колебательный контур в физике - формулы и определения с примерами
 

Вычитая из первого уравнения второе, получаем

Колебательный контур в физике - формулы и определения с примерами

Откуда находим

Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами

Ответ: L = 0,015 Гн.

Пример №2

Колебательный контур состоит из конденсатора емкостью С = 400пФ и катушки индуктивностью L=10 мГн. Определите амплитудное значение силы тока Колебательный контур в физике - формулы и определения с примерами в контуре, если амплитудное значение напряжения на конденсаторе Колебательный контур в физике - формулы и определения с примерами = 500 В.

Колебательный контур в физике - формулы и определения с примерами

Решение

Максимальная энергия электростатического поля конденсатора

Колебательный контур в физике - формулы и определения с примерами

а максимальная энергия магнитного поля катушки

Колебательный контур в физике - формулы и определения с примерами

Так как контур идеальный (R = 0), то его полная энергия не меняется с течением времени. Кроме того, в момент, когда заряд конденсатора максимален, сила тока в катушке равна нулю, а в момент, когда заряд конденсатора равен нулю, сила тока в ней максимальна. Это позволяет утверждать, что максимальные энергии в конденсаторе и катушке равны: Колебательный контур в физике - формулы и определения с примерами, т. е.

откуда Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами

Ответ: Колебательный контур в физике - формулы и определения с примерами.

Колебательный контур и свободные электромагнитные колебания в контуре

Явление возникновения ЭДС в любом контуре при изменении магнитного потока через поверхность, ограниченную контуром, называется явлением электромагнитной индукции.

Под явлением самоиндукции понимают возникновение в замкнутом проводящем контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре.

Правило Ленца: возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, при котором созданный им магнитный поток через поверхность, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора электроемкостью Колебательный контур в физике - формулы и определения с примерами и катушки (соленоида) индуктивностью Колебательный контур в физике - формулы и определения с примерами (рис. 29, а), называемую идеальным колебательным контуром или Колебательный контур в физике - формулы и определения с примерами-контуром. Электрическое сопротивление идеального контура считают равным нулю Колебательный контур в физике - формулы и определения с примерами Следовательно, идеальный колебательный контур является упрощенной моделью реального колебательного контура.

Подключив (при помощи ключа Колебательный контур в физике - формулы и определения с примерами источник тока, зарядим конденсатор до напряжения Колебательный контур в физике - формулы и определения с примерами сообщив ему заряд Колебательный контур в физике - формулы и определения с примерами (рис. 29, б). Следовательно, в начальный момент времени Колебательный контур в физике - формулы и определения с примерами конденсатор заряжен так, что на его обкладке 1 находится заряд Колебательный контур в физике - формулы и определения с примерами а на обкладке 2 — заряд Колебательный контур в физике - формулы и определения с примерами При этом электростатическое поле, создаваемое зарядами обкладок конденсатора, обладает энергией Колебательный контур в физике - формулы и определения с примерами
Колебательный контур в физике - формулы и определения с примерами

Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа Колебательный контур в физике - формулы и определения с примерами (рис. 30) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной. На рисунке 30 стрелкой показано начальное направление тока в электрической цепи.

Таким образом, в контуре появится нарастающий по модулю электрический ток, сила Колебательный контур в физике - формулы и определения с примерами которого будет изменяться с течением времени (рис. 31, а). Но мгновенная разрядка конденсатора невозможна, так как изменение магнитного поля катушки, создаваемое нарастающим по модулю током, вызывает возникновение вихревого электрического поля. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции. Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению силы тока по модулю.

Вследствие этого модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения Колебательный контур в физике - формулы и определения с примерами определяемого индуктивностью катушки и электроемкостью конденсатора (рис. 31, б).
Колебательный контур в физике - формулы и определения с примерами

При разрядке конденсатора энергия его электростатического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени (уменьшение энергии электростатического поля конденсатора равно увеличению энергии магнитного поля катушки):

Колебательный контур в физике - формулы и определения с примерами

где Колебательный контур в физике - формулы и определения с примерами — мгновенное значение заряда конденсатора и Колебательный контур в физике - формулы и определения с примерами — сила тока в катушке в некоторый момент времени Колебательный контур в физике - формулы и определения с примерами после начала разрядки конденсатора.

