Как найти период квадрата

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

    [{T_1} = frac{T}{{left| k right|}}]

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

1) y=5sin(3x-п/8).

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| 3 right|}} = frac{{2pi }}{3}.]

    [2)y = frac{2}{7}cos (frac{pi }{5} - frac{x}{{11}})]

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| { - frac{1}{{11}}} right|}} = 2pi  cdot 11 = 22pi .]

    [3)y = 0,3tg(frac{{5x}}{9} - frac{pi }{7})]

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {frac{5}{9}} right|}} = frac{{9pi }}{5}.]

    [4)y = 9ctg(0,4x - 7)]

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {0,4} right|}} = frac{{10pi }}{4} = frac{{5pi }}{2}.]

Как найти период тригонометрической функции

Тригонометрические функции периодичны, то есть повторяются через определенный период. Благодаря этому достаточно исследовать функцию на этом промежутке и распространить найденные свойства на все остальные периоды.

Как найти период тригонометрической функции

Инструкция

Если вам дано простое выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-либо число, а она сама не возведена в какую-либо степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec смело ставьте период 2П, а если в уравнении есть tg, ctg – то П. Например, для функции у=2 sinх+5 период будет равен 2П.

Если угол х под знаком тригонометрической функции умножен на какое-либо число, то, чтобы найти период данной функции, разделите стандартный период на это число. Например, вам дана функция у= sin 5х. Стандартный период для синуса – 2П, разделив его на 5, вы получите 2П/5 – это и есть искомый период данного выражения.

Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для четной степени уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в любой степени периодичны П.

Если вам дано уравнение, содержащее произведение или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих периодов. Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.

Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет ответ задачи.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Макеты страниц

СПРАВОЧНЫЙ МАТЕРИАЛ

1. Периоды тригонометрических функций.

Период функции равен

Период функции равен

Период функции равен

Период функции равен

2. Период функции, представляющей собой сумму непрерывных и периодических функций, равен наименьшему кратному периодов слагаемых, если он существует.

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

Найти период функции:

Решение. 1) Упростим данную функцию:

Следовательно, Период этой функции равен Этот же период имеет и данная функция.

Периоды остальных слагаемых заданной функции не учитываются, так как сумма этих слагаемых тождественно равна нулю, т. е.

2) Так как то период первого слагаемого функции равен

Так как то период второго слагаемого равен

Периодом заданной функции будет наименьшее кратное периодов ее слагаемых, т. е.

3) Так как то период первого слагаемого функции

Так как то период этой функции равен

Чтобы найти период данной функции, найдем наименьшее кратное чисел

Периодом данной функции будет наименьшее кратное чисел

ДИДАКТИЧЕСКИЙ МАТЕРИАЛ

(см. скан)

Содержание

  1. Уроки математики и физики для школьников и родителей
  2. суббота, 4 сентября 2021 г.
  3. Урок 5. Периодичность тригонометрических функций
  4. Периодические функции
  5. Узнать ещё
  6. Как найти период функции
  7. Свойства тригонометрических функций
  8. Содержание
  9. Знаки тригонометрических функций
  10. Периодичность тригонометрических функций. Полупериодичность синуса и косинуса
  11. Четность тригонометрических функций
  12. Демонстрационные варианты ЕГЭ и ОГЭ
  13. Наши учебные пособия для школьников
  14. Математика. Периодичность тригонометрических функций.

Уроки математики и физики для школьников и родителей

суббота, 4 сентября 2021 г.

Урок 5. Периодичность тригонометрических функций

Из этого определения сразу следует, что если Т – период функции

– также периоды функций. Значит у периодической функции бесконечно много периодов.

Чаще всего (но не всегда) среди множества положительных периодов функции можно найти наименьший. Его называют основным периодом .

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

image

image

у = х – [х] , где [х] – целая часть числа. Если к произвольному значение аргумента этой функции добавить 1 , то значение функции от этого не изменится :

Следовательно, при любом значении х

image

image

image

sin (α + 360 ° ) = sin α

Таким образом, функции sin α и cos α от прибавления к аргументу α одного полного оборота ( 2π или 360 ° ) не меняют своих значений.

где k – любое целое число.

Следовательно, функции sin α и cos α – периодические.

Наименьшее положительное число, от прибавления которого к любому допустимому значению аргумента не изменяется значение функции, называется периодом функции.

В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным радиусом ОМ единичной окружности.

image

1

отсюда следует, что значения tg α и с tg α не изменяются, если к углу α прибавить любое число полуоборотов:

где k – любое целое число.

вычисляются по формуле

равен наименьшему числу, при делении которого на T 1 и T 2 получаются целые числа.

Найти период функции

не существует, так как такого числа, при делении которого на и на 2 получались бы целые числа, нет.

Периода не существует.

