Как найти период полураспада через массу

Как правильно решать задачи на закон радиоактивного распада

Реакции первого порядка

Задача 67.
При лечении онкологических заболеваний в организм пациента вводят препарат, содержащий радиоактивный изотоп. Считая радиоактивный распад реакцией первого порядка, определить какая часть радионуклида останется в организме больного через 30 суток, если период полураспада составляет 130 суток.
Решение:
По истечении периода полураспада масса радиоактивного материала уменьшается в два раза. Поэтому количество периодов полураспада вещества будет равно n = (30/130). Поэтому, после n периодов полураспада через 30 суток в организме останется следующая часть радионуклида:

 (1/2)n = (1/2)(30/130) = (1/2)0,231 = 0,852 или 85,2%.

Ответ: останется 85,2% радионуклида.
 


Задача 66.
Найти массу радиоактивного материала через промежуток времени, равный четырем периодам полураспада. Начальная масса материала составляла 60 г.
Решение:
По истечении периода полураспада масса радиоактивного материала уменьшается в два раза. Поэтому, после четырех периодов полураспада масса материала будет составлять: 

(1/2)4 = 1/16

от первоначального количества. Следовательно, через заданный промежуток времени масса вещества будет равна: 

m(конечн.) = (1/16 . m(нач.) = 1/16 . 60 = 3,75 г.

Ответ: m(конечн.) = 3,75 г.
 


 
Задача 68.
Период полураспада некоторого вещества 3 недели. Через какое время количество нераспавшихся ядер уменьшится в 16 раз. 
Дано:
T = 2 недели;
N = 1/16 . N0;
t = ?
Решение:
Так как N = N0 . 2(-t/2);
(1/16 . N0) = N0 . 2(-t/2);
1/2(4) = 2(-t/2);
-4 = -t/2;
t = (-4) . (-2) = 8 недель.

Ответ: t = 8 недель.
 



Задача 69.
Какая доля от большого количества радиоактивных ядер остаётся нераспавшейся через интервал времени, равный пяти периодам полураспада?
Решение:
Для расчета нераспавшейся доли радиоактивных ядер используем уравнение: N = N0 . 2(-t/Т), где
N0 – количество радиоактивных ядер в произвольно выбранный начальный момент времени t = 0, N – количество радиоактивных ядер, не распавшихся к моменту времени t, Т – период полураспада. 

Учитывая, что t = 4T получим:

N = N0 . 2(-4t/Т);
N = N0 . 2(-4) = 100% . 1/23 = 100% .1/16 = 6,25%.

Ответ: 6,25%.



Загрузить PDF


Загрузить PDF

Периодом полураспада вещества, которое находится в стадии распада, называют время, в течение которого количество этого вещества уменьшится в два раза. Первоначально этот термин использовался для описания распада радиоактивных элементов, таких как уран или плутоний, но, вообще говоря, он может быть использован для любого вещества, которое подвергается распаду в установленной или экспоненциальной скорости. Вы можете рассчитать период полураспада любого вещества, зная скорость распада, которая является разницей между начальным количеством вещества и количеством вещества, оставшимся после определенного периода времени. Читайте далее, чтобы узнать, как быстро и легко подсчитать период полураспада вещества.

  1. Изображение с названием Calculate Half Life Step 1

    1

    Разделите количество вещества в одной точке во времени на количество вещества, оставшееся после определенного периода времени.

    • Формула для вычисления периода полураспада: t1/2 = t * ln(2)/ln(N0/Nt)
    • В этой формуле: t – прошедшее время, N0 – начальное количество вещества и Nt – количество вещества через прошедшее время.
    • Например, если вначале количество составляет 1500 граммов, а конечный объем составляет 1000 граммов, начальное количество, деленное на конечный объем, равно 1,5. Предположим, что время, которое прошло, составляет 100 минут, то есть (t) = 100 мин.
  2. Изображение с названием Calculate Half Life Step 2

    2

    Вычислите десятичный логарифм числа (log), полученного на предыдущем шаге. Для этого введите полученное число в научный калькулятор, а затем нажмите кнопку log, либо введите log(1,5) и нажмите знак равенства для получения результата.