В момент полной разрядки конденсатора Колебательный контур в физике - формулы и определения с примерами сила тока в катушке Колебательный контур в физике - формулы и определения с примерами достигнет своего максимального по модулю значения Колебательный контур в физике - формулы и определения с примерами (см. рис. 31, б). В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электростатического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

Колебательный контур в физике - формулы и определения с примерами

После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его. Индукционный ток, создаваемый ЭДС самоиндукции катушки, перезаряжает конденсатор до начального напряжения Колебательный контур в физике - формулы и определения с примерами но знак заряда на каждой обкладке оказывается противоположным знаку начального заряда. Соответственно, к моменту исчезновения тока заряд конденсатора достигнет максимального значения Колебательный контур в физике - формулы и определения с примерами При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится с той лишь разницей, что электрический ток в ко туре будет проходить в противоположном направлении, что отражено на рисунке 31, а.

Таким образом, в идеальном Колебательный контур в физике - формулы и определения с примерами-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников.

Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд Колебательный контур в физике - формулы и определения с примерами конденсатора и сила тока Колебательный контур в физике - формулы и определения с примерами в катушке достигают своих максимальных значений Колебательный контур в физике - формулы и определения с примерами в различные момента времени (см. рис. 31 а, б).

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии. Поскольку полная энергия идеального Колебательный контур в физике - формулы и определения с примерами-контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство: 
Колебательный контур в физике - формулы и определения с примерами 

Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:

Колебательный контур в физике - формулы и определения с примерами

где Колебательный контур в физике - формулы и определения с примерами — жесткость пружины, Колебательный контур в физике - формулы и определения с примерами — масса груза, Колебательный контур в физике - формулы и определения с примерами — проекция смещения тела от положения равновесия, Колебательный контур в физике - формулы и определения с примерами — проекция его скорости на ось Колебательный контур в физике - формулы и определения с примерами

Период его колебаний:

Колебательный контур в физике - формулы и определения с примерами

Проанализируем соотношения (1) и (2). Видно, что энергия электростатического поля конденсатора Колебательный контур в физике - формулы и определения с примерами является аналогом потенциальной энергии упругой деформации пружины Колебательный контур в физике - формулы и определения с примерами Соответственно, энергия магнитного поля катушки Колебательный контур в физике - формулы и определения с примерами которая обусловлена упорядоченным движением зарядов, является аналогом кинетической энергии груза Колебательный контур в физике - формулы и определения с примерами Следовательно, аналогом координаты Колебательный контур в физике - формулы и определения с примерами пружинного маятника при колебаниях в электрическом контуре является заряд конденсатора Колебательный контур в физике - формулы и определения с примерами Тогда, соответственно, аналогом проекции скорости груза будет сила тока в колебательном контуре, поскольку сила тока характеризует скорость изменения заряда конденсатора с течением времени.

Следуя проведенной аналогии, заменим в формуле для периода колебаний пружинного маятника массу Колебательный контур в физике - формулы и определения с примерами на индуктивность Колебательный контур в физике - формулы и определения с примерами и жесткость Колебательный контур в физике - формулы и определения с примерами тогда для периода свободных колебаний в Колебательный контур в физике - формулы и определения с примерами-контуре получим формулу:

Колебательный контур в физике - формулы и определения с примерами

которая называется формулой Томсона.

Несложные дальнейшие рассуждения позволяют установить аналогии между физическими величинами при электромагнитных и механических колебаниях (табл. 4).

Колебательный контур в физике - формулы и определения с примерамиДля наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого получают временную развертку колебаний (рис. 32).

Колебательный контур в физике - формулы и определения с примерами

Зависимость заряда конденсатора от времени имеет такой же вид, как и зависимость координаты (проекции смещения) тела, совершающего гармонические колебания, от времени:

Колебательный контур в физике - формулы и определения с примерами

Также по гармоническому закону изменяются сила тока (но с другой начальной фазой) в цепи и напряжение на конденсаторе.

Для определения начальной фазы Колебательный контур в физике - формулы и определения с примерами и максимального заряда Колебательный контур в физике - формулы и определения с примерами необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени Колебательный контур в физике - формулы и определения с примерами

Отметим, что колебательный контур, в котором происходит только обмен энергией между конденсатором и катушкой, называется закрытым.

