Как найти период обыкновенной дроби

Это очень просто

Время на прочтение
2 мин

Количество просмотров 19K

Рассмотрим следующую задачу. Найти период дроби 1/81. Уверяю, что для решения не потребуется ни калькулятор, ни деление столбиком. Для начала вспомним чему равно 81*(Период). Пусть длина периода n, тогда исходная дробь запишется как:

$frac{1}p=frac{Период}{10^n}+frac{Период}{10^{2n}}+frac{Период}{10^{3n}}+...$

Перепишем данное представление в следующем виде:

$frac{1}p=frac{Период}{10^n}+frac{1}{10^n} cdotleft(frac{Период}{10^{n}}+frac{Период}{10^{2n}}+..right) $

Последнее выражение можно представить так:

$frac{1}p=frac{Период}{10^n}+frac{1}{10^n} cdotfrac{1}p$

Ну а теперь то соотношение, которое мы искали:

$pcdotПериод=10^n-1$

Для нашего случая это тождество будет следующим:

$81 cdotПериод=10^n-1$

Разделим левую и правую часть на 9, получим:

$9 cdotПериод=111...111$

Первое число, составленное из одних единиц, которое делится на 9 равно 111111111, это следует из признака делимости на 9. Делить будем через сумму цифр исходного числа. Двигаемся слева направо, складываем цифры делимого и на каждом шаге записываем полученную сумму. Результат работы данного алгоритма — число 12345678,9999… Здесь надо пояснить, что когда мы достигаем крайней правой цифры, то ставим запятую и полученную сумму цифр исходного числа дублируем как бесконечную десятичную дробь. Вспоминаем, что 0,999…=1 и получаем ответ, который мы искали 12345679. Если рассмотреть более общую задачу нахождения периода дроби $frac{1}{9^n}$, то окажется, что период такой дроби имеет длину ${9^{n-1}}$ и если известен период для случая n-1, то следующий равен произведению данного периода на число вида 11111… (повторяется ${9^{n-1}}$ раз)22222… (повторяется ${9^{n-1}}$ раз)33333… (повторяется ${9^{n-1}}$ раз). Самая правая секция будет иметь вид 8888..889. Последняя цифра девятка.
И еще одно наблюдение, теперь для дробей вида $frac{1}{11^{n}}$. В этом случае длина периода равна $2cdot{11^{n-1}}$. И если известен период для случая n-1, то следующий период равен произведению данного периода на число, составленное из 10 блоков, где длина каждого блока $2cdot{11^{n-2}}$. Блоки имеют следующую структуру:
09090909…
18181818…
27272727…
36363636…

последний блок 90909091. Для $frac{1}{11}$ период 09, для $frac{1}{11^{2}}$ период будет 09182736455463728191*9=0082644628099173553719.
Проверил формулу для $frac{1}{11^{3}}$. Получил

75131480090157776108189331329827197595792637114951164537941397445529676934635612
32156273478587528174305033809166040570999248685199098422238918106686701728024042
0736288504883546205860255447032306536438767843726521412471825694966190833959429,

что совпадает с периодом без ведущих нулей.

Приведу код процедур, которые я использовал для проверки своих выводов.

Function GreatestCommonDivisor(x,y)

    if x=y then
        return x;
    endif;  

    a=min(x,y);
    if a=1 then
        return 1;
    endif;  
    b=x+y-a;

    while TRUE do
     c=b%a; 
     if c=0 then
         return a;
     endif;  
     b=a;
     a=c;
    enddo;

EndFunction

Function NumeratorFractionPeriod(numerator,denumerator)

    // дробь a/b

    a=numerator;
    b=denumerator;

    while b%2=0 do
        b=b/2;
        a=a*5;
    enddo;  

    while b%5=0 do
        b=b/5;
        a=a*2;
    enddo;  
    //наибольший общий делитель
    c=GreatestCommonDivisor(a,b);
    a=a/c;
    b=b/c;

    if b=1 then
        Period=string(a);
        return Period;
    endif;

    if a>b then
        Period=string((a-a%b)/b);
        a=a%b;
        if a=0 then
            return Period;
        endif;  
        Period=Period+"(";
    else
        Period="(";
    endif;      

    while a%10=0 do
        a=a/10;
    enddo;  

    i=a;
    while TRUE do
        j=0;
        while i<b do
            i=i*10;
            j=j+1;
            if j>1 then
             Period=Period+"0";
            endif; 
        enddo;  

        check=i-a;
        if (check%b)=0 then
            Period=Period+(check)/b;
            break;
        else
            j=i%b;
            Period=Period+(i-j)/b;
            i=j;
        endif;    
    enddo;

    return Period+")";
EndFunction 

Периодические десятичные дроби

10 февраля 2012

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

Периодическая десятичная дробь — это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе — периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Периодическая десятичная дробь 0,3333...