    • Логарифмом числа по заданному основанию называется такой показатель степени, в который необходимо возвести основание (то есть столько раз, сколько необходимо основание умножить на само себя), чтобы получить это число. В десятичных логарифмах используется основание 10. Кнопка log на калькуляторе соответствует десятичному логарифму. Некоторые калькуляторы вычисляют натуральные логарифмы ln.
    • Когда log (1,5) = 0,176, то это означает, что десятичный логарифм 1,5 равен 0,176. То есть если число 10 возвести в степень 0,176, то получится 1,5.
  3. Изображение с названием Calculate Half Life Step 3

    3

    Умножьте прошедшее время на десятичный логарифм 2. Если вы рассчитаете log(2) на калькуляторе, то получится 0,30103. Следует помнить, что прошедшее время составляет 100 минут.

    • Например, если прошедшее время составляет 100 минут, умножьте 100 на 0,30103. Результат равен 30,103.
  4. Изображение с названием Calculate Half Life Step 4

    4

    Разделите число, полученное на третьем шаге, на число, вычисленное на втором шаге.

    • Например, если 30,103 разделить на 0,176, то получится 171,04. Таким образом, мы получили период полураспада вещества, выраженный в единицах времени, используемых в третьем шаге.
  5. Изображение с названием Calculate Half Life Step 5

    5

    Готово. Теперь, когда вы рассчитали период полураспада для этой задачи, необходимо обратить внимание на то, что для расчетов мы использовали десятичный логарифм, но вы могли использовать и натуральный логарифм ln – результат был бы таким же. И, на самом деле, при расчете периода полураспада натуральный логарифм используется чаще.

    • То есть, вам было бы необходимо рассчитать натуральные логарифмы: ln(1,5) (результат 0,405) и ln(2) (результат 0,693). Затем, если вы умножите ln(2) на 100 (время), получится 0,693 x 100=69,3, и разделите на 0,405, вы получите результат 171,04 – тот же, что и при использовании десятичного логарифма.

    Реклама

  1. Изображение с названием 1425718 6

    1

    Узнайте, сколько вещества с известным периодом полураспада осталось через определенное количество времени. Решите следующую задачу: Пациенту было дано 20 мг йода-131. Сколько останется через 32 дня? Период полураспада йода-131 составляет 8 дней. Вот, как решить эту задачу:

    • Узнаем, сколько раз вещество сократилось вдвое за 32 дня. Для этого узнаем, сколько раз по 8 (таков период полураспада йода) умещается в 32 (в количестве дней). Для этого необходимо 32/8 = 4, так, количество вещества сокращалось вдвое четыре раза.
    • Другими словами, это означает, что через 8 дней останется 20мг/2, то есть 10 мг вещества. Через 16 дней будет 10мг/2, или 5мг вещества. Через 24 дня останется 5мг/2, то есть 2,5 мг вещества. Наконец, через 32 дня у пациента будет 2,5мг/2, или 1,25 мг вещества.
  2. Изображение с названием 1425718 7

    2

    Узнайте период полураспада вещества, если известно начальное и оставшееся количество вещества, а также прошедшее время. Решите следующую задачу: Лаборатория получила 200 г технеция-99m и через сутки осталось только 12,5 г изотопов. Каков период полураспада технеция-99m? Вот, как решить эту задачу:

    • Будем действовать в обратном порядке. Если осталось 12,5г вещества, тогда прежде, чем его количество сократилось в 2 раза, вещества было 25 г (так как 12,5 x 2); до этого было 50г вещества, а еще до этого было 100г, и, наконец, до этого было 200г.
    • Это означает, что прошло 4 периода полураспада прежде, чем от 200 г вещества осталось 12,5 г. Получается, что период полураспада составляет 24 часа/4 раза, или 6 часов.
  3. Изображение с названием 1425718 8

    3

    Узнайте, сколько периодов полураспада необходимо для того, чтобы количество вещества сократилось до определенного значения. Решите следующую задачу: Период полураспада урана-232 составляет 70 лет. Сколько периодов полураспада пройдет, чтобы 20 г вещества сократилось до 1,25 г? Вот, как решить эту задачу:

    • Начните с 20г и постепенно уменьшайте. 20г/2 = 10г (1 период полураспада), 10г/2 = 5 (2 периода полураспада), 5г/2 = 2,5 (3 периода полураспада) и 2,5/2 = 1,25 (4 периода полураспада). Ответ: необходимо 4 периода полураспада.