Полная энергия идеального колебательного контура Колебательный контур в физике - формулы и определения с примерами с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется. Реальный колебательный контур всегда имеет некоторое электрическое сопротивление Колебательный контур в физике - формулы и определения с примерами которое обусловлено сопротивлением катушки и соединительных проводов. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они будут происходить сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без учета трения, а механическим аналогом реального колебательного контура — пружинный маятник с учетом трения.

Пример решения задачи:

Идеальный колебательный контур состоит из конденсатора емкостью Колебательный контур в физике - формулы и определения с примерами пФ и катушки индуктивностью Колебательный контур в физике - формулы и определения с примерами мГн. Определите максимальное значение силы тока Колебательный контур в физике - формулы и определения с примерами в контуре, если максимальное значение напряжения на конденсаторе Колебательный контур в физике - формулы и определения с примерами
Дано:

Колебательный контур в физике - формулы и определения с примерами

Колебательный контур в физике - формулы и определения с примерами
Решение

Максимальная энергия электростатического поля конденсатора:

Колебательный контур в физике - формулы и определения с примерами
а максимальная энергия магнитного поля катушки:

Колебательный контур в физике - формулы и определения с примерами

Так как контур идеальный Колебательный контур в физике - формулы и определения с примерами то его полная энергия сохраняется с течением времени. По закону сохранения энергии Колебательный контур в физике - формулы и определения с примерами т. е.

Колебательный контур в физике - формулы и определения с примерами

Отсюда

Колебательный контур в физике - формулы и определения с примерами
Ответ: Колебательный контур в физике - формулы и определения с примерами

  • Исследовательские методы в физике
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Распространение механических волн в средах
  • Электромагнитное поле
  • Опыты Фарадея в физике
  • Электромагниты и их применение в физике

Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний

Подробности
Обновлено 21.07.2018 11:39
Просмотров: 833

«Физика – 11 класс»

Уравнение, описывающее процессы в колебательном контуре

Есть колебательный контур, сопротивлением R которого можно пренебречь.

Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии.
Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Полная энергия не меняется с течением времени, если сопротивление R контура равно нулю, тогда производная полной энергии по времени равна нулю.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл вышеприведенного уравнения состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля.
Знак «—» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

После вычисления производных в уравнении, получается

Производная заряда по времени представляет собой силу тока в данный момент времени:

Тогда:

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени.

Тогда основное уравнение, описывающее свободные электрические колебания в контуре:

Полученное уравнение ничем, кроме обозначений, не отличается от уравнения, описывающего колебания пружинного маятника.

Период свободных колебаний в контуре

Формула Томсона
В основном уравнении коэффициент представляет собой квадрат циклической частоты для свободных электрических колебаний:

Период свободных колебаний в контуре, таким образом, равен:

Эта формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Период свободных колебаний зависит от L и С.
При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля.
А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока.

Координата при механических колебаниях изменяется со временем по гармоническому закону:

х = хm cos ω0t

Заряд конденсатора меняется с течением времени по такому же закону:

q = qm cos ω0t

где
qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

где
Im = qmω0 — амплитуда колебаний силы тока.
Колебания силы тока опережают по фазе на колебания заряда.

Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление, тем бо́льшим будет период колебаний.
При достаточно большом сопротивлении колебания совсем не возникнут.
Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса – Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях —
Аналогия между механическими и электромагнитными колебаниями —
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний —
Переменный электрический ток —
Активное сопротивление. Действующие значения силы тока и напряжения —
Конденсатор в цепи переменного тока —
Катушка индуктивности в цепи переменного тока —
Резонанс в электрической цепи —
Генератор на транзисторе. Автоколебания —
Краткие итоги главы

Физика, 11 класс

Урок 7. Свободные и вынужденные электромагнитные колебания. Колебательный контур

Перечень вопросов, рассматриваемых на уроке:

1) электромагнитные колебания, колебательный контур;

2) универсальность основных закономерностей колебательных процессов для колебаний любой физической природы;

3) гармонические колебания;

4) физический смысл характеристик колебаний.

5) графики зависимости электрического заряда, силы тока и напряжения от времени при свободных электромагнитных колебаниях.

6) определение по графику характеристик колебаний;

7) аналогия между механическими и электромагнитными колебаниями.

8) формула Томсона.

Глоссарий по теме

Электромагнитными колебаниями называют периодические изменения со временем заряда, силы тока и напряжения.

Электромагнитные колебания бывают двух видов – свободные и вынужденные.

Свободными колебаниями называют колебания, возникающие в колебательной системе за счет первоначально сообщенной этой системе энергии.