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Периодическая десятичная дробь 0,583333...

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Периодическая десятичная дробь 1,545454...

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Периодическая десятичная дробь 0,641025641025...

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.

Периодическая десятичная дробь 3066,666...

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a/b. Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным — см. урок «Десятичные дроби». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть, если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться.

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

4 обыкновенные неправильные дроби

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Разделить 26 на 15 уголком

Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 … = 1,7(3).

Разделить 7 на 12 уголком

В итоге получается дробь: 0,5833 … = 0,58(3).

Разделить 45 на 11 уголком

Записываем в нормальном виде: 4,0909 … = 4,(09).

Разделить 41 на 99 уголком

Получаем дробь: 0,4141 … = 0,(41).

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь X = abc(a1b1c1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k;
  2. Найдите значение выражения X · 10k. Это равносильно сдвигу десятичной точки на полный период вправо — см. урок «Умножение и деление десятичных дробей»;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь;
  4. В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

  • 9,(6);
  • 32,(39);
  • 0,30(5);
  • 0,(2475).

Работаем с первой дробью: X = 9,(6) = 9,666 …

В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10k = 101 = 10. Имеем:

10X = 10 · 9,6666 … = 96,666 …

Вычитаем исходную дробь и решаем уравнение:

10XX = 96,666 … − 9,666 … = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 …

Период k = 2, поэтому умножаем все на 10k = 102 = 100:

100X = 100 · 32,393939 … = 3239,3939 …

Снова вычитаем исходную дробь и решаем уравнение:

100XX = 3239,3939 … − 32,3939 … = 3239 − 32 = 3207;
99X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: X = 0,30(5) = 0,30555 … Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10k = 101 = 10;

10X = 10 · 0,30555 … = 3,05555 …
10XX = 3,0555 … − 0,305555 … = 2,75 = 11/4;
9X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 … Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒ 10k = 104 = 10 000;
10 000X = 10 000 · 0,2475 2475 = 2475,2475 …
10 000XX = 2475,2475 … − 0,2475 2475 … = 2475;
9999X = 2475;
X = 2475 : 9999 = 25/101.

Смотрите также:

  1. Сравнение дробей
  2. Тест к уроку «Десятичные дроби» (2 вариант)
  3. Четырехугольная пирамида в задаче C2
  4. Как сдать ЕГЭ по математике
  5. Задача B5: площадь сектора
  6. Задача B4: тарифы на сотовую связь

Определение

Бесконечная десятичная дробь, у которой одна или несколько цифр повторяются в одной и той же
последовательности, называется периодической десятичной дробью.

Например. $0,1234444444 ldots ; 12,453737373737 ldots$

Повторяющиеся цифры – период – для сокращения записи пишут в круглых скобках.

Например. $0,12344444444 ldots=0,123(4)$   ;
  $12,453737373737 ldots=12,45(37)$

Определение

Чистой периодической дробью называется периодическая дробь, у которой период начинается сразу после запятой.

Например. $2,4949 ldots=2,(49)$

Определение

Смешанной периодической дробью называется такая десятичная дробь, у которой между запятой и
периодом есть не менее одной неповторяющейся бесконечное число раз цифры.

Например. $0,11232323 ldots=0,11(23)$   ;
  $1,54444 . .=1,5(4)$

Чтобы обратить чистую периодическую дробь в обыкновенную, достаточно записать числителем ее период,
а в знаменателе записать столько девяток, сколько цифр в периоде.

Чтобы записать смешанную периодическую дробь в виде обыкновенной, надо из числа, стоящего до второго
периода вычесть число, стоящее до первого периода, результат записать в
числителе; в
знаменатель записать
число, содержащее столько девяток, сколько цифр в периоде, и столько нулей в конце, сколько цифр между
запятой и периодом.

Например. Запишем дробь $2,34(2)$ в виде обыкновенной

Читать первую тему – понятие дроби и виды дробей,
раздела дроби.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

0,66666666666666…

0,33333333333333…

0,68181818181818…

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.