    Реклама

Предупреждения

  • Период полураспада – это приблизительное определение времени, необходимого для распада половины оставшегося вещества, а не точный расчет. Например, если остался только один атом вещества, то после полураспада не останется только половина атома, а останется один или ноль атомов. Чем больше количество вещества, тем более точным будет расчет по закону больших чисел

Реклама

Что вам понадобится

  • Инженерный калькулятор

Об этой статье

Эту страницу просматривали 55 438 раз.

Была ли эта статья полезной?


Download Article


Download Article

  • Understanding Half-Life
  • |

  • Learning the Half-Life Equation
  • |

  • Calculating from a Graph
  • |

  • Using a Calculator
  • |

  • Example Problems
  • |

  • Video
  • |

  • Expert Q&A
  • |

  • Tips

The half-life of a substance undergoing decay is the time it takes for the amount of the substance to decrease by half. It was originally used to describe the decay of radioactive elements like uranium or plutonium, but it can be used for any substance which undergoes decay along a set, or exponential, rate. You can calculate the half-life of any substance, given the rate of decay, which is the initial quantity of the substance and the quantity remaining after a measured period of time.[1]

  1. Image titled Calculate Half Life Step 1

    1

    What is half-life? The term “half-life” refers to the amount of time that half of the starting substance takes to decay or change. It’s most often used in radioactive decay to figure out when a substance is no longer harmful to humans.[2]

    • Elements like uranium and plutonium are most often studied with half-life in mind.
  2. Image titled Calculate Half Life Step 2

    2

    Does temperature or concentration affect the half-life? The short answer is no. While chemical changes are sometimes affected by their environment or concentration, each radioactive isotope has its own unique half-life that isn’t affected by these changes.[3]

    • Therefore, you can calculate the half-life for a particular element and know for certain how quickly it will break down no matter what.

    Advertisement

  3. Image titled Calculate Half Life Step 3

    3

    Can half-life be used in carbon dating? Yes! Carbon dating, or figuring out how old something is based on how much carbon it has, is a very practical way to use half-life. Every living thing intakes carbon while it’s alive, so when it dies, it has a certain amount of carbon in its body. The longer it decays, the less carbon is present, which can be used to date the organism based on carbon’s half-life.[4]

    • Technically, there are 2 types of carbon: carbon-14, which decays, and carbon-12, which stays constant.
  4. Advertisement

  1. Image titled Calculate Half Life Step 4

    1

    Understand exponential decay. Exponential decay occurs in a general exponential function f(x)=a^{{x}}, where |a|<1.[5]

  2. Image titled Calculate Half Life Step 5

    2

    Rewrite the function in terms of half-life. Of course, our function does not depend on generic variable x, but time t.[6]

  3. Image titled Calculate Half Life Step 6

    3

  4. Image titled Calculate Half Life Step 7

    4

    Solve for the half-life. In principle, the above formula describes all the variables we need. But suppose we encountered an unknown radioactive substance. It is easy to directly measure the mass before and after an elapsed time, but not its half-life. So, let’s express half-life in terms of the other measured (known) variables. Nothing new is being expressed by doing this; rather, it is a matter of convenience. Below, we walk through the process one step at a time.[8]

  5. Advertisement

  1. Image titled Calculate Half Life Step 8

    1

    Read the original count rate at 0 days. Take a look at your graph and find the starting point, or the 0 day mark, on the x-axis. The 0 day mark is right before the material starts decaying, so it’s at its original point.[9]

    • On half-life graphs, the x-axis will usually show the timeline, while the y-axis usually shows the rate of decay.
  2. Image titled Calculate Half Life Step 9

    2

    Go down half the original count rate and mark it on the graph. Starting from the top of the curve, note the count rate on the y-axis. Then, divide that number by 2 to get the number at the halfway point. Mark that point on the graph with a horizontal line.[10]

    • For example, if the starting point is 1,640, divide 1,640 / 2 to get 820.
    • If you are working with a semi log  plot, meaning the count rate is not evenly spaced, you’ll have to take the logarithm of any number from the vertical axis.[11]
  3. Image titled Calculate Half Life Step 10

    3

    Draw a vertical line down from the curve. Starting from the halfway point that you just marked on the graph, draw a second line going downward until it touches the x-axis. Hopefully, the line will touch an easy-to-read number that you can identify.[12]

  4. Image titled Calculate Half Life Step 11

    4

    Read the half-life where the line crosses the time axis. Take a look at the point that your line touched and read where on the timeline it hits. Once you identify the point on your timeline, you’ve found your half-life.[13]