Доказать следующее утверждение :

Так как тангенс – периодическая функция с минимальным периодом 20 ∙ 180 ° , то получим :

Доказать следующее утверждение :

Так как косинус – чётная и периодическая функция с минимальным периодом 2π , то получим :

сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.

Доказать следующее утверждение :

Так как синус – нечётная и периодическая функция с минимальным периодом 20 ∙ 360 ° , то получим :

Найти основной период функции

Пусть Т основной период функции, тогда:

так как 2 πk период синуса, то получим :

sin (7х + 7 t ) = sin (7х + 2 πk ),

2

3

Найти основной период функции

Пусть Т основной период функции, тогда:

со s 0,3х = со s 0,3(х + t ) = со s (0,3х + 0,3 t )

так как 2 πk период косинуса, то получим :

4

5

Найти период функции :

y = 5 sin 2 x + 2 ctg 3х.

Наименьшее число, при делении которого на

Найти период функции :

Находим периоды слагаемых. Период функции

Очевидно, что период заданной функции равен

Найти период функции :

Периода у заданной функции не существует, так как нет такого числа, при делении которого на 2 и на π одновременно получались бы целые числа.

Найти период функции :

Приведём к общему знаменателю периоды :

Тогда наименьшее общее кратное (НОК) будет :

Теперь найдём период заданной функции :

Источник

Периодические функции

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, — периодические функции.

%D0%B59

Дадим определение периодической функции:

Например, — периодические функции.

Для функций и период

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция определена для всех действительных чисел. Ее период равен двум и Найдите значение выражения

График функции может выглядеть, например, вот так:

219

Как ведет себя функция в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

2. График четной периодической функции совпадает с графиком функции на отрезке от 0 до 1; период функции равен 2. Постройте график функции и найдите f(4 ).

Построим график функции при

Поскольку функция четная, ее график симметричен относительно оси ординат. Построим часть графика при симметричную части графика от 0 до 1.

Период функции равен 2. Повторим периодически участок длины 2, который уже построен.

220

3. Найдите наименьший положительный период функции

Наименьший положительный период функции равен

График функции получается из графика функции сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Рассуждая аналогично, получим, что для функции наименьший положительный период равен На отрезке укладывается ровно 5 полных волн функции

%D0%A116

4. Период функции равен 12, а период функции равен 8. Найдите наименьший положительный период функции

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых.

Источник

Узнать ещё

Знание — сила. Познавательная информация

Как найти период функции

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

quicklatex.com 9c239015d84cd4698d0c9a80b3b2587f l3

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

quicklatex.com ed6d19787c8b8b7c8928943bcc5f5cb6 l3

quicklatex.com ec4ea6f4dd0b586248ca2ef9bbb672b6 l3

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

quicklatex.com 052ec7f01cde39e72d1d960f7aff6e63 l3

quicklatex.com 6472321a52206e55bc4ca308ecce8da0 l3

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

quicklatex.com 7da0a6108f36ea5d90068d22dc73d9b9 l3

quicklatex.com 4e79cfe8c3dd3d99e01ad01e0da42103 l3

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

Источник

Свойства тригонометрических функций

Содержание

div1

Знаки тригонометрических функций

определяются тем, в каком квадранте (четверти) координатной плоскости Oxy лежит луч OM (рисунки 1, 2, 3, 4).

tf18

tf18w300

Периодичность тригонометрических функций. Полупериодичность синуса и косинуса

Рассмотрим рисунок 5.

tf19

sin (α° + 360°) = sin α°, cos (α° + 360°) = cos α°,

sin (α° – 360°) = sin α°, cos (α° – 360°) = cos α°,

Поворачивая луч OM1 на полный угол по ходу или против хода часов n раз ( 360n градусов или 2nπ радиан), получаем следующие формулы:

tfp9

tfp9w400

tfp9w300

Теперь рассмотрим рисунок 6.

tf20

sin (α° + 180°) = – sin α°, cos (α° + 180°) = – cos α°,

sin (α° – 180°) = – sin α°, cos (α° – 180°) = – cos α°,

sin (α – π) = – sin α, cos (α – π) = – cos α.

Полученные формулы описывают свойство полупериодичности синуса и косинуса.

Таким образом, в случае, когда углы измеряются в градусах, угол 180° является полупериодом синуса и косинуса.

tfp17

tfp17w400

то справедливы формулы:

tfp18

tfp18w400

tfp18w300

Четность тригонометрических функций

Рассмотрим рисунок 7.

tf21

tfp21

tfp21w400

tfp21w300

Следовательно, справедливы формулы:

откуда вытекают формулы:

Таким образом, косинус – четная функция, а синус, тангенс и котангенс – нечетные функции.

Демонстрационные варианты ЕГЭ и ОГЭ

С демонстрационными вариантами ЕГЭ и ОГЭ по всем предметам, опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Наши учебные пособия для школьников

При подготовке к ЕГЭ и к ОГЭ по математике Вам могут также пригодиться наши учебные пособия.

Источник

Математика. Периодичность тригонометрических функций.

Периодической называется функция, которая повторяет свои значения через какой-то регулярный интервал, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периодафункции): существует такое ненулевое число TT (период), что на всей области определения функции выполняется равенство f(x)=f(x+T).f(x)=f(x+T).

Тригонометрические функции (синус, косинус, тангенс, котангенс) являются периодическими.

Периодичность функций sin φ и cos φ

Предположим, что вектор ОА = (х, у) единичной длины образует с осью абсцисс угол φ.

Если сделать полный оборот вектора ОА вокруг точки О против часовой стрелки, то получится угол φ + 360°. Но вектор ОА при этом займет первоначальное положение, а потому координаты его х и у не изменятся.

у = sin φ = sin(φ + 360°),

x = cos φ = cos (φ+ 360°).

Эти соотношения показывают, что значения функций sin φ и cos φ не изменяются, если их аргумент, увеличить на 360°.

Пусть f(х) есть некоторое выражение, зависящее от переменной величины х. (Например, f(х) = x 2 , f(х) = sin x и т. д.)

Тогда равенство y = f(х)

Определяет у как функцию аргумента х.

Если при любых допустимых значениях аргумента х

где Т — некоторое отличное от нуля число, то функция f (x) называется периодической, а число Т — ее периодом.

Согласно этому определению функции sin x и cos х являются периодическими с периодом Т = 360°.

При n полных оборотах вектора ОА против часовой стрелки образуется угол φ + 360°n, а по часовой стрелке — угол φ — 360°n. В каждом из этих случаев координаты х и у вектора не изменяются, а потому не изменяются sin φ и cos φ.

Таким образом, cos φ = cos (φ + 360°n),

sin φ = sin (φ + 360°n), (1)

где n — любое целое число (положительное, отрицательное или нуль).

Можно доказать, что любая периодическая функция (а не только sin φ и cos φ) имеет бесконечное множество периодов.

Говоря о периоде функции, удобно из бесконечного множества всех ее периодов иметь в виду какой-нибудь один вполне определенный период. Обычно выделяют наименьший положительный период функции.

Из всех рассмотренных выше периодов функции sin φ наименьшим положительным периодом является угол в 360°. Но, может быть, существует еще меньший угол, который мы просто упустили из виду, но который, Также является периодом функции sin φ? Чтобы решить этот вопрос, предположим, что наименьший положительный период функции sin φ равен Т. Тогда при любом φ

sin (φ + Т) = sin φ.

В частности, при φ = 0 получаем: sinТ = sin 0° = 0.

Составляет ли он период функции sin φ? Если бы это было так, то равенство sin (φ + 180°) = sin φ должно было бы выполняться при всех значениях φ. В частности, при φ = 90° мы получили бы

sin 270° = sin 90°.

Аналогично можно доказать, что периодом функции cos φ также является угол в 360° Предлагаем учащимся убедиться в этом самостоятельно.

Периодичность функций tg φ и ctg φ

Следовательно, при любом φ

tg (φ + 180°) = tg φ.

Это означает, что функция tg φ является периодической с периодом 180°. Но будет ли угол в 180° наименьшим жительным периодом этой функции?

Предположим, что наименьший положительный период функции tg φ равен Т. Тогда для всех допустимых значений φ должно быть

tg (φ + Т) = tg φ

В частности, при φ = 0° получаем:

tg Т = tg 0° = 0.

Но тангенс положительного угла равен нулю лишь тогда, когда синус этого угла равен нулю, то есть при Т = 180°, 360°, 540° и т, д. Следовательно, никакой положительный угол, меньший 180°, не может быть периодом функции tg φ. Остается признать, чтб периодом(то есть наименьшим положительным периодом) функции tg φ является угол в 180°.

Аналогично можно доказать, что периодом функции сtg φ также является угол в 180°. Предлагаем учащимся убедиться в этом самостоятельно.

Упражнения

1. Данные выражения преобразовать так, чтобы входящие в них углы были положительными и не превышали 180°:

a) tg 205°; б) tg (—185°); в) ctg 300°; г) ctg (—210°).

2. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90°:

3. Доказать, что угол в 120° является одним из периодов функции у = ctg 3х.

4. Доказать, что любой период Т функции у = ctg х является корнем уравнения

Верно ли обратное утверждение?

О периодических функциях.

Если функция f(x) периодична с периодом Т, то по значениям этой функции на любом отрезке длины Т можно восстановить ее значения на всей числовой прямой.

Действительно, пусть периодическая функция f(x) задана в интервале (а, а + Т), где Т — период этой функции.

Покажем, как можно определить значения этой функции в интервале (а + Т, а + 2T ).

pic04

Для любой точки b из этого интервала можно указать точку b из интервала (а, а + T ), отстоящую от b на расстоянии T.

В силу периодичности функции f(x)

f(b) = f( b)

Таким образом, по заданным значениям функции f в интервале (а, а +T ) можно восстановить значения этой функции в интервале (а + Т, а + 2T ). Затем исходя из значений функции f в интервале (а + Т, а + 2T ), можно восстановить ее значения в интервале (а + 2T, а + 3T ). После этогo точно так же можно найти значения функции f в интервале (а + 3T, а + 4T) и т. д. Аналогично можно определить значения функции f(x) и во всех точках числовой прямой, лежащих левее отрезка (а, а + Т ).

Итак, задание периодической с периодом Т функции f(x) на любом интервале длины Т дает возможность полностью охарактеризовать ее на всей числовой прямой. Поэтому для исследования функции f(x), периодической с периодом Т, достаточно изучить ее поведение лишь на каком-нибудь интервале длины Т. Например, для исследования функций у = sin φ и у = cos φ достаточно рассмотреть их лишь при 0° Просмотр содержимого документа
«Математика. Периодичность тригонометрических функций.»

Источник

Adblock
detector

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, y = sin x, , y = tg x — периодические функции.

Дадим определение периодической функции:

Функция y=f(x) называется периодической, если существует такое число T, не равное нулю, что для любого x из ее области определения f(x + T) = f(x).

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа T. Число T называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, y = sin x, , y = cos x, , y = tg x, , y = ctg x — периодические функции.

Для функций y = sin x и y = cos x период T = 2pi,

Для функций tg x и y = ctg x период T = pi.

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция y = fleft(xright) определена для всех действительных чисел. Ее период равен двум и f(1)=5. Найдите значение выражения 3f(7) - 4 f(-3).

График функции {y = }fleft(xright) может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции {y = }fleft(xright). Поскольку период функции равен 2, значения функции в точках 3, 5, 7dots 1 + 2k будут также равны пяти. Здесь k — целое число.

Как ведет себя функция {y = }fleft(xright) в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции {y = }fleft(xright) в точках -3 и 7 равны пяти. Мы получим: 3fleft(7right)4fleft(-3right)=3cdot 5-4cdot 5=-5.

2. График четной периодической функции y = fleft(xright) совпадает с графиком функции zleft(xright)=2(x-1)^2 на отрезке от 0 до 1; период функции y = fleft(xright) равен 2. Постройте график функции y = fleft(xright) и найдите f(4 ).

Построим график функцииzleft(xright)=2(x-1)^2 при xin [0;1].

Поскольку функция y = { f}left({ x}right) четная, ее график симметричен относительно оси ординат. Построим часть графика при xin [-1;0], симметричную части графика от 0 до 1.

Период функции y = fleft(xright) равен 2. Повторим периодически участок длины 2, который уже построен.

Найдем f(4)

f(4)= f (0 + 2cdot 2) = f(0) = 2.

3. Найдите наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}}

Наименьший положительный период функции y={sin x} равен 2pi.

График функции y=sin 3x получается из графика функции y={sin x} сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции y={sin 3x} частота в 3 раза больше, чем у функции y={sin x}, а наименьший положительный период в 3 раза меньше и равен frac{{rm 2}pi }{{rm 3}}. Значит, на отрезке 2pi укладывается ровно 3 полных волны функции y={sin 3x}.

Рассуждая аналогично, получим, что для функции y={cos 5x} наименьший положительный период равен frac{{rm 2}pi }{{rm 5}}. На отрезке 2pi укладывается ровно 5 полных волн функции y={cos 5x}.

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}} равен 2pi.

4. Период функции fleft(xright) равен 12, а период функции gleft(xright) равен 8. Найдите наименьший положительный период функции zleft(xright)=fleft(xright)+gleft(xright).

По условию, период функции fleft(xright) равен 12. Это значит, что все значения fleft(xright) повторяются через 12, через 24, 36, 48 ... 12n . Если мы выберем любую точку x_0 на графике функции fleft(xright), то через 12, 36, 48dots 12n значение функции будет такое же, как и в точке x_0.

Аналогично, все значения функции gleft(xright) повторяются через 8, 16, 24, 32dots 8k. В этих точках значения gleft(xright) будут такие же, как и в точке x_0.

На каком же расстоянии от точки x_0 расположена точка, в которой значение функции zleft(xright)=fleft(xright)+gleft(xright) такое же, что и в точке x_0? Очевидно, на расстоянии T = 12n = 8k. Это значит, что число T делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, T = 24 .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых. 

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Периодические функции» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Добавить комментарий