Получаем периодическую дробь

Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.

Итак, делим 1 на 3

23111

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

0, (3)

Читается как «ноль целых и три в периоде»


Пример 2. Разделить 5 на 11

23112

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

0, (45)

Читается как «ноль целых и сорок пять в периоде»


Пример 3. Разделить 15 на 13

23113

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

1, (153846)

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».


Пример 4. Разделить 471 на 900

23114

В этом примере период начинается не сразу, а после цифр 5 и 2.  Сокращённая запись для данной периодической дроби будет выглядеть так:

0, 52 (3)

Читается как: «ноль целых пятьдесят две сотых и три в периоде».


Виды периодических дробей

Периодические дроби бывают двух видов: чистые и смéшанные.

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

0, (3)

0, (6)

0, (5)

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:

0,52 (3)

0,16 (5)

0,31 (6)

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.


Избавляемся от хвоста

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.

Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

23115

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

0, (3) ≈ 0,33


Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

23116

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

6,31 (6) ≈ 6,317


Перевод чистой периодической дроби в обыкновенную дробь

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.

Итак, записываем в числителе период дроби 0, (3) то есть тройку:

23211

А в знаменатель нужно записать некоторое количество девяток. При этом,  количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

23212

Полученную дробь 23213 можно сократить на 3, тогда получим следующее:

23214

Получили обыкновенную дробь 23215 .

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается 23215


 Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

23311

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

23312

Полученную дробь  23313  можно сократить эту дробь на 9, тогда получим следующее:

23314

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается  23315


Перевод смешанной периодической дроби в обыкновенную дробь

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

23411

Итак, записываем в числителе разность:

23412

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

23413

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

23414

Получили выражение, которое вычисляется легко:

23415

Получили ответ  23416

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается 23416


Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

23511

Итак, записываем в числителе разность:

23512

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

23513

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

   23514

Получили выражение, которое вычисляется легко:

23515

Получили ответ  23516

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается 23516


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Вероятно, читатель знает (а если нет — ещё лучше: он узнает это из нашей статьи), что всякая обыкновенная дробь представляется периодической десятичной дробью (конечную десятичную дробь мы можем считать периодической с Но вряд ли многие представляют, сколько неожиданностей заключает в себе эта периодическая дробь. Рассмотрим три примера:

7

= 0,142857142857. 1

12

= 0,083333333333. 1

13

= 0,076923076923.

Мы видим, что у чисел 1 / 7 и 1 / 13 период начинается сразу после запятой и состоит из шести цифр (142857 и 076923 соответственно), а у он начинается с третьей позиции после запятой и состоит из единственной Внимательное рассмотрение периодов позволяет заметить ещё одно обстоятельство. Именно, положим (период и будем последовательно умножать

2 N = 285714, 3 N = 428571,
4 N = 571428, 5 N = 714285,
6 N = 857142, 7 N = 999999.

Мы видим, что первые пять из этих чисел получаются из числа N «круговой перестановкой» цифр: цифр из конца числа переезжает в начало; а состоит из одних девяток. Теперь проделаем то же с периодом

2 N = 153846, 3 N = 230769,
4 N = 307692, 5 N = 384615,
6 N = 461538, 7 N = 538461,
8 N = 615384, 9 N = 692307,
10 N = 769230, 11 N = 846153,
12 N = 923076, 13 N = 999999.

Здесь дело обстоит несколько иначе, но всё равно интересно: пять из выписанных 4 N , 9 N , получаются из числа N круговой перестановкой цифр, другие шесть 5 N , 6 N , 7 N , получаются круговой перестановкой цифр друг из друга и, наконец, состоит из одних девяток.

Можно заметить ещё вот что. Если взять любое из выписанных выше шестизначных чисел, кроме числа 999999, «разломить» его на два трёхзначных числа и вычислить сумму этих половинок, то получится 999; например,

Как видите, с периодическими десятичными дробями связано немало загадок. Некоторые из этих загадок остаются не разгаданными по сей день, несмотря на многочисленные попытки, предпринимавшиеся на протяжении нескольких веков математиками из разных стран, как великими, так и более «скромными». Всё же об этом мы можем рассказать.