  5. Advertisement

  1. Image titled Calculate Half Life Step 12

    1

    Determine 3 of the 4 relevant values. If you’re solving for half-life, you’ll need to know the initial quantity, the quantity that remains, and the time that has passed. Then, you can use any half-life calculator online to determine the half-life.[14]

    • If you know the half-life but you don’t know the initial quantity, you can input the half-life, the quantity that remains, and the time that has passed. As long as you know 3 of the 4 values, you’ll be able to use a half-life calculator.
  2. Image titled Calculate Half Life Step 13

    2

    Calculate the decay constant with a half-life calculator. If you want to calculate how old an organism is, you can input the half-life and the mean lifetime to get the decay constant. This is a great tool to use for carbon dating or figuring out the lifespan of an organism.[15]

    • If you don’t know the half-life but you do know the decay constant and the mean lifetime, you can input those instead. Just like the initial equation, you only need to know 2 of the 3 values to get the third one.
  3. Image titled Calculate Half Life Step 14

    3

    Plot your half-life equation on a graphing calculator. If you know your half-life equation and you want to graph it, open up your Y-plots and input the equation into Y-1. Then, hit “graph” to open up your graph and adjust the window until you can see the whole curve. Finally, move your cursor above and below the midpoint of the graph to get your half-life.[16]

    • This is a helpful visual, and it can be useful if you don’t want to do all of the equation work.
  4. Advertisement

  1. Image titled Calculate Half Life Step 15

    1

    Problem 1. 300 g of an unknown radioactive substance decays to 112 g after 180 seconds. What is the half-life of this substance?

  2. Image titled Calculate Half Life Step 16

    2

    Problem 2. A nuclear reactor produces 20 kg of uranium-232. If the half-life of uranium-232 is about 70 years, how long will it take to decay to 0.1 kg?

  3. Image titled Calculate Half Life Step 17

    3

    Problem 3. Os-182 has a half-life of 21.5 hours. How many grams of a 10.0 gram sample would have decayed after exactly 3 half-lives?[17]

  4. Image titled Calculate Half Life Step 18

    4

    Problem 4. A radioactive isotope decayed to 17/32 of its original mass after 60 minutes. Find the half-life of this radioisotope.[18]

  5. Advertisement

Add New Question

  • Question

    If a sample contains 100 g of a radioactive isotope that has a half-life of 2 days, how much of the isotope remains after 6 days?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    One quick way to do this would be to figure out how many half-lives we have in the time given.

    6 days/2 days = 3 half lives

    100/2 = 50 (1 half life)
    50/2 = 25 (2 half lives)
    25/2 = 12.5 (3 half lives)

    So 12.5g of the isotope would remain after 6 days.

  • Question

    If the half-life of a material is 6 hours, how much material remains in 36 hours?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

  • Question

    What is the half-life of an isotope that decays to 25% of its original activity in 26.7 hours?

    Community Answer

    Since the whole is 100%, the first half-life would drop to 50% and then to 25%. Because it takes the isotope 26.7 hours to reach 25%, and there are only 2 halves from 100 to 25%, divide 26.7/2, and you’ll get 13.35 hours as the half life.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

To find the half life of a substance, or the time it takes for a substance to decrease by half, you’ll be using a variation of the exponential decay formula. Plug in ½ for a, use the time for x, and multiply the left side by the initial quantity of the substance. Rearrange the equation so that you’re solving for what the problem asks for, whether that’s half life, mass, or another value. Plug in the values you have and solve, writing the answer in seconds, days, or years. To see the half life equation and look at examples, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,121,659 times.

Reader Success Stories

  • Georgy Komissarov

    Georgy Komissarov

    Mar 14, 2018

    “I am an IB student and am in the process of completing my Math IA. I needed an example of application of number e.…” more

Did this article help you?

Как решать задачи по физике на радиоактивный распад?

Недавно проводил очередные занятия по физике со своими учениками и заметил некоторые трудности в решении задач на радиоактивный распад. По моим наблюдениям в школе и в интернете разбираются самые тривиальные задачи на распад. Задачи из ЕГЭ бывают немного сложнее. Но для интереса я добавил в статью разборы еще 6 задач, которые смело можно назвать задачами «со звёздочкой*», то есть повышенной сложности. На написание теории и подробные решения было потрачено много времени, поэтому, если Вам понравится статья, поддержите своей активностью.

💡 Крупные статьи я выкладываю в pdf в своём канале в telegram Репетитор IT mentor. Подписывайтесь, там публикуется контент, которого на Дзен не будет.

Прежде всего хотелось бы сделать замечание. Для успешного решения задач по физике (в целом, любых задач) Вам понадобятся:
◼ 1. Уверенные знания в математике на уровне физ-мат лицея (это минимум)
◼ 2. Базовые знания по дифференциальному и интегральному исчислению, а также умение применять начальные условия (НУ) и граничные условия (ГУ).
◼ 3. Понимание ограничений и сути процесса ( у вас не должны получаться отрицательная масса или отрицательное время, дробное количество, околосветовые скорости макроскопических объектов )
◼ 4. Хорошее воображение, 3D-видение эксперимента у себя в голове, а также возможность представить как выглядит график функции, описываемой в определенном законе (например: закон радиоактивного распада).
◼ 5. Умение разбивать большую задачу на малые подзадачи (например: определить амплитуду колебаний изображения математического маятника — у вас две задачи: механическая и оптическая — решайте их отдельно, потом сшивайте).
◼ 6. Чувствуйте абстракции. Вы никогда не решите задачу, если попытаетесь учесть всё. Пример: определите траекторию полёта камня, брошенного под углом к горизонту с учётом… эффекта Магнуса, динамического сопротивления ветра, фазы Луны, функции плотности воздуха, динамики вихрей потоков воздуха, распада вещества, из которого состоит камень, термодинамического расширения камня. Сложно? Вот поэтому чувствуйте абстракции.
◼ 7. Программирование. Да… внезапно. Для физики полезно знать какой-нибудь язык программирования. Попробуйте решенную задачу замоделировать и закодить в виде графической анимации. Так ваши решения станут куда более интересными и наглядными. А меняя входные параметры, вы станете лучше понимать поведение физических систем.

Основные определения

Радиоактивность – свойство некоторых нуклидов подвергаться радиоактивному распаду.

Радиоактивность – превращение одних атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. На латыни radio – излучаю, activus – действенный.

Радиоактивность – самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц, ядер и жесткого электромагнитного излучения.

Нуклид – разновидность атома, характеризуемая числом протонов и нейтронов, а в некоторых случаях энергетическим состоянием ядра.

Радионуклид – нуклид, испускающий ионизирующее излучение.

Радиация или ионизирующее излучение – это частицы или гамма-кванты, энергия которых достаточна велика, чтобы при воздействии на вещество создавать ионы и катионы (т.е. ионизировать молекулы на своём пути).

Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. По своей природе делится на фотонное (гамма-излучение, тормозное излучение, рентгеновское излучение) и корпускулярное (альфа-излучение, электронное, протонное, нейтронное, мезонное).

Теория для решения задач

Закон радиоактивного распада – закон, который описывается зависимость интенсивности радиоактивного распада от времени и от количества радиоактивных атомов в образце. Закон был открыт Фредериком Содди и Эрнестом Резерфордом. Оба получили Нобелевскую премию. Они обнаружили закон экспериментальным путем. Ещё в далеком 1903 году в работах «Сравнительное изучение радиоактивности радия и тория» этот закон формулировался:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

То есть скорость превращения всё время пропорционально количеству элементов, ещё не подвергнувшихся превращению.

Данную формулировку можно записать в виде дифференциального уравнения: dN/dt = – λ·N, где dN – изменение количества ядер за время dt.

Это изменение отрицательно, потому что при распаде уменьшается количество оставшихся элементов. Опытным путем было установлено, что эта скорость распада dN/dt пропорционально количеству оставшихся ядер N и некоторой постоянной λ, которая называется постоянной распада и характеризует вероятность радиоактивного распада за единицу времени (имеет размерность 1/c). Данное уравнение является дифференциальным уравнением первого порядка с разделяющимися переменными. Решение подобных уравнений можно найти в любом учебнике по высшей математике.

Как решать задачи по физике на радиоактивный распад?

В итоге решение будет иметь вид N = N₀ · exp(- λ·t) :

Как решать задачи по физике на радиоактивный распад?

Отсюда видно, что число радиоактивных атомов какого-либо вещества уменьшается со временем по экспоненциальному (показательному) закону. Помимо постоянной распада λ используются другие характеристики.