Вынужденные электромагнитные колебания – это периодические изменения заряда, силы тока и напряжения в цепи под действием переменной электродвижущей силы от внешнего источника.

Система, состоящая из конденсатора и катушки индуктивности, присоединенной к его обкладкам, называется колебательным контуром.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание.

Частота колебаний – число колебаний в единицу времени.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я.,Буховцев Б.Б.,Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций. М.: Просвещение, 2014. – С. 74 – 82.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа, 2009. – С. 126 – 128.

Основное содержание урока

Колебательным контуром называется система, состоящая из конденсатора и катушки, присоединенной к его обкладкам, в которой могут происходить свободные электромагнитные колебания

Электромагнитные колебания в контуре происходят с большой частотой и определять его характеристики без осциллографа невозможно.

Развертка получаемая на экране осциллографа схожа с той, что вычерчивает маятник с песочницей над движущимся листом бумаги при колебаниях математического маятника.

Чтобы в колебательном контуре возникли колебания, необходимо сообщить колебательному контуру энергию, зарядив конденсатор от источника тока.

Энергия, полученная конденсатором заключена в электрическом поле обкладок

где – заряд конденсатора, C – его электроемкость.

Между обкладками конденсатора возникает разность потенциалов .

При разрядке конденсатора энергия электрического поля превращается в энергию магнитного поля, определяемая по формуле

где – индуктивность катушки, – сила переменного тока.

Полная энергия колебательного контура равна

Когда конденсатор разрядится полностью, вся энергия электрического поля превращается в энергию магнитного поля. Когда сила тока и созданное им магнитное поле начинает уменьшаться, возникает ЭДС самоиндукции, стремящийся поддержать ток, и начинается перезарядка конденсатора. При свободных колебаниях через промежутки времени, равные периоду колебаний, состояние системы в точности повторяется. Полная энергия такой системы любой момент времени равно максимальной энергии электрического поля или максимальной энергии магнитного поля.

q, u и i – мгновенные значения заряда, напряжения и силы тока. При отсутствии сопротивления в контуре полная энергия электромагнитного поля не изменяется. Колебания затухающие, сопротивление катушки и проводников превращают энергию электромагнитного поля во внутреннюю энергию проводника.

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями. Характер периодического изменения различных величин одинаков. При механических колебаниях периодически изменяются координата тела x и проекция его скорости , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи.

Индуктивность катушки L аналогична массе тела m, при колебаниях груза на пружине, кинетическая энергия тела , аналогична энергии магнитного поля тока .

Роль потенциальной энергии выполняет энергия заряда конденсатора:

Координата тела аналогична заряду конденсатора.

Полная энергия колебательного контура, в любой момент времени, равна сумме энергий магнитного и электрического полей:

Производная полной энергии по времени равна нулю при R = 0. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

то есть

Знак « – » минус в этом выражении означает, что, когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. Физический смысл этого выражения заключается в том, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Электрический заряд и сила тока, при свободных колебаниях с течением времени изменяются по закону синуса или косинуса, то есть совершают гармонические колебания.

Циклическая частота для свободных электрических колебаний:

Период свободных колебаний в контуре равен:

Формула Томсона.

Период свободных электрических колебаний в колебательном контуре зависит от индуктивности катушки и емкости конденсатора.

Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание.

Частотой колебаний называется величина, обратная периоду колебаний:

Частоту свободных колебаний называют собственной частотой колебательной системы.

Заряд конденсатора изменяется по гармоническому закону:

где – амплитуда колебаний заряда. Сила тока также совершает гармонические колебания:

где – амплитуда колебаний силы тока. Колебания силы тока опережают по фазе колебания заряда на .

Разбор типовых тренировочных заданий

Задача 1. Идеальный колебательный контур состоит из конденсатора ёмкостью 2 мкФ и катушки индуктивности. В контуре происходят свободные электромагнитные колебания. В таблице приведена зависимость энергии W, запасённой в конденсаторе идеального колебательного контура, от времени t.

t, нс

0

125

250

375

500

625

750

875

1000

W, мкДж

0

3,66

12,5

21,34

25,0

21,34

12,5

3,66

0,00

t, нс

1125

1250

1375

1500

1625

1750

1875

2000

2125

W, мкДж

3,66

12,5

21,34

25,0

21,34

12,50

3,66

0,00

3,66

На основании анализа этой таблицы выберите два верных утверждения.