Хобби Иоганна Бернулли

Оставим на время периоды и перенесёмся в Швейцарию конца XVIII века. Мы наблюдаем странную картину: маститый математик Иоганн III Бернулли, представитель знаменитой математической семьи Бернулли, удостоившейся, подобно королевским династиям, присоединения порядковых номеров к именам, занимается, можно сказать, детской игрой! Он разлагает на простые множители числа, записываемые одними единицами: 11 = 11, В 1773 году Бернулли помещает в трудах Берлинской академии таблицу простых делителей чисел, составленных из — до Несмотря на то, что ему не удалось найти делители для некоторых чисел этого вида 17, 29), а для трёх чисел 25, 27) разложение не доведено до простых множителей, несмотря на допущенные им ошибки (для 24, 26), мы сегодня можем только преклоняться перед гигантским трудом по вычислению простых множителей этих огромных чисел. Можно предположить, что автором таблицы двигала не только исследовательская жилка учёного, но и подлинная эстетическая страсть художника, вдохновлённого удивительным притягательным миром этой загадочной вереницы единиц. Свои сомнения в правильности разложения в отдельных случаях И. Бернулли отражает звёздочкой.


Рис. 1.

В течение первых ста лет, прошедших со времени опубликования таблицы И. Бернулли, в неё не было внесено особой ясности. В 1838 году Вестерберг разложил на простые множители число из — и это всё. В 1879 году французский математик Эдуард Люка находит простые делители для и признаёт, что цепочка из не поддаётся разложению. В 1895 году в Париже выходит его книга «Занимательная арифметика», содержащая приведённую ниже таблицу.

Таблица
111 = 3 · 37
1111 = 11 · 101
11111 = 41 · 271
111111 = 3 · 7 · 11 · 13 · 37
1111111 = 239 · 4649
11111111 = 11 · 73 · 101 · 137
111111111 = 3² · 37 · 333667
1111111111 = 11 · 41 · 271 · 9091
11111111111 = 1121649 · 513239
111111111111 = 3 · 7 · 11 · 13 · 37 · 101 · 9901
1111111111111 = 53 · 79 · 265371653
11111111111111 = 11 · 239 · 4649 · 909091
111111111111111 = 3 · 31 · 37 · 41 · 271 · 2906161
1111111111111111 = 11 · 17 · 73 · 101 · 137 · 5882353
11111111111111111 = 2071723 · 5363222357
111111111111111111 = 3² · 7 · 11 · 13 · 19 · 37 · 52579 · 333667

Угасший было интерес к числам, составленным из единиц, вновь возрос в последние годы, особенно в связи с развитием теории арифметических кодов, служащей основой для реализации методов помехоустойчивого кодирования в компьютерной технике (см., например, книгу Ю. Г. Дадаева «Теория арифметических кодов», изданную в Москве в 1981 г.). Наши загадочные числа, спустя почти двести лет после опубликования первой таблицы их делителей, приобретают, наконец, собственное имя. В «Занимательной теории чисел» 1964 г.) её автор А. Бейлер, посвятив этим числам целую главу под названием «111. 1111», вводит для них термин «repunit» (сокращение английского repeated unit — повторенная единица). Русского слова «репьюнит» ещё не найти в словарях, но оно уже появляется в рефератах к зарубежным статьям, приобретая силу нового международного термина.

Математики продолжают штурмовать таблицу делителей репьюнитов, и к n в таблице уже достигает 3000 (С. Ейтс), однако в ней ещё достаточно много пробелов. (К настоящему времени часть этих пробелов ликвидирована и найдены делители. репьюнитов включительно). Отдельный интерес представляют простые репьюниты, поиск которых также продолжается. Уже доказано, что и репьюниты простые.

Нас, однако, репьюниты интересуют не сами по себе, а в связи с периодами десятичных дробей. Существование связи между теми и другими предвидел и Бернулли, который одновременно с уже упоминавшейся таблицей делителей репьюнитов опубликовал обзор известных к тому времени результатов о периодах десятичных дробей, включавший в себя пространную таблицу этих периодов В действительности, эта связь, как мы сейчас увидим, лежит на поверхности.


Рис. 2.

Делители репьюнитов и
представление обыкновенных дробей десятичными

Начнём с трёх простых наблюдений.

Наблюдение 1 . Предположим, что число 999. 999, составленное из n девяток, делится на данное натуральное Запишем частное от деления в виде числа :

a 1 a 2 a 3 . a n

( где несколько первых цифр a i могут быть нулями ). Тогда

m

= 0, a 1 a 2 a 3 . a n a 1 a 2 a 3 . a n .