Среднее время жизни

Зная закон распада, можно посчитать среднее время жизни радиоактивного атома. Вспоминаем, что dN обозначает количество атомов, которое распадется за время от t до t + dt. Тогда среднее время можно будет найти подобно тому, как мы ищем среднее или математическое ожидание случайной непрерывной величины:

Как решать задачи по физике на радиоактивный распад?

В вычислениях была использована формула для интегрирования по частям. Теория интегрирования также описана в любой книге с конспектами по высшей математике (или математическому анализу, или интегральному исчислению).

Подставим результат для тау (время жизни τ) в экспоненциальную зависимость в формуле распада:

Как решать задачи по физике на радиоактивный распад?

Отсюда видно, что за среднее время жизни τ число радиоактивных атомов образца ( а также его активность – количество распадов в секунду) уменьшается в e ≈ 2.718 раз.

Период полураспада

И всё же большей популярностью пользуется другая характеристика для радиоактивных элементов. Называется она периодом полураспада T. Если немного подумать, то из названия понятно, что это время, в течение которого количество радиоактивных атомов исходного элемента уменьшается в 2 раза. Выведем связь этой величины с постоянной распада:

Как решать задачи по физике на радиоактивный распад?
Как решать задачи по физике на радиоактивный распад?

A – массовое число (число нуклонов в составе ядра атома)
Z – атомный номер в таблице Менделеева (число протонов в ядре)
Для нейтрального атома:

Как решать задачи по физике на радиоактивный распад?

Законы сохранения в распадах

При радиоактивном распаде сохраняются следующие параметры:

1. Заряд. Электрический заряд не может создаваться или исчезать. Общий заряд до и после реакции должен сохраняться, хотя может по-разному распределяться среди различных ядер и частиц. Единичный положительный и отрицательный заряды нейтрализуют друг друга. Аналогично, возможно для нейтральной частицы (типа нейтрона) произвести один заряд каждого знака.
2. Массовое число или число нуклонов. Число нуклонов после реакции должно быть равно числу нуклонов до реакции.
3. Общая энергия. Кулоновская энергия и энергия эквивалентных масс должна сохраняться во всех реакциях и распадах.
4. Импульс и угловой момент. Сохранение линейного импульса ответственно за распределение кулоновской энергии среди ядер, частиц и/или электромагнитного излучения. Угловой момент относится к спину частиц.

Потенциальная энергия взаимодействия α-частицы и остаточного ядра с зарядом Z·e

Как решать задачи по физике на радиоактивный распад?

Вид волновой функции можно получить из решения уравнения Шредингера для взаимодействия ядра атома и α-частицы. Способы решения можно почитать в книгах по физике вузовского уровня или в книгах по ММФ (методы математической физики). В целом, для понимания вам будет полезна теория решения дифференциальных уравнений из конспектов лекций по высшей математике или конкретно по теме – дифференциальное и интегральное исчисление.

По причинам исторического характера ядро He называют альфа-частицей. Установлено, что многие тяжелые ядра с зарядовым числом Z > 82 (Z = 82 имеет свинец) испытывают радиоактивный распад с испусканием альфа-частицы. В альфа-частице удельная энергия связи больше, чем в тяжелых ядрах, поэтому альфа-распад возможен энергетически. К примеру, образце урана U-238 испускает альфа-частицы с периодом полураспада 4.5 млрд. лет. Самопроизвольно происходит реакция:

Как решать задачи по физике на радиоактивный распад?

Спустя 4.5 млрд. лет половина ядер урана U-238 распадается. Разность масс U-238 и продуктов распада равна энергии 4.2 МэВ. Рисунок выше позволяет получить представление о том, почему происходит альфа-распад. Ea – кинетическая энергия вылетающей альфа-частицы. Первоначально альфа-частицы находится в области I и может быть описана стоячей волной с амплитудой Ψвнутр (волновая функция в данной области пространства). Однако, возможно проникновение сквозь барьер, потому что в области вдали от ядра имеется небольшой «хвост» волновой функции Ψвнеш. Вероятность вылета альфа-частицы в момент её соударения с барьером можно оценить выражением: |Ψвнеш|²/|Ψвнутр|².

Число таких столкновений в 1 секунду приблизительно v/2R, где v – скорость альфа-частицы в области I. Таким образом, вероятность испускания альфа-частицы в единицу времени можно записать так:

Как решать задачи по физике на радиоактивный распад?
Как решать задачи по физике на радиоактивный распад?

В образце, содержащем n ядер, число распадов в секунду (скорость уменьшения n) равна

Как решать задачи по физике на радиоактивный распад?

Отсюда с помощью интегрирования и подстановки начальных условий можно снова получить закон радиоактивного распада:

Как решать задачи по физике на радиоактивный распад?

Можно получить ещё одну формулу для оценки периода полураспада:

Как решать задачи по физике на радиоактивный распад?

Формула иллюстрирует применение квантовой механики для объяснения радиоактивности. Квантовая механика дает исчерпывающее объяснение альфа-распада и других радиоактивных превращений. Природа вероятности интересна тем, что если в силу редкой случайности текущее ядро уцелело на протяжении большого числа периодов полураспада, то эта предыстория абсолютно не влияет на вероятность распада в будущем. Этот же эффект имеет место при бросании монеты. Если у вас пять раз выпал орёл, вероятность шестой раз выпасть орлу остаётся по-прежнему равной 0.5.

Вероятность распада ядер одного вещества всегда одна и та же, независимо от их возраста. Допустим, половина ядер какого-либо изотопа распадается за один год. Какое-то ядро, избежавшее распада в первый год, по-прежнему будет иметь вероятность ½ распасться на протяжении второго года. Если сохранится на протяжении двух лет, то вероятность распада на третий год снова будет ½.

💡 Теперь перейдем к практике и поучимся решать основные задачи. Здесь имеются две задачи из ЕГЭ по физике, но также я добавил более сложные задачи, которые не встречались мне в ЕГЭ, однако встречались в вузовской программе для физиков.

Практика решения задач

Задача 1. Какая доля радиоактивных ядер распадается через интервал времени, равный половине периода полураспада? Ответ приведите в процентах и округлите до целых.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 2. После крупной радиационной аварии, произошедшей в 1986 году на Чернобыльской атомной электростанции, некоторые участки местности оказались сильно загрязнены радиоактивным изотопом цезия-137 с периодом полураспада 30 лет. На некоторых участках норма максимально допустимого содержания цезия-137 была превышена в 1000 раз. Через сколько периодов полураспада после загрязнения такие участки местности вновь можно считать удовлетворяющими норме? Ответ округлите до целого числа.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 3. Период полураспада элемента 1 в три раза больше периода полураспада элемента 2. За некоторое время число атомов элемента 1 уменьшилось в 8 раз. Во сколько раз за это же время уменьшилось число атомов элемента 2?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 4*. Вычислить постоянную распада λ для изотопов радия:
а) ²¹⁹Ra; б) ²²⁶Ra; в) ²³⁰Ra. Чему равна вероятность распада изотопов радия за время t = 1 час ?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 5*. При определении периода полураспада короткоживущего радиоактивного изотопа использовался счётчик импульсов. За минуту в начале наблюдения было насчитано Δn₀ = 250 импульсов, а через время τ = 1 час было зарегистрировано Δn = 92 импульса. Чему равен период полураспада данного изотопа?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 6*. Известно, что из радиоактивного полония ²¹⁰Po массой m = 2.5 грамм за время t = 32 дня в результате его распада образуется гелий объемом V = 40 см³ при нормальных условиях: p₀ = 10⁵ Па и τ₀ = 273 К. Определить по этим данным период полураспада данного изотопа полония.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 7*.Оценить количество тепла, которое выделяет полоний ²¹⁰Po массой m = 1 мг за время, равное периоду полураспада этих ядер, если испускаемые α-частицы имеют кинетическую энергию Wα = 5.3 МэВ.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 8*. Пусть в ядре урана ²³⁸U альфа-частица сталкивается с потенциальным барьером 5·10²⁰ раз в секунду и Ψвнеш/Ψвнутр = 10⁻¹⁹.
а) Какова вероятность распада этого ядра в 1 сек ?
б) Каково среднее время жизни этого ядра?

Решение:

Как решать задачи по физике на радиоактивный распад?

Понравилась статья? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно 🙂

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в telegram

Слайд 1Решение задач
на закон радиоактивного распада.
Ребята, в презентации я показала

решение задач разного типа. Разберите эти решения.
И выполните задания

для домашней работы (слайд 12 ).
Фото отправляем ВКонтакте.

Решение задач  на закон радиоактивного распада.Ребята, в презентации я показала решение задач разного типа. Разберите эти


Слайд 2Закон радиоактивного распада
Закон справедлив для большого числа ядер
T – период

полураспада – это время, в течение которого распадается половина начального

числа радиоактивных атомов.