1) Период электромагнитных колебаний в контуре равен 1 мкс.

2) Период электромагнитных колебаний в контуре равен 2 мкс.

3) Индуктивность катушки равна примерно 13 нГн.

4) Максимальное напряжение на конденсаторе равно 5 В.

5) Максимальное напряжение на конденсаторе равно 50 кВ.

Решение. При электромагнитных колебаниях в контуре происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки и обратно, при этом максимальная энергия, запасенная в катушке, равна максимальной энергии, запасенной в конденсаторе

Период колебаний конденсатора равен 1000 нс, но период электромагнитных колебаний в контуре в два раза больше и составляет 2000 нс = 2 мкс.

Утверждение 2 — верно, утверждение 1 — неверно.

Воспользуемся формулой Томсона и выразим индуктивность катушки:

Утверждение 3 — неверно.

Максимальное напряжение на конденсаторе равно

Значение находим из таблицы =25 мкДж

Утверждение 4 верно, 5 – неверно

2. Емкость конденсатора колебательного контура С=1мкФ, индуктивность катушки L=0,04 Гн, амплитуда колебаний напряжения Um=100 В.

В данный момент времени напряжение на конденсаторе u=80 В. Найти:

1. амплитуду колебаний силы тока Im;

2. полную энергию W;

3. энергию электрического поля Wэл;

4. энергию магнитного поля Wм;

5. мгновенное значение силы тока i.

Дано:

С=1 мкФ=0,000001Ф

L=0,04 Гн

Um=100 В

u=80 В

Найти: Im; W; Wэл; Wм; i.

Решение

Из закона сохранения энергии максимальные энергии конденсатора и катушки индуктивности равны

Откуда

Полная энергия равна

Энергия электрического поля в момент, когда напряжение на конденсаторе

Из закона сохранения энергии выразим :

Мгновенное значение силы тока выразим из формулы:

Колебательный контур. Период свободных электрических колебаний. Уравнение, описывающее процессы в колебательном контуре.

Уравнение,
описываюндее свободные электрические
колебания в контуре, можно получить с
помощью закона сохранения энергии.
Полная электромагнитная энергия W
контура в любой момент времени равна
сумме его энергий магнитного и
электрического полей:

Эта
энергия не меняется с течением времени,
если ео противление R контура равно
нулю. Значит, производная полной энергии
по времени равна нулю. Следовательно,
равна нулю сумма производных по времени
от энергий магнитного и электрического
полей:

 

 Физический
смысл уравнения (4.5) состоит в том, что
скорость изменения энергии магнитного
поля по модулю равна скорости изменения
энергии электрического поля; знак «-»
указывает на то, что, когда энергия
электрического поля возрастает, энергия
магнитного поля убывает (и наоборот).

Вычислив
производные в уравнении (4.5), получим1

 

 Но
производная заряда по времени представляет
собой силу тока в данный момент
времени:

 

Поэтому
уравнение (4.6) можно переписать в следующем
виде:

1 Мы
вычисляем производные по времени.
Поэтому производная (і
2)’
равна не просто 2
і,
как было бы при вычислении производной
но і. Нужно 2
і умножить
еще на производную i’ силы тока по времени,
так как вычисляется производная от
сложной функции. То же самое относится
к производной (q
2)’.

 Производная
силы тока по времени есть не что иное,
как вторая производная заряда по времени,
подобно тому как производная скорости
по времени (ускорение) есть вторая
производная координаты по времени.
Подставив в уравнение (4.8) і’ = q” и
разделив левую и правую части этого
уравнения на Li, получим основное
уравнение, описывающее свободные
электрические колебания в контуре:

 

 Теперь
вы в полной мере можете оценить значение
тех усилий, которые были затрачены для
изучения колебаний шарика на пружине
и математического маятника. Ведь
уравнение (4.9) ничем, кроме обозначений,
не отличается от уравнения (3.11),
описывающего колебания шарика на
пружине. При замене в уравнении (3.11) х
на q, х” на q”, k нa 1/C и m нa L мы в точности
получим уравнение (4.9). Но уравнение
(3.11) было уже решено выше. Поэтому, зная
формулу, описывающую колебания пружинного
маятника, мы сразу же можем записать
формулу для описания электрических
колебаний в контуре.Формула
Томсона.
 В
уравнении (3.11) коэффициент 