Наблюдение 2 . Если число m не делится на 3, то делимость на m числа, составленного из равносильна делимости числа, составленного из

Наблюдение 3 . Если число m не делится на 2 и на 5, то найдётся репьюнит, делящийся

Доказательство . Будем последовательно находить остатки от деления чисел 1, 11, 111 Последовательность этих остатков бесконечна, но в то же время для них имеется только значений Поэтому найдутся два разных репьюнита с одинаковыми остатками от деления («принцип Дирихле»!). Разность этих репьюнитов делится в то же время она имеет вид произведением некоторого репьюнита на некоторую степень Но взаимно просто значит, последний репьюнит делится

Теперь мы можем сформулировать Важный Результат.

Теорема 1 . Если натуральное число m не делится на 2 и на 5, то период десятичной дроби , начинается сразу после запятой. Его длина равна наименьшему n, при котором число, составленное из делится Сам период равен частному от деления этого числа из девяток записанному как число ( возможно, с нулями в начале ). Если m не делится и на 3, то можно также сказать, что длина периода равна номеру первого репьюнита, делящегося на m .

Всё это нами уже доказано. Между прочим, из этой теоремы вытекает следующий, довольно неожиданный результат.

Следствие . Если m не делится на 2, 3 и 5, то период десятичной дроби , делится на 9.

Действительно, если m не делится на 3, то число делится на 9.

Утверждения о периодах в случаях, не охватываемых мы приведём в качестве упражнений.

Упражнение 1 . Пусть m = 2 a 5 b m’ , где m’ не делится ни ни и пусть Тогда период десятичной дроби, начинается с позиции после запятой и имеет такую же длину, как период

Доказательство этого утверждения опирается на лемму: если р и q взаимно просты, то найдутся целые положительные A и B такие, что

Упражнение 2 . Если р и q взаимно просты, то период десятичной дроби, имеет такую же длину, как период десятичной

Наконец, можно усилить наше следствие.

Упражнение 3 . Если q не делится на 3, то при период десятичной дроби, делится на 9.

Теперь мы приступаем к изучению зависимости длин периодов от знаменателей. В этом изучении нам поможет, наряду с теоремой 1,

Малая теорема Ферма

В отличие от своей «Великой теоремы» малую теорему Пьер Ферма снабдил доказательством: он изложил его в в одном из писем. Теорема формулируется так:

Если p — простое число и a — произвольное натуральное число, не делящееся на p, то делится на p .

Мы не приводим доказательства этой теоремы (хотя читатель, который проделает все упражнения к этой статье, вероятно сможет её доказать). Её доказательство имеется в популярной литературе (см., например, книгу Р. Куранта и Г. Роббинса «Что такое математика?», переизданную в Москве в 1976 г.). Нас эта теорема интересует, главным образом, как средство доказательства фундаментального свойства периодов.

Длина периода дроби с простым знаменателем

Теорема 2 . Если p есть простое число, отличное от 2 и 5, то длина периода является делителем числа

Доказательство . Согласно теореме 1, длина периода есть наименьшее такое, что число, составленное из делится В то же время в силу малой теоремы Ферма число т.е. число, составленное из девяток, делится Мы должны доказать, что делится Если то доказывать нечего; предположим, что Числа, составленные из и n девяток, делятся дополним второе из них нулями до числа и составим разность полученных чисел:

– 999. 999 999. 999
999. 999 000. 000
999. 999

Это число составлено из p –1– n девяток, и оно тоже делится Проделав ещё одно подобное вычитание, мы находим, что делится число, составленное из девяток, потом — из девяток В конце концов мы придём к числу, в котором девяток меньше, и тут есть две возможности. Либо это число вообще будет нулём, но это как раз и значит, что делится Либо в этом числе девяток будет но а это противоречит тому, что n — наименьшая возможная длина числа из девяток, которое делится Теорема доказана.

Обозначим для числа m через L ( m ) длину периода десятичной дроби, Мы доказали, что если p — простое число, то есть делитель числа Но какой? Посмотрим на таблицу И. Бернулли (рис. 2). Мы видим, что Ясности не много.