Закон радиоактивного распадаЗакон справедлив для большого числа ядерT – период полураспада – это время, в течение которого


Слайд 31. Период полураспада ядер франция составляет 4,8 мин. Это означает,

что…
1) за 4,8 мин атомный номер каждого атома франция уменьшится вдвое
2)

каждые 4,8 мин распадается одно ядро франция
3) все изначально имевшиеся ядра франция распадутся за 9,6 мин
4) половина изначально имевшихся ядер франция распадается за 4,8 мин

Решение. Период полураспада — это время, в течение которого распадается половина наличного числа радиоактивных атомов. Верным является утверждение, что половина изначально имевшихся ядер франция распадется за 4,8 минуты.
Ответ: 4.

1. Период полураспада ядер франция составляет 4,8 мин. Это означает, что…1) за 4,8 мин атомный номер каждого атома


Слайд 4
Дан график зависимости числа нераспавшихся ядер эрбия от времени. Каков

период полураспада этого изотопа?
25 часов
50 часов

100 часов
200 часов

Дан график зависимости числа нераспавшихся ядер эрбия от времени. Каков период полураспада этого изотопа? 25 часов


Слайд 5 
Дано:
T=164 суток
t =328 суток

 Найти: N
Решение

 Дано:T=164 сутокt =328 суток Найти: N Решение  


Слайд 6
Какая доля от большого количества радиоактивных атомов остается нераспавшейся

через интервал времени, равный двум периодам полураспада. (Ответ дать в

процентах.)

А) 25%
Б) 50%
В) 75%
Г) 0%

Согласно закону радиоактивного распада, по истечении времени t от первоначального количества атомов радиоактивного вещества с периодом полураспада T останется примерно атомов.

Следовательно, по истечении времени t=2 T двух периодов полураспада , останется

атомов, т. е. 25%

Ответ: 25 %

Какая доля от большого количества радиоактивных атомов остается нераспавшейся через интервал времени, равный двум периодам


Слайд 7 Определить период полураспада радиоактивного элемента, если за

промежуток времени 1,2 с, число распавшихся атомов составляет 75% от

первоначального количества

Дано:

75% =0,75

t =1,2 с

Найти: T

Решение

Ответ: 0,6 с

Определить период полураспада радиоактивного элемента, если за промежуток времени 1,2 с, число распавшихся атомов


Слайд 8 Имеется радиоактивная медь с периодом полураспада 10

мин. Какая часть первоначального количества меди останется через 1 час?
Дано:
T=10

мин

t =1 ч=60 мин

Найти:

Решение

Ответ:

Имеется радиоактивная медь с периодом полураспада 10 мин. Какая часть первоначального количества меди останется


Слайд 9Закон радиоактивного распада.
Количество нераспавшихся частиц вещества ( m) равно количеству

частиц на момент начала наблюдения ( ) умноженное

на

Аналогичен и для масс частиц.

Закон радиоактивного распада.Количество нераспавшихся частиц вещества ( m) равно количеству частиц на момент начала наблюдения (


Слайд 10 Имеется 800 г радиоактивного цезия. Определите массу

нераспавшегося цезия спустя 108 лет, если его период полураспада равен

27 годам.

Дано:

T=27 лет

t =108 лет

Найти:

Решение

Ответ: 50 г

mо =800 г

Имеется 800 г радиоактивного цезия. Определите массу нераспавшегося цезия спустя 108 лет, если его


Слайд 11 В лаборатории получили 12 мг изотопа меди

, период полураспада равен 12,8 часа. В течении скольких часов

количество изотопа меди в веществе будет превосходить 3мг.

Дано:

T =12,8 часа

Найти: t

Решение

Ответ: 25,6 часа

В лаборатории получили 12 мг изотопа меди , период полураспада равен 12,8 часа. В


Слайд 121. Каков период полураспада радиоактивного изотопа, если за 10 ч

в образце, содержавшем 16 млн атомов, распадется 15 млн атомов?

Задачи для домашнего задания

2. В ходе распада радиоактивного изотопа его масса уменьшается по закону радиоактивного распада. В начальный момент времени масса изотопа 24 мг. Период его полураспада 2 мин. Через сколько минут масса изотопа будет равна 3 мг?

1. Каков период полураспада радиоактивного изотопа, если за 10 ч в образце, содержавшем 16 млн атомов, распадется


Добавить комментарий