 представляет
собой квадрат собственной частоты
колебаний. Поэтому и коэффициент 

 в
уравнении (4.9) также представляет собой
квадрат циклической частоты — в этот
раз для свободных электрических
колебаний:

Период
свободных колебаний в контуре, таким
образом, равен:

 

 

Формула
(4.11) называется формулой Томсона в честь
английского физика У. Томсона (Кельвина),
который ее впервые вывел. Увеличение
периода свободных колебаний с возрастанием
L и С наглядно можно пояснить так. При
увеличении индуктивности L ток медленнее
нарастает со временем и медленнее падает
до нуля. А чем больше емкость С, тем
большее время требуется для перезарядки
конденсатора. Гармонические
колебания заряда и тока.
 Подобно
тому как координата при механических
колебаниях (в случае, когда в начальный
момент времени отклонение тела маятника
от положения равновесия максимально)
изменяется со временем по гармоническому
закону:

х = хm 
cos 

 t,
заряд конденсатора меняется с течением
времени по такому же закону:

q = qm 
cos 

 t,  
 (4.12)

где qm 
— амплитуда колебаний заряда. Сила тока
также совершает гармонические
колебания:

 

где Im = 
qm 

 —
амплитуда колебаний силы тока. Колебания
силы тока опережают по фазе на 

колебания
заряда (рис. 4.7).Точно так же колебания
скорости тела в случае пруте жинного
или математического маятника опережают
на 

 колебания
координаты (смещения) этого тела.

В
действительности, из-за неизбежного
наличия сопротивления электрической
цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на
период колебаний, чем больше сопротивление
R, тем большим будет период колебаний.
При достаточно большом сопротивлении
колебания совсем не возникнут. Конденсатор
разрядится, но перезарядки его не
произойдет, энергия электрического и
магнитного полей перейдет в тепло.

Простейшая
система, где наблюдаются свободные
электромагнитные колебания, —
колебательный контур. Уравнение (4.9) —
это основное уравнение, описывающее
сво бодные электрические колебания в
контуре.

Переменный
электрический ток. Генератор переменного
тока

Системы
производящие переменный ток были
известны в простых видах со времён
открытия магнитной
индукции
 электрического
тока
.
Ранние машины были разработаны такими
пионерами, как Майкл
Фарадей
 и Ипполит
Пикси
.

Фарадей
разработал «вращающийся треугольник»,
действие которого было многополярным —
каждый активный проводник пропускался
последовательно через область,
где магнитное
поле
 было
в противоположных направлениях. Первая
публичная демонстрация наиболее сильной
«альтернаторной системы» имела место
в 1886 году.
Большой двухфазный генератор переменного
тока был построен британским
электриком Джеймсом
Эдвардом Генри Гордоном
 в 1882 годуЛорд
Кельвин
 и Себастьян
Ферранти
 также
разработали ранний альтернатор,
производивший частоты между 100 и 300 герц.
В 1891 году Никола
Тесла
 запатентовал
практический «высокочастотный»
альтернатор (который действовал на
частоте около 15000 герц). После 1891 года,
были введены многофазные альтернаторы.
Принцип действия генератора основан
на явлении электромагнитной
индукции
 —
возникновении электрического
напряжения
 в
обмотке статора,
находящейся в переменном магнитном
поле. Оно создается с помощью
вращающегося электромагнита — ротора при
прохождении по его обмотке постоянного
тока
.
Переменное напряжение преобразуется
в постоянное полупроводниковым
выпрямителем
.
Для
мощностей до 100 кВт широкое применение
нашли одно и трехфазные генераторы с
возбуждением от постоянных магнитов.
Применение высокоэнергетических
постоянных магнитов состава
неодим-железо-бор позволило упростить
конструкцию и значительно уменьшить
размеры и вес генераторов, что является
критически важным для малой ветроэнергетики.
Индукционный
генератор. В
отличие от остальных генераторов, в
основе работы индукционного генератора
лежит не вращающееся магнитное поле, а
пульсирующее, иначе говоря поле изменяется
не в функции перемещения, а в функции
времени, что в конечном счёте (наведение
ЭДС) даёт такой же результат. Конструкция
индукционных генераторов предполагает
размещение и постоянного поля и катушек
для наведения ЭДС на статоре, ротор же
остаётся свободным от обмоток, но
обязательно имеет зубцовую форму, так
как вся работа генератора основана на
зубцовых гармониках ротора.