С точки зрения соотношения между длиной периода и все простые подразделяются на три категории:

  1. «полнопериодные» простые, у которых длина периода меньше знаменателя:
  2. «неполнопериодные» простые с нечётной длиной периода:
  3. «неполнопериодные» простые с чётной длиной периода:

Кропотливая работа математиков по выявлению какой-нибудь закономерности в расположении этих групп среди всех простых чисел увенчалась неожиданным результатом. Было обнаружено достаточно устойчивое отношение численностей этих групп в пропорции при этом были использованы таблицы длин периодов для простых знаменателей до 1 370 471 включительно (С. Ейтс, 1975 г.). Были получены и другие общие результаты, причём оказалось, что большое значение при определении длины периода с имеет остаток от деления Например, если этот остаток 27, 31, 39, то нечётно, а если то чётно. Всё же задача вычисления чисел для видимо, далека от решения.

Случай непростого знаменателя

Упражнение 4 . Если p 1 и p 2 взаимно просты между собой и то есть наименьшее общее кратное чисел и

Поскольку всякое натуральное число есть произведение степеней простых, которые между собой взаимно просты, последнее утверждение сводит задачу вычисления длины периода к случаю, когда знаменатель есть степень простого числа. А здесь снова нет ясности: например,

Теперь нам пора оставить длины периодов и обратиться к объяснению феноменов, обнаруженных в начале статьи.

Эффект круговой перестановки

Напомним, в чём он состоит. Мы видели, что шестизначный период при умножении 3, 4, подвергается круговой перестановке: цифр из конца числа переезжает в начало. Несколько иначе ведёт себя при умножении на различные числа шестизначный период Впрочем, что именно с ним происходит, читатель может вспомнить, заглянув в начало статьи, а мы сейчас докажем теорему, более или менее объясняющую это явление.

Теорема 3 . Пусть N есть период дроби 1/ m ( записанный как число, возможно, начинающееся одним или несколькими нулями ), где m взаимно просто с 10, и пусть l есть остаток от деления Тогда получается из перестановкой из начала числа в конец .

Доказательство . Пусть M есть целая часть числа т.е. Умножим десятичную при этом запятая переедет на влево. Целая часть получившегося числа — Отбросим целую часть. Получится число

m

– M = 10 k – Mm

Это периодическая десятичная дробь, период которой получается из периода круговой перестановкой цифр: переезжает из начала в конец; но в то же время это число больше а значит, и его период больше периода Теорема доказана.

Если число 1/ m имеет ( m –1 )-значный период, то доказанная теорема всё объясняет. Действительно, круговыми перестановками цифр из периода можно получить чисел (включая его самого), и все эти числа различны. С другой стороны, умножая период мы тоже получаем чисел; значит, это в точности те же числа. Если же период короче, то круговые перестановки цифр не исчерпывают всех чисел с Всё, что можно сказать в этом случае — это что круговая перестановка цифр всегда приводит к числу — это доказывается точно так же, как теорема 3.

Интересно, что теорема 3 в некотором смысле обращается:

Теорема 4 . Пусть N есть целое число ( запись которого, возможно, начинается нулём или несколькими нулями ), и пусть A есть число, составляемое последними Предположим, что при перенесении из конца в начало оно превращается в где Тогда периодическая десятичная равна ( Последняя дробь может оказаться сократимой .)

Доказательство . Пусть n — число знаков При перенесении из конца в начало оно превращается в число

10 k

+ A ·1 0 n – k .

10 k

+ A ·1 0 n – k = lN ,

N – A + A ·1 0 n = l N ·1 0 k ,

A

= 10 n – 1,

0, NNN . · 10 n – k l – 1

A

= 0,999. = 1,

что нам и требуется.

Сами того не желая, мы научились решать один тип олимпиадных задач. Вот пример.

Задача . Найти все шестизначные числа, которые увеличиваются в целое число раз при перенесении последней цифры из конца в начало . (Мы будем считать, как это обычно делается, что число начинается не с нуля; задачу мы можем и без этого предположения, но ответ будет чересчур громоздок: он будет включать в себя числа 000001, 000009, 000011, Мы будем также понимать слово «увеличивается» буквально, т.е. исключим случай, когда число остаётся при перенесении цифры неизменным; в противном случае в ответ вошли бы числа 111111, 999999.)

Решение . Пусть A — последняя цифра нашего числа, и пусть при её перенесении в начало число увеличивается в Таким образом, В силу теоремы 4 наше число есть шестизначный период (возможно, сократимой) дроби Знаменатель этой дроби до сокращения может быть одним из 29, 89; после сокращения на однозначное число знаменатель может превратиться ещё в Так как период дроби шестизначный, знаменатель должен быть делителем числа Это оставляет для него только три возможности: 7, 13, 39. Таким образом, При наша дробь где (дробь должна быть поскольку период не должен начинаться с нуля). Период такой дроби есть (период есть 025641). При дробь и должна сокращаться что оставляет для неё единственную период равен 142857. Итак,

Ответ : 102564, 128205, 142857, 153846, 179487, 205128, 230769.

Упражнение 5 . Решите аналогичную задачу для чисел.

Указание . Воспользуйтесь таблицей делителей репьюнитов.

Теорема 5 . Пусть q — простое число, большее 5, и пусть Предположим, что период есть Далее, обозначим число, образуемое первыми периода, и число, образуемое его последними Тогда

Доказательство . По условию,

10 2 n – 1

,

Поскольку 2 n есть наименьшее k , при котором делится не делится а так как q — простое число, то взаимно просто Значит, делится на Но в то же время это числа, которые не оба состоят из одних девяток. Значит, и, таким образом, что и требовалось доказать.

Заметим, что простота q использовалась нами только в одном месте: мы вывели из неё, что взаимно просто Разумеется, эта взаимная простота может наступить и при так что заключение нашей теоремы справедливо и при многих непростых знаменателях.

Ещё один эффект

Рассмотрим снова период дроби 1 / 7 : N = 142857. Возведём его в квадрат отделим последние шесть цифр и сложим с тем, что останется:

122449 + 20408 = 142857.

Получился снова наш период. Проделаем подобное с периодом

Получился, правда, не наш исходный период, но число, отличающееся от него на круговую перестановку цифр. Аналогичное для периода

10 февраля 2012

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби»)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

— это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется дроби, а количество цифр в этом наборе — . Остальной отрезок значащей части, который не повторяется, называется .

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом — в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа. Поэтому если вы забыли что это такое, рекомендую повторить — см. урок «Умножение и деление десятичных дробей».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным — см. урок «Десятичные дроби». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть, если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться.

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди — непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде:

В итоге получается дробь:

Записываем в нормальном виде:

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет
  2. Найдите значение выражения Это равносильно сдвигу десятичной точки на полный период вправо — см. урок «Умножение и деление десятичных дробей»;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

Работаем с первой дробью:

В скобках содержится лишь одна цифра, поэтому период Далее умножаем эту дробь Имеем:

10 X = 10 · 9,6666 . = 96,666 .

Вычитаем исходную дробь и решаем уравнение:

10 X − X = 96,666 . − 9,666 . = 96 − 9 = 87;
9 X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак,

Период k = 2, поэтому умножаем все

100 X = 100 · 32,393939 . = 3239,3939 .

Снова вычитаем исходную дробь и решаем уравнение:

100 X − X =
99 X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10 X = 10 · 0,30555 . = 3,05555 .
10 X − X =
9 X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒
10 000 X = 10 000 · 0,2475 2475 = 2475,2475 .
10 000 X − X = 2475,2475 . − 0,2475 2475 . = 2475;
9999 X = 2475;
X = 2475 : 9999 = 25/101.

Задача : на вход в функцию подается два целых числа (int(a), int(b)) . Вернуть нужно частное a/b , причем повторяющиеся числа (период) нужно взять в скобки.

Подошел к решению задачи методом брутфорса. Перебирал дробную часть , искал совпадения. Но в случае 1/117 в период входит более 90 чисел и перебор чисел занимает больше времени, чем позволено в задаче.

Как по-другому решить эту задачу? Может есть более элегантное решение?

3 ответа 3

Для поиска периода рационального числа существует отдельный алгоритм. Перебираем одну за другой степени числа 10: 10, 100, 1000, 10000 и т.д. Смотрим на остаток от деления этого числа на знаменатель. Если остаток от деления равняется 1, значит степень числа 10, это длина периода. Например, если в знаменателе стоит 13, то:

Получается, период равен 6. Этот период не зависит от того, что стоит в числителе (если дробь сокращена).

Метод не работает, если знаменатель делится на 5 или 2. В таком случае его нужно делить на 2, или 5, пока получится число, которое не делится на 2, 5.

В общем случае (как для вашего примера 1/117), придется использовать длинную арифметику.

Алгоритм ищет только длину периода, что бы получить сам период, нужно делить самому.

Добавить комментарий