Как найти период синусоидальной волны


Урок 25. Что такое Переменный ТОК | Практические примеры

Видео: Урок 25. Что такое Переменный ТОК | Практические примеры

Содержание

  • Стороны
  • Период
  • Амплитуда
  • Цикл
  • Частота
  • Фаза
  • Генератор синусоидальной волны
  • Правоохранительные органы Фарадея
  • Осциллятор Вены
  • Как рассчитать синусоидальные волны?
  • Осциллограф
  • Примеры
  • Пример 1
  • Решение
  •  Пример 2
  • Решение
  • использованная литература

В синусоидальные волны Это волновые структуры, которые можно математически описать функциями синуса и косинуса. Они точно описывают природные явления и изменяющиеся во времени сигналы, такие как напряжения, генерируемые электростанциями, а затем используемые в домах, на производстве и на улицах.

Электрические элементы, такие как резисторы, конденсаторы и индуктивности, которые подключены к входам синусоидального напряжения, также создают синусоидальные отклики. Математика, использованная в его описании, относительно проста и тщательно изучена.

Рисунок 1. Синусоидальная волна с некоторыми из ее основных пространственных характеристик: амплитуда, длина волны и фаза. Источник: Wikimedia Commons. Wave_new_sine.svg: Kraaiennest Первоначально созданная как косинусная волна пользователем: Pelegs, как файл: Wave_new.svg производная работа: Dave3457 [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

Математика синусоидальных или синусоидальных волн, как их еще называют, – это математика функций синуса и косинуса.

Это повторяющиеся функции, что означает периодичность. Оба имеют одинаковую форму, за исключением того, что косинус смещен влево относительно синуса на четверть цикла. Это видно на рисунке 2:

Рис. 2. Функции sin x и cos x смещены друг относительно друга. Источник: Ф. Сапата.

Тогда cos x = sin (x + π / 2). С помощью этих функций отображается синусоида. Для этого на вертикальной оси отложена рассматриваемая величина, а на горизонтальной оси – время.

График выше также показывает повторяемость этих функций: шаблон повторяется постоянно и регулярно. Благодаря этим функциям можно выразить синусоидальные напряжения и токи, меняющиеся во времени, разместив их на вертикальной оси вместо а также, а v или один я для представления напряжения или тока, а по горизонтальной оси вместо Икс, то т Погода.

Самый общий способ выразить синусоиду:

 v (t) = vм сен (ωт + ф)

Затем мы углубимся в значение этого выражения, определив некоторые основные термины, чтобы охарактеризовать синусоидальную волну.

Указатель статей

  • 1 части
    • 1.1 Период
    • 1.2 Амплитуда
    • 1.3 Цикл
    • 1.4 Частота
    • 1,5 фазы
  • 2 Генератор синусоидальной волны
    • 2.1 Применение закона Фарадея
    • 2.2 Осциллятор Вина
  • 3 Как рассчитать синусоидальные волны?
    • 3.1 Осциллограф
  • 4 Примеры
    • 4.1 Пример 1
    • 4.2 Пример 2
  • 5 ссылки

Стороны

Период, амплитуда, частота, цикл и фаза – это понятия, применяемые к периодическим или повторяющимся волнам, и они важны для их правильной характеристики.

Период

Периодическая функция, подобная упомянутой, которая повторяется через равные промежутки времени, всегда удовлетворяет следующему свойству:

f (t) = f (t + T) = f (t + 2T) = f (t + 3T) =….

Где Т это величина, называемая период волны, и время, необходимое для повторения одной и той же фазы. В единицах СИ период измеряется в секундах.

Амплитуда

По общему выражению синусоиды v (t) = vм sin (ωt + φ), vм – максимальное значение функции, возникающее при sin (ωt + φ) = 1 (помня, что наибольшее значение, которое допускают функции синуса и косинуса, равно 1). Это максимальное значение и есть амплитуда волны, также известный как пиковая амплитуда.

В случае напряжения оно будет измеряться в вольтах, а в случае тока – в амперах. В показанной синусоиде амплитуда постоянна, но в других типах волн амплитуда может варьироваться.

Цикл

Это часть волны, заключенная в период. На приведенном выше рисунке период был взят путем измерения его от двух последовательных пиков или пиков, но его можно начать измерять с других точек на волне, если они ограничены периодом.

Обратите внимание на следующем рисунке, как цикл проходит от одной точки до другой с одинаковым значением (высотой) и одинаковым уклоном (наклоном).

Рисунок 3. В синусоиде цикл всегда проходит за период. Важно, чтобы начальная точка и конец находились на одной высоте. Источник: Бойлестад. Введение в анализ цепей. Пирсон.

Частота

Это количество циклов, которые происходят за 1 секунду, и связано с аргументом синусоидальной функции: ωt. Частота обозначается как F и измеряется в циклах в секунду или в герцах (Гц) в Международной системе.

Частота – это величина, обратная периоду, поэтому:

 f = 1 / T

Пока частота F относится к угловая частота ω (пульсация), например:

 ω = 2πF

В Международной системе угловая частота выражается в радианах в секунду, но радианы безразмерны, поэтому частота F и угловая частота ω у них одинаковые размеры. Обратите внимание, что продукт ωt дает в результате радианы, и это необходимо учитывать при использовании калькулятора для получения значения сен ωt.

Фаза

Это соответствует горизонтальному смещению, которое испытывает волна, относительно времени, взятого за эталон.

На следующем рисунке зеленая волна опережает красную волну на один раз. тd. Две синусоидальные волны находятся в фаза когда его частота и фаза совпадают. Если фазы различаются, значит они в зазор. Волны на рисунке 2 также не совпадают по фазе.

Рисунок 4. Синусоидальные волны в противофазе. Источник: Wikimedia Commons. Машиночитаемый автор не предоставлен. Предполагается, что Kanjo ~ commonswiki (на основании заявлений об авторских правах). [Всеобщее достояние].

Если частота волн другая, они будут в фазе, когда фаза ωt + φ быть одинаковыми в обеих волнах в определенные моменты времени.

Генератор синусоидальной волны

Есть много способов получить синусоидальный сигнал. Их обеспечивают самодельные розетки.

Правоохранительные органы Фарадея

Достаточно простой способ получить синусоидальный сигнал – использовать закон Фарадея. Это указывает на то, что в замкнутой токовой цепи, например в петле, размещенной в середине магнитного поля, индуцированный ток генерируется, когда поток магнитного поля через нее изменяется во времени. Следовательно, индуцированное напряжение или индуцированная ЭДС.

Поток магнитного поля изменяется, если петля вращается с постоянной угловой скоростью в середине поля, созданного между N и S полюсами магнита, показанного на рисунке.

Рисунок 5. Генератор волн, основанный на законе индукции Фарадея. Источник: Источник: Раймонд А. Сервей, Джон В. Джуэтт [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)].

Ограничением этого устройства является зависимость получаемого напряжения от частоты вращения контура, как будет более подробно показано в примере 1 раздела «Примеры» ниже.

Осциллятор Вены

Другой способ получить синусоидальную волну, на этот раз с помощью электроники, – использовать генератор Вина, для которого требуется операционный усилитель в сочетании с резисторами и конденсаторами. Таким образом получаются синусоидальные волны, частоту и амплитуду которых пользователь может изменять по своему усмотрению с помощью переключателей.

На рисунке показан генератор синусоидального сигнала, с помощью которого также могут быть получены другие формы сигналов: треугольная и квадратная среди прочих.

Рисунок 6. Генератор сигналов. Источник: Источник: Wikimedia Commons. Ocgreg в английской Википедии [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)].

Как рассчитать синусоидальные волны?

Для выполнения вычислений с использованием синусоидальных волн используется научный калькулятор, который имеет тригонометрические функции синуса и косинуса, а также их обратные. Эти калькуляторы имеют режимы работы с углами в градусах или радианах, и их легко преобразовать из одной формы в другую. Коэффициент преобразования:

180 º = π радианы.

В зависимости от модели калькулятора вы должны перемещаться с помощью клавиши MODE, чтобы найти опцию DEGREE, которая позволяет вам работать с тригонометрическими функциями в градусах, или опцию RAD, чтобы напрямую работать с углами в радианах.

Например, sin 25º = 0,4226 с калькулятором, установленным в режим DEG. Преобразование 25º в радианы дает 0,4363 радиана, а sin 0,4363 рад = 0,425889 ≈ 0,4226.

Осциллограф

Осциллограф – это устройство, которое позволяет отображать на экране как постоянные, так и переменные сигналы напряжения и тока. Он имеет ручки для регулировки размера сигнала на сетке, как показано на следующем рисунке:

Рис. 7. Синусоидальный сигнал, измеренный осциллографом. Источник: Бойлестад.

Используя изображение, полученное с помощью осциллографа, и зная настройку чувствительности по обеим осям, можно рассчитать параметры волны, которые были описаны ранее.

На рисунке показан синусоидальный сигнал напряжения как функция времени, при этом каждое деление по вертикальной оси соответствует 50 милливольтам, а по горизонтальной оси каждое деление составляет 10 микросекунд.

Размах амплитуды определяется путем подсчета делений, которые волна покрывает по вертикали, с помощью красной стрелки:

С помощью красной стрелки отсчитывается 5 делений, поэтому пиковое напряжение составляет:

Vpp = 5 делений x 50 мВ / деление = 250 мВ.

Пиковое напряжение Vп он отсчитывается от горизонтальной оси и составляет 125 мВ.

Чтобы найти период, измеряется цикл, например, тот, который обозначен зеленой стрелкой и охватывает 3,2 деления, тогда период равен:

T = 3,2 деления x 10 микросекунд / деление = 32 микросекунды = 32 мкс

Примеры

Пример 1

Для генератора на рис. 3 покажите из закона Фарадея, что индуцированное напряжение имеет синусоидальную форму. Предположим, что петля состоит из N витков вместо одного, все с одинаковой площадью A и вращается с постоянной угловой скоростью ω в середине магнитного поля. B униформа.

Решение

Закон Фарадея гласит, что индуцированная ЭДС ε это:

ε = -N (dΦB / dt)

Где ΦB – это поток магнитного поля, который будет переменным, так как он зависит от того, как петля подвергается воздействию поля в каждый момент. Отрицательный знак просто описывает тот факт, что эта ЭДС противодействует причине, которая ее порождает (закон Ленца). Поток за счет одного витка:

ΦB = B.A.cos θ

θ – угол, который образует вектор, нормальный к плоскости петли, с полем B По мере вращения (см. Рисунок) этот угол естественным образом изменяется как:

θ = ωt

Так что: ΦB = B.A.cos θ = B.A.cos ωt. Теперь нам нужно только вывести это выражение относительно времени и, таким образом, получить индуцированную ЭДС:

ε = -N.d (B.A.cos ωt) / dt

Как поле B однородны и площадь петли не меняется, они оставляют за пределами производной:

ε = -NBA. d (cos ωt) / dt = ωNBA. сен ωt

 Пример 2

Петля имеет площадь 0,100 м2 и вращается со скоростью 60,0 об / с, а его ось вращения перпендикулярна однородному магнитному полю 0,200 Тл. Зная, что катушка имеет 1000 витков, найдите: а) максимальную генерируемую ЭДС, б) ориентацию катушки в связь с магнитным полем, когда возникает наведенная максимальная ЭДС.

Рис. 8. Петля из N витков вращается посреди однородного магнитного поля и генерирует синусоидальный сигнал. Источник: R. Serway, Physics for Science and Engineering. Том 2. Cengage Learning.

Решение

а) Максимальная ЭДС εМаксимум = ωNBA

Прежде чем приступить к замене значений, необходимо передать частоту 60 об / с в единицы Международной системы. Известно, что 1 оборот равен одному обороту или 2p радианам:

60,0 об / с = 120p радиан / с

εМаксимум = 120p радиан x 1000 витков x 0,200 T x 0,100 м2 = 7539,82 В = 7,5 кВ

б) Когда встречается это значение сен ωt = 1 Таким образом:

ωt = θ = 90º,

В таком случае плоскость спирали параллельна B, так что нормальный вектор к указанной плоскости составляет 90º с полем. Это происходит, когда черный вектор на рисунке 8 перпендикулярен зеленому вектору, который представляет магнитное поле.

использованная литература

  1. Бойлестад, Р. 2011. Введение в анализ схем. 12-е. Версия. Пирсон. 327-376.
  2. Фигероа, Д. 2005. Электромагнетизм. Серия «Физика для науки и техники». Том 6. Под редакцией Д. Фигероа. Университет Симона Боливара. 115 и 244-245.
  3. Фигероа, Д. 2006. Физическая лаборатория 2. Редакция Equinoccio. 03-1 и 14-1.
  4. Синусоидальные волны. Получено с: iessierradeguara.com
  5. Сервей, Р. 2008. Физика для науки и техники. Том 2. Cengage Learning. 881–884

What Is a Sine Wave?

A sine wave is a geometric waveform that oscillates (moves up, down, or side-to-side) periodically, and is defined by the function y = sin x. In other words, it is an s-shaped, smooth wave that oscillates above and below zero.

Sine waves are used in technical analysis and trading to help identify patterns and cross-overs related to oscillators.

Key Takeaways

  • A sine wave is an S-shaped waveform defined by the mathematical function y = sin x.
  • It is depicted graphically as two semi-circular curves that alternate above and below a center line.
  • In finance, market participants may identify cyclical patterns or oscillator signals from sine-wave-based functions.
  • The sine wave as a technical chart analysis tool is based on advanced mathematics and is designed to indicate whether a market is trending or in a cycle mode.
  • Sine waves are the basis of Fourier decomposition analysis.

Understanding Sine Waves

The sine wave indicator is based on the assumption that markets move in cyclical patterns. After quantifying a cycle, a trader may try to use the pattern to develop a leading indicator. This works extremely well when the market is indeed moving in a cycle. When the market is trending, however, this system fails (and one should adjust for that).

Image by Sabrina Jiang © Investopedia 2020

Markets alternate between periods of cycling and trending. Cyclical periods are characterized by price bouncing off support or resistance levels and failed breakouts or overshoots. Trending periods are characterized by new highs or new lows and pullbacks that then continue in the direction of the trend, until exhausted.

In technical analysis, oscillators are often used that may have sine-shaped characteristics. An oscillator exists between two extreme values and then builds a trend indicator with the results. The analysts then use the trend indicator to discover short-term overbought or oversold conditions. When the value of the oscillator approaches the upper extreme value, analysts interpret that information to mean that the asset is overbought, and as it approaches the lower extreme, analysts consider the asset to be oversold.

The complement to a sine function is the cosine.

Sine Waves as Analytical Tools

The sine wave as a technical chart analysis tool is based on advanced mathematics and is designed to indicate whether a market is trending or in a cycle mode. It helps traders identify the start and finish of a trending move as well as possible shifts in the trend.

This leading indicator is also called the MESA indicator and was developed by John Ehlers based on an algorithm that was originally applied to digital signal processing. It consists of two lines, called the Sine Wave and the Lead Wave. When the price is trending, the lines do not cross and usually run parallel and distant from each other.

Line crossovers could indicate turning points and generate buy or sell signals under the right conditions. The indicator can also signal an overbought or oversold market (i.e., unjustifiably high or unjustifiably low), which can have implications on the prevailing trend. Whether used alone or in combination with other techniques or non-correlated indicators (such as moving average-based indicators), the sine waves are very useful for a trader.

The Composite Index of Lagging Indicators often resembles a sine wave since the measures that make up the index (i.e., ratios and interest rates) tend to oscillate between a range of values.

For example, inflation is always kept between specified rates and if/once inflation meets or exceeds a specified limit, interest rates will be adjusted to either increase or decrease inflation so it is brought within a target range. Thus, as the rate of inflation increases, decreases, or stays the same, interest rates will oscillate up and down to control an undesired rate of inflation.

Who Uses Sine Waves in the Markets?

Technical traders who employ Fourier analysis are inherently using sine waves to guide their trading decisions. Fourier analysis is a technique that essentially breaks down a piece of complex time series data into a series of simpler components that are based on the sine or other trigonometric functions. By doing, a trader is better able to separate the signal from the noise in the data.

For instance, if a trader believes that inflation is cyclical and presents noise in the price history of a particular consumer cyclical stock, they can try to identify a sine wave that fits the inflation pattern and remove it. While Fourier analysis has been applied to by market technicians, financial researchers remain unconvinced that it is a viable or effective strategy.

How Can a Sine Curve Describe a Wave?

A wave (whether a sound wave, ocean wave, radio wave, or any other) can be described by its amplitude (height or power) and frequency (how close together each wave peak is from the next). In doing so, a sine curve is generated of a particular height and frequency.

How Do I Graph Sine and Cosine Functions?

A cosine curve is graphed similarly to a sine curve, but is out of phase with it. In particular, a sine wave crosses the center line at each interval of pi (π), whereas a cosine wave peaks at intervals of π and crosses the center line at intervals of ½π (which are the points where sine waves peak).

You can graph specific sine or cosine curves using a graphing calculator, mathematical or spreadsheet software like Excel, or via one of several online tools.

How Do I Find the Period of a Sine Wave?

The period of a sine curve is the length of a single wave from the center like to peak, through the center to trough, back to center. It is expressed mathematically as period = 2π/|B|, where B is the horizontal stretch of each wave in the sine function.

Техническая акустика и защита от шума. Лекция №2 Уравнение плоской синусоидальной волны.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Техническая акустика и защита от шума
Лекция №2
Уравнение плоской синусоидальной волны. Волновое число.
Уравнение сферической волны
Диапазоны частот акустических волн.
Понятия шума, основного тона, обертона, тембра музыкальных звуков.
Громкость звука, порог слышимости, порог осязания.
Уровень интенсивности акустических волн. Ультразвук.

! ! ! Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpуг дpугу плоскости, пеpпендикуляpные фазовой скоpости волны
6 Уравнение плоской синусоидальной волны. Волновое число

S зависит не только от времени, но и от
координаты.
v – скорость распространения волны, А – амплитуда волны, аргумент синуса – фаза волны, 𝜑 0 – начальная фаза колебаний в точке х = 0, 𝜔 – частота (циклическая) волны.
Уравнение имеет вид:

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется ДЛИНОЙ ВОЛНЫ 𝜆=𝜈𝑇.

Введем ВОЛНОВОЕ ЧИСЛО k, равное:
𝑘= 2𝜋 𝜆
Тогда уравнение плоской волны примет вид:
𝑆=𝐴∙sin⁡ 𝜔𝑡−𝑘𝑥+ 𝜑 0
http://koi.tspu.ru/waves/ch4_2.htm

При записи уравнения сферической волны учитывается, что амплитуда волны убывает с расстоянием от источника:
𝑆= 𝐴 0 𝑟 sin⁡(𝜔𝑡− 𝑘∙𝑟 + 𝜑 0 )
𝑘 − ВОЛНОВОЙ ВЕКТОР, модуль которого 𝑘 равен волновому числу, а направление совпадает с направлением луча распространения волны.
7 Уравнение сферической волны
http://edu.dvgups.ru/METDOC/ENF/PHIZIK/PHIZIK/LAB_RAB/SKOROST_ZVUKA/MAIN.HTM

Инфразвуковой — ниже 20 Гц.
Звуковой — от 20 Гц до 20 кГц (в него полностью укладывается диапазон средне статистических людей слышимых человеческим ухом частот). Более 20 кГц человеческое ухо может услышать диапазон. Изначально с рождения ребёнок слышит ультразвук с частотой более 20 кГц, но после в возрастом происходит уплотнение стен перепонок.
Ультразвуковой — от 20 кГц до 100кГц.
Гиперзвуковой — свыше 100кГц.

8 Диапазоны частот акустических волн

Шкала диапазона частот

Шум — беспорядочные колебания различной физической природы, отличающиеся сложностью временной спектральной структуры.

Шум – одновременное сочетание звуков различной частоты.
9 Понятия шума, основного тона, обертона, тембра музыкальных звуков.

Чистый тон – это звук , совершающий гармонические колебания одинаковой частоты.
Звуки разных источников (например разные музыкальные инструменты, человеческий голос, звуки посторонних предметов и т.д ) вместе составляют совокупность гармонических колебаний разных частот.
Основной частотой называется самая маленькая частота этого многосоставного звука, а звук который ей соответствует и он определенной высоты называется основным тоном.

ОБЕРТОН (от нем. Oberton – высокий тон, высокий звук) – синусоидальная составляющая звуковых колебаний сложной формы с частотой, более высокой, чем основной тон.
Любое периодическое колебание можно представить как сумму основного тона и обертонов, причём частоты и амплитуды этих обертонов определяются как физическими свойствами колебательной системы, так и способом её возбуждения.

Если частоты всех обертонов – целые кратные основной частоте, то такие обертоны называют гармоническими или гармониками. Если же частоты зависят от основной частоты более сложным образом, то говорят о негармонических обертонах. В этом случае представление периодических колебания в виде суммы гармоник будет приближённым, но тем более точным, чем большее число гармоник взято.

Если частота основного тона f (первая гармоника), то частота второй гармоники равна 2f или близка к этому значению, частота третьей 3f и т. д. Состав и количество обертонов сложного звука определяет его качественную окраску, или тембр звука.

Те́мбр (фр. timbre — «колокольчик», «метка», «отличительный знак») — колористическая (обертоновая) окраска звука; одна из специфических характеристик музыкального звука (наряду с его высотой, громкостью и длительностью).

По тембрам отличают звуки одинаковой высоты и громкости, но исполненные на различных инструментах, разными голосами, или же на одном инструменте, но разными способами, штрихами и т. п.

При восприятии тембров обычно возникают различные ассоциации: тембральную специфику звука сравнивают с органолептическими ощущениями от тех или иных предметов и явлений, например, звуки называют яркими, блестящими, матовыми,тёплыми, холодными, глубокими, полными, резкими, насыщенными, сочными, металлическими, стеклянными; применяются и собственно слуховые определения (например, звонкие, глухие, шумные).

Человек номинально слышит звуки в диапазоне от 16 до 20 000 Гц.
Диапазон громкости воспринимаемых звуков огромен. Но барабанная перепонка в ухе чувствительна только к изменению давления. Уровень давления звука принято измерять в децибелах (дБ).
10 Громкость звука, порог слышимости, порог осязания

Нижний порог слышимости определён как 0 дБ (20 микропаскаль) 20∙10-5 Па, а определение верхнего предела слышимости относится скорее к порогу дискомфорта и далее — к нарушению слуха, контузии и т. д. Этот предел зависит от того, как долго по времени мы слушаем звук. Ухо способно переносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звуков громкостью более 80 дБ может вызвать потерю слуха.

Минимальный порог, при котором звук остаётся слышен, зависит от частоты. График этой зависимости получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается в диапазоне выше 2 кГц.

Человеческий слух во многом подобен спектральному анализатору, то есть ухо распознаёт спектральный состав звуковых волн без анализа фазы волны. В реальности фазовая информация распознаётся и очень важна для направленного восприятия звука, но эту функцию выполняют ответственные за обработку звука отделы головного мозга.

Разница между фазами звуковых волн, приходящих на правое и левое ухо, позволяет определять направление на источник звука, причём информация о разности фаз имеет первостепенное значение, в отличие от изменения громкости звука воспринимаемого разными ушами.

Порогом осязания ( порогом болевого ощущения) называется наибольшая интенсивность звуковой волны, при которой восприятие звука не вызывает болевого ощущения. Порог осязания зависит от частоты звука, изменяясь от 0,1 Вт/м2 при 6000 Гц до 10 Вт/м2 при низких и высоких частотах.

Интенсивность звука — скалярная физическая величина, характеризующая мощность, переносимую звуковой волной в направлении распространения. Количественно интенсивность звука равна среднему по времени потоку звуковой энергии через единичную площадку, расположенную перпендикулярно направлению распространения звука:
𝐼= 1 𝑇 𝑡 𝑡+𝑇 𝑑𝑃 𝑑𝑆 𝑑𝑡
11. Уровень интенсивности акустических волн, интенсивность. Ультразвук

Звуки способны сильно различаются по интенсивности, потому удобнее рассматривать интенсивность как логарифмическую величину и измерять в децибелах (дБ). Логарифмическая величина интенсивности представляет собой логарифм отношения рассматриваемого значения величины к ее значению, принимаемому за исходное.

Уровень интенсивности I по отношению к некоторой условно выбранной интенсивности I0 равен:
𝛽=10𝑙𝑔 𝐼 𝐼 0 , дБ
Таким образом, один звук, превышающий другой по уровню интенсивности на 20 дБ, превышает его в 100 раз по интенсивности.

Ультразву́к — упругие колебания в среде с частотой за пределом слышимости человека. Обычно под ультразвуком понимают частоты выше 20 000 Гц.

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков КГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты, дельфины, летучие мыши, грызуны).

В медицине (УЗИ)
Применение ультразвука в косметологии
Резка и сварка металла
Приготовление гомогенных смесей
В биологии
Чистка в промышленности и быту
Применение ультразвука в эхолокации
Применение ультразвука в расходометрии
В дефектоскопии
В гальванотехнике

Свисто́к Га́льтона — акустический излучатель, работающий по принципу свистка (рассечение воздушного потока клином, расположенным рядом с акустическим резонатором). Первое изобретенное устройство для получения ультразвука.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Курс добавлен 23.11.2021
  • Сейчас обучается 40 человек из 25 регионов

Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 26 человек из 16 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 574 487 материалов в базе

Другие материалы

  • 29.12.2020
  • 85
  • 3
  • 29.12.2020
  • 77
  • 0
  • 29.12.2020
  • 83
  • 0
  • 29.12.2020
  • 95
  • 1
  • 29.12.2020
  • 98
  • 3
  • 29.12.2020
  • 91
  • 0
  • 29.12.2020
  • 146
  • 1
  • 29.12.2020
  • 205
  • 7

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 09.12.2020 235
  • PPTX 1018.8 кбайт
  • 0 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Паршина Кира Максимовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 1 месяц
  • Подписчики: 0
  • Всего просмотров: 24193
  • Всего материалов: 230

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В Курганской области дистанционный режим для школьников продлили до конца февраля

Время чтения: 1 минута

В Забайкалье в 2022 году обеспечат интернетом 83 школы

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Минпросвещения подключит студотряды к обновлению школьной инфраструктуры

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Уравнение плоской синусоидальной волны найти период

4.1. Механические колебания.

4.2. Электрические колебания.
4.3. Упругие волны. Акустика.
4.4. Электромагнитные волны. Излучение.
_______________________________________________________________________________________________

4.1. Механические колебания.

4.1.1. Гармонические колебания.

4.1. 1 -1. Частица совершает гармоническое колебание с амплитудой А и периодом Т = 12 с. Найти время t ₁ , за которое смещение частицы изменяется от 0 до А/2.

Решение:

Т = 12 с
х(0) = 0
х( t ₁) = А/2 (1)
t ₁ – ?
Так как начальное положение частицы х(0) = 0, то частица колеблется по закону синуса с начальной фазой ϕ ₀ = 0:
x = Asin ( ωt + ϕ ₀) или
x = Asinωt , (2)
где ω = 2 π / T – круговая частота.
С учётом условия (1), запишем (2) в виде:
х( t ₁) = Asin ( ωt ₁); А/2 = Asin ( (2 π / T ) t ₁ ); 1/2 = sin (2 πt ₁/ T ); 2 πt ₁/ T = π /6. Отсюда
t ₁ = T /12.
t₁ = 12/12 = 1 с.
Ответ: t₁ = T/12 = 1 c.

4.1.1-2. Определить период Т простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска.

где − I момент инерции диска относительно оси вращения, проходящей через точку подвеса А (см. рис.); x = AO = R − расстояние от точки подвеса до центра тяжести О диска; m − масса диска; g = 9,8 м/с² − ускорение свободного падения.
Момент инерции I ₀ диска относительно оси симметрии диска:
I ₀ = mR
²/2.
По теореме Штейнера:
I = I₀ + mR². Имеем
I = mR²/2 + mR² = 3mR²/2. Тогда по (1)

Решение:
r ( t ) = A ( icosωt + jsinωt ) (1)
A = 0,5 м
ω = 5 с⁻¹
v − ?
an − ?
Представим (1) в виде:
r ( t ) = iAcosωt + jAsinωt (1*)
Радиус вектор r ( t ) точки: r ( t ) = ix + jy , где x , y − проекции радиус вектора соответственно на оси OX и OY ; i , j − единичные векторы (орты), направленные соответственно по оси OX и OY . Тогда (1*) примет вид
ix + jy = iAcosωt + jAsinωt ,
отсюда получим два уравнения
x = Acosωt , (*)
y = Asinωt . (**)
Возведём их в квадрат
x ² = A ² cos ² ωt ,
y ² = A ² sin ² ωt .
Сложим эти уравнения
x ² + y ² = A ² cos ² ωt + A ² sin ² ωt или x ² + y ² = A ²( cos ² ωt + sin ² ωt ). Отсюда, т.к. cos ² ωt + sin ² ωt = 1, получим уравнение траектории движения точки
x ² + y ² = A ². (2)
Уравнение (2) − это уравнение окружности радиусом R = A = 0,5 м с центром в начале координат (см. рис.).
Найдём проекции скорости v x и vy . Для этого продифференцируем x и y из (*) и (**) по времени t :
vx = xt ʹ = ( Acosωt ) t ʹ = – Aωsinωt ;
vy = yt ʹ = ( Asinωt ) t ʹ = Aωcosωt .
Тогда квадрат скорости
v ² = vx ² + vy ² или v ² = (- Aωsinωt )² + ( Aωcosωt )² или v ² = A ² ω ²( sin ² ωt + cos ² ωt ) или v ² = A ² ω ². Отсюда модуль скорости v :
v = Aω . (3)
v = 0,5·5 = 2,5 м/с².
Модуль нормального ускорения an : an = v ²/ R или, с учётом (3) и R = A , получим an = A ² ω ²/ A или
an = Aω ².
an = 0,5·5² = 12,5 м/с².
Ответ: траектория − окружность радиусом R = A = 0,5 м с центром в начале координат, v = Aω = 2,5 м/с², an = Aω ² = 12,5 м/с².

_______________________________________________________________________________________________

4.1.2. Свободные затухающие колебания.

4.1.2-1.
Амплитуда затухающих колебаний уменьшилась в n = 100 за 15 с. Чему равен коэффициент затухания β ?

Решение:

t = 15 c
n = 100
A = A ₀/ n (*)
β – ?
Зависимость амплитуды А затухающих колебаний от времени t :
A = A ₀ e – β t , (1)
где A ₀ – начальная амплитуда; β – коэффициент затухания.
Имеем из (1) и (*):
A ₀/ n = A ₀ e – β t ; 1/ n = e – β t ; e β t = n ; βt = ln ( n ) отсюда
β = ln ( n )/ t .
β = ln(100)/15 = 0,307 1/c.
Ответ: β = ln(n)/t = 0,307 1/c.

4.1.2-2. Найти логарифмический декремент затухания тонкого стержня, подвешенного за один из его концов, если за промежуток времени t = 5 мин его полная механическая энергия уменьшилась в n = 4 · 10 ² раз. Длина стержня L = 50 см.

Решение:
t = 5 мин = 300 с
n = 400
L = 0,5 м
λ − ?
В данном случае стержень − это физический маятник.
Логарифмический декремент затухания λ
λ = βT
, (1)
где β – коэффициент затухания, T − период колебаний стержня.

1. Найдём коэффициент затухания β .
Связь частот ω и ω₀:
ω² = ω₀² – β². (2)
ω – частота затухающих колебаний; ω ₀ – собственная частота колебаний.
Зависимость от времени t полной механической энергии Е физического маятника:
Е =
E ₀ e -2 βt ,
где E ₀ – начальная (при t = 0) полная механическая энергия.
Отсюда имеем
n = Е ₀/ Е = Е ₀/( E ₀ e -2 βt ) = 1 /( e -2 βt ) = e 2 βt .
Получили n = e 2 βt . Прологарифмируем это равенство Ln ( n ) = 2 βt . Отсюда
β = Ln ( n )/(2 t ). (3)

2. Найдём период Т затухающих колебаний.
Оценим коэффициент β 2 по (3).
β = Ln (400)/(2 · 300) = 0,009986, отсюда
β ² = (0,009986)² ≈ 0,0000997.
Собственная частота колебаний физического маятника:

Подставим в (1) найденные β из (3) и Т из (4**) и, после упрощения, получим

4.1.2-3. Логарифмический декремент затухания тела, колеблющегося с частотой 50 Гц, равен 0,02. Определите: время, за которое амплитуда колебаний тела уменьшится в 20 раз; число колебаний тела, чтобы произошло подобное уменьшение амплитуды.

Решение:
ν = 50 Гц
λ = 0,02
n = 20
t − ?
N − ?
1. Пусть β – коэффициент затухания; T = 1/ ν – период, ν – частота колебаний. Логарифмический декремент затухания λ :
λ = βT
или λ = β / ν , отсюда
β = λν . (1)
Амплитуда А затухающих колебаний
A = A ₀· e – βt ,
где A ₀ − начальная амплитуда (при t = 0).
Подставим сюда из условия задачи A = A ₀/ n :
A ₀/ n = A ₀· e – βt ,
отсюда e βt = n и, после логарифмирования, βt = Ln ( n ), отсюда
t = ( Ln ( n ) )/ β и, с учётом (1),
t = ( Ln ( n ) )/( λν ). (2)

2.
Число колебаний N за время t :
N = t / T = tν = ( и, с учётом (2), ) = ν ( Ln ( n ) )/( λν ) или
N = ( Ln ( n ) )/ λ . (3)

3.
Вычисления по формулам (2) и (3):
t = ( Ln (20) )/(0,02·50) ≈ 3 с.
N = ( Ln (20) )/0,02 ≈ 150.
Ответ: t = ( Ln ( n ) )/( λν ) ≈ 3 с; N = ( Ln ( n ) )/ λ ≈ 150.

4.1.2-4. Составьте дифференциальное уравнение гармонических свободных затухающих крутильных колебаний механической системы.

Решение:
Пусть система (например, тонкий однородный диск, подвешенный в горизонтальном положении к упругой нити) совершает крутильные колебания относительно закреплённой оси Z (ось нити). Пусть на диск действует упругая сила, проекция момента которой на ось Z равна
Mz = – kϕ , (1)
где k − постоянная, ϕ − угол поворота из положения равновесия. Знак “минус” указывает на то, что при отклонении системы на угол ϕ , момент упругой силы возвращает систему к положению равновесия. Поместим диск в вязкую среду ( например, жидкость ). Момент силы сопротивления Mc , действующий на диск, пропорционален угловой скорости ϕ ʹ:
M c = – ηϕ ʹ, (2)
где η − постоянная.
Уравнение динамики вращательного движения диска имеет вид
Iϕ ʹʹ = Mz + M c , (3)
где I – момент инерции диска относительно оси вращения.
С учётом (1) и (2), уравнение (3) примет вид Iϕ ʹʹ = – kϕ – ηϕ ʹ, отсюда
ϕ ʹʹ + ( η / I ) ϕ ʹ + ( k / I ) ϕ = 0.
Применив обозначения 2 β = η / I , ω ₀² = k / I , перепишем последнее уравнение:
ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.
Это дифференциальное уравнение описывает затухающие крутильные колебания механической системы.
Ответ: ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.

4.1.2-5. Найти добротность Q осциллятора, у которого отношение резонансной частоты ωрез к частоте затухающих колебаний ω равно η.

Решение:
ωрез/ω = η (*)
Q − ?
Пусть β − коэффициент затухания, ω₀ − собственная частота колебаний, T = 2π/ω − период затухающих колебаний, λ = βT = 2πβ/ω − логарифмический декремент затухания. Тогда добротность Q:
Q = π/λ = π/(2πβ/ω), или
Q = ω/(2β). (1)
Связь частот ω и ω₀:
ω² = ω₀² – β². (2)
Формула для резонансной частоты ωрез:
ωрез² = ω₀² – 2β². (3)
Из (2) вычтем (3)
ω² – ωрез² = (ω₀² – β²) – (ω₀² – 2β²), или
ω² – ωрез² = ω₀² – β² – ω₀² + 2β², или
ω² – ωрез² = β². (**)
С учётом условия (*) имеем ωрез = ωη. Тогда (**) примет вид
ω² – ω²η² = β², или
ω²(1 – η²) = β², отсюда

___________________________________________________________________________________

4.1.3. Вынужденные колебания. Резонанс.

4.1.3-1. Осциллятор массы m движется по закону x = Asinωt под действием вынуждающей силы Fₓ = F₀cosωt. Найти коэффициент затухания β осциллятора.

Решение:
m,
x = Asinωt,
Fₓ = F₀cosωt,
β − ?
Установившееся смещение х(t) осциллятора при вынужденных колебаниях:
x = Acos(ωt – ϕ), (1)

ω₀ − собственная частота колебаний осциллятора,
f₀ = F₀/m. (*)
Так как по условию смещение х(t) осциллятора x = Asinωt, то из (1) следует: ϕ = π/2
(т. к. cos(ωt – π/2) = sinωt). Тогда из (3) имеем:

где f₀ = F ₀/ m , m − масса осциллятора , β − коэффициент затухания, ω₀ − собственная частота колебаний, ω − частота вынужденных колебаний.
При постоянной амплитуде вынуждающей силы F ₀ (и, следовательно, постоянной f ₀) из (*) при двух разных частотах ω₁ и ω₂ получаем две амплитуды А₁ и А₂ вынужденных колебаний:

4.2. Электрические колебания.

4.2-1. Небольшая магнитная стрелка совершает малые колебания вокруг оси, перпендикулярной направлению внешнего магнитного поля. При изменении индукции этого поля период колебаний стрелки уменьшился в η = 5 раз. Во сколько раз и как изменилась индукция поля? Затухание колебаний пренебрежимо мало.

Решение:
T ₁/ T ₂ = η = 5
B ₂/ B ₁ − ?
Момент сил М, действующий на стрелку со стороны магнитного поля
М = [ B · P m ], где P m − вектор магнитного момента стрелки.
Модуль момента сил
М = B · P m · sinϕ , где ϕ – угол между векторами B и P m .
При малых колебаниях угол ϕ очень мал и sinϕ ≈ ϕ . Тогда
М = B · P m · ϕ .
При повороте стрелки на угол ϕ возникает момент сил М , стремящийся вернуть стрелку в положение равновесия, т.е. М = – B · P m · ϕ . Если J – момент инерции стрелки относительно оси вращения, то основное уравнение динамики вращательного движения примет вид
Jϕ ’’ = M или Jϕ ’’ = – B · P m · ϕ отсюда
ϕ ’’ + ( B · P m / J ) · ϕ = 0. (1)
Если ω – циклическая частота колебаний, то сравнивая (1) с уравнением гармонических колебаний
ϕ ’’ + ω ² ϕ = 0, получим
ω ² = B · P m / J , отсюда
ω = √( B · P m / J ).
Тогда период T колебаний
T = 2 π / ω или
T = 2 π √( J /( B · P m ) ). (2)
На основе (2) для разных B ₁ и B ₂ получим соответствующие T ₁ и T ₂
T ₁ = 2 π √( J /( B ₁ · P m ) )
T ₂ = 2 π √( J /( B ₂ · P m ) ).
Отсюда
T ₁/ T ₂ = √( B ₂/ B ₁) и отсюда
B ₂/ B ₁ = ( T ₁/ T ₂)² = η ² = 25. Итак
B ₂/ B ₁ = η ² = 25.
Ответ: индукция магнитного поля увеличится в η ² = 25 раз.

4.2-2. Индуктивность катушки равна 0,125 Гн. Уравнение колебаний силы ток в ней имеет вид:
i = 0,4 cos (1000 t ), где все величины выражены в системе СИ. Определить амплитуду напряжения на катушке.

Решение:
L = 0,125 Гн
i = 0,4 cos (1000 t ). (1)
Um − ?
Уравнение колебаний силы тока в катушке имеет вид:
i = Imcos ( ωt ). (2)
Из (1) и (2) имеем
Im = 0,4 А − амплитуда силы тока в катушке; ω = 1000 с⁻¹− частота.
Индуктивное сопротивление катушки: X L = ωL .
По закону Ома
Im = Um / X L , отсюда
Um = X L · Im или
Um = ωL · Im .
Um = 1000·0,125·0,4 = 50 В.
Ответ: Um = 50 В.

4.2-3. Электрический колебательный контур состоял из последовательно соединенных катушки с индуктивностью L = 0,8 Гн и конденсатора емкостью С. Сопротивление катушки и соединительных проводов было равно R = 2000 Ом. После того, как часть витков в катушке замкнулась накоротко, индуктивность ее уменьшилась в n = 7 раз, частота собственных колебаний в контуре возросла в k = 3 раза, а коэффициент затухания этих колебаний не изменился. Определить емкость конденсатора .

Решение:
L = 0,8 Гн
R = 2000 Ом
L ₂ = L / n
n = 7
ω ₂ = kω
k = 3
β = const
C − ?
Коэффициент затуханий β = R /(2 L ).
ω и ω ₂ − начальная и конечная частоты собственных колебаний в контуре, где
ω = √( 1/( LC ) – β ² ) = √( 1/( LC ) – R ²/(4 L ²) );
ω ₂ = √( 1/( L ₂ C ) – β ² ) = √( n /( LC ) – R ²/(4 L ²) ).
Возведём в квадрат равенство ω ₂ = kω , получим ω ₂² = k ² ω ² или
n /( LC ) – R ²/(4 L ²) = k ²( 1/( LC ) – R ²/(4 L ²) ), отсюда
C = 4 L ( k ² – n )/( R ²( k ² – 1) ).
C = 4·0,8·(3² – 7)/( 2000²·(3² – 1) ) = 2·10⁻⁷ Ф.
Ответ: C = 4L(k² – n)/( R²(k² – 1) ) = 2·10⁻⁷ Ф.

4.2-4. Ток в колебательном контуре зависит от времени как I = Imsinω₀t, где Im = 9,0 мА, ω₀ = 4,5·10⁴ с⁻¹. Ёмкость конденсатора С = 0,50 мкФ. Найти индуктивность контура и напряжение на конденсаторе в момент t = 0.

Решение:

I = Imsinω₀t (*)
Im = 9·10⁻³ А
ω₀ = 4,5·10⁴ с⁻¹
С = 0,5·10⁻⁶ Ф
L − ?
U(0) − ?
1). Собственная частота ω₀ колебательного контура

1
L = ––––– . (1)
ω₀²C
2). Закон сохранения энергии в колебательном контуре:
LI²/2 + CU²/2 = LIm²/2
или, с учётом (*),
L(Imsinω₀t)²/2 + CU²/2 = LIm²/2.
Отсюда при t = 0 (т.к. sinω₀0 = 0) получим напряжение U(0) = Um на конденсаторе в момент времени t = 0 ( Um − максимальное напряжение ):
CU²(0) = LIm²
и, подставляя сюда L из (1), получим
Im²
CU²(0) = ––––– или
ω₀²C
Im
U(0) = Um = –––– . (2)
ω₀C
Вычисления по формулам (1) и (2 ):
1
L = –––––––––––––––– = 0,001 Гн = 1 мГн.
(4,5·10⁴)²·0,5·10⁻⁶
9·10⁻³
U(0) = Um = –––––––––––––– = 0,4 В.
4,5·10⁴·0,5·10⁻⁶

4.3. Упругие волны. Акустика.

4.3-1. По шнуру слева направо бежит со скоростью v незатухающая гармоническая волна. При этом поперечное смещение точки О шнура изменяется по закону y = Acos ( ωt ). Как зависит от времени смещение точки шнура, находящейся правее точки О на расстоянии x от нее?

Решение:

y = Acos ( ω ( t – x / v ) ).
Ответ: y = Acos ( ω ( t – x / v ) ).

4.3-2. Уравнение плоской звуковой волны имеет вид ξ = 60 cos (1800 t – 5,3 x ). где ξ – в мкм, t – в секундах, х – в метрах .
Найти:
а) отношение амплитуды смещения частиц среды к длине волны;
б) амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны;
в) амплитуду колебаний относительной деформации среды и её связь с амплитудой колебаний скорости частиц среды.

а) Уравнение плоской синусоидальной волны
ξ = Acos(ωt – kx). (2)
Из (1) и (2) следует
A = 60 ·10 ⁻ ⁶ м – амплитуда колебаний частиц среды,
ω = 1800 1/с – циклическая частота,
k = 5,3 1/м – волновое число.
k = 2π/λ, отсюда λ = 2π/k. Тогда
A/λ = A/(2π/k) или
A/λ = Ak/(2π).
A / λ = 60 ·10 ⁻ ⁶ · 5,3/(2 · 3,14) = 5,1 ·10 ⁻ ⁵ .

б) Амплитуда колебаний скорости частиц среды
V m = Aω . (*)
Vm = 60 ·10 ⁻ ⁶ · 1800 = 0,11 м/с. = 11 см/с.
Скорость распространения волны
v = ω / k . (3)
Тогда ( см. (*) )
Vm/v = Aω / ( ω / k ) = A k .
Vm/v = A k .
Vm/v = 60 ·10 ⁻ ⁶ · 5,3 = 3,2 ·10 ⁻ ⁴ .

в) Относительную деформацию среды найдём дифференцируя (2) по х:
∂ ξ/ ∂ x = ( Acos(ωt – kx) )x ʹ = – Aksin (ωt – kx).

Ответ: a) A/λ = 5,1 ·10 ⁻ ⁵ ;
б)
Vm = 0,11 м/с, Vm/v = 3,2 ·10 ⁻ ⁴;
в)
( ∂ ξ/ ∂ x)m = 3,2 ·10 ⁻ ⁴, V m = v · (d ξ/dx)m , где v = 340 м/с – скорость волны .


4.3-3. Что такое амплитуда колебаний скорости частиц среды?

Решение:
Объясню на простом примере. В озере на воде поплавок. Бросьте в воду камешек, от него во все стороны пойдут волны. Поплавок колеблется на волнах. Скорость колебаний поплавка − это скорость колебаний частиц среды (воды). Максимальная скорость колебаний поплавка − это амплитуда колебаний скорости частиц среды.
Амплитуда колебаний скорости частиц среды
Vm = Aω ( A – амплитуда, ω – циклическая частота).
Скорость распространения волны
v = ω / k ( k – волновое число).
A , ω , k определяют из общего вида уравнения бегущей плоской синусоидальной волны
ξ = Acos ( ωt – kx ).

4.3-4. Точечный изотропный источник испускает звуковые колебания с частотой ν = 1,45 кГц. На расстоянии r₁ = 5 м от источника амплитуда смещения частиц среды А₁ = 50 мкм, а в точке А, находящейся на расстоянии r₂ = 10 м от источника, амплитуда смещения в η = 3 раза меньше А₁. Найти:
а) коэффициент затухания волны γ;
б) амплитуду колебаний скорости частиц среды в точке А.

Решение:
ν = 1450 Гц
r₁ = 5 м
А₁ = 50·10⁻⁶ м
r₂ = 10 м
А₂ = А₁/η (η = 3) (*)
а) γ − ?
б) Vm − ? (в точке А)
От данного точечного источника распространяются сферические волны. Для однородной поглощающей среды уравнение сферической волны:

(1)
где ξ − смещение частиц среды; ω = 2πν − циклическая частота; k − волновое число.

а). Из (1) выпишем амплитуду A смещения частиц среды (множитель перед косинусом):
A = (A₀/r)·e⁻ᵞʳ.
Отсюда для r = r₁ и r = r₂ получаем амплитуды смещения частиц среды A₁ и A₂ соответственно
A ₁ = ( A ₀ / r ₁ ) · e ⁻ ᵞ r₁ , (**)
A ₂ = ( A ₀ / r ₂