Активное
сопротивление в цепи переменного тока.
Емкость и индуктивность в цепи переменного
тока. Закон Ома для электрической цепи
переменного тока.

Зако́н
О́ма
 —
физический закон, определяющий связь
между Электродвижущей
силой источника или напряжением с силой
тока и сопротивлением проводника.
Экспериментально установлен в 1826 году,
и назван в честь его первооткрывателя Георга
Ома.

В
своей оригинальной форме он был записан
его автором в виде : 
,

Здесь X —
показания гальванометра, т.е в современных
обозначениях сила тока Ia —
величина, характеризующая свойства
источника тока, постоянная в широких
пределах и не зависящая от величины
тока, то есть в современной терминологии
электродвижущая сила (ЭДС) 
l —
величина, определяемая длиной соединяющих
проводов. Чему в современных представлениях
соответствует сопротивление внешней
цепи R и,
наконец, b параметр,
характеризующий свойства всей установки,
в котором сейчас можно усмотреть учёт
внутреннего сопротивления источника
тока r [1]

В
таком случае в современных терминах и
в соответствии с предложенной автором
записи формулировка Ома (1) выражает

Закон
Ома для полной цепи
:


,

где:
 — ЭДС источника
напряжения(В),
 — сила
тока в
цепи (А),
 — сопротивление всех
внешних элементов цепи(Ом)
,
 — внутреннее
сопротивление источника
напряжения(Ом)
.

Из
Закона Ома для полной цепи вытекают
следствия:

При r<<R Сила
тока в цепи обратно пропорциональна её
сопротивлению. А сам источник в ряде
случаев может быть назван источником
напряжения

  • При r>>R Сила
    тока от свойств внешней цепи (от величины
    нагрузки) не зависит. И источник может
    быть назван источником тока.

Часто[2] выражение:


 (3)

(где 
 есть напряжение или падение
напряжения,
или, что то же, разность
потенциалов между
началом и концом участка проводника)
тоже называют «Законом Ома». Таким
образом Электродвижущая сила в замкнутой
цепи, по которой течёт ток в соответствии
с (2) и (3) равняется:

 То
есть сумма падений напряжения на
внутреннем сопротивлении источника
тока и на внешней цепи равна ЭДС источника.
Последний член в этом равенстве
специалисты называют «напряжением на
зажимах», поскольку именно его показывает
вольтметр, измеряющий напряжение
источника между началом и концом
присоединённой к нему замкнутой цепи.
В таком случае оно всегда меньше ЭДС.

К
другой записи формулы (3), а именно:


 

Применима
другая формулировка:

Сила
тока в участке цепи прямо пропорциональна
напряжению и обратно пропорциональна
электрическому сопротивлению данного
участка цепи.

Выражение
(5) можно переписать в виде:
 

Трансформатор.
Передача электрической энергии на
расстояние.

Трансформатор –
это устройство для повышения или
понижения переменного напряжения.
Простейший трансформатор состоит из
двух обмоток, одна из которых
называетсяпервичной,
а другая – вторичной.
Обмотки трансформатора расположены на
общем сердечнике из электротехнической
стали; обычно он изготовляется наборным
из листов для уменьшения потерь на
вихревые токи.
Принцип
действия трансформатора основан на
явлении электромагнитной индукции.
Когда на первичную обмотку подается
переменное напряжение, возникающий в
результате этого переменный магнитный
поток возбуждает во вторичной обмотке
(катушке) переменное напряжение той же
частоты. Однако напряжение на обмотках
будет различным в зависимости от числа
витков в каждой из них.
Трансформатор
может работать только на переменном
токе.
Трансформаторы
играют важную роль в передаче энергии
на расстояние. Электростанции часто
располагаются далеко от промышленных
городов, гидроэлектростанции строятся
на больших реках, для атомных электростанций
требуется большое количество охлаждающей
воды, тепловые электростанции тоже
часто строят вдали от городов, чтобы
уменьшить загрязнение воздуха.
В
любом случае электроэнергию часто
приходится передавать на большие
расстояния, и в линиях электропередачи
всегда неизбежны потери энергии.
Потери
энергии можно уменьшить, если использовать
в линиях электропередачи высокое
напряжение.
Чем
выше напряжение, тем меньше сила тока,
и тем меньшая доля мощности теряется в
линии электропередачи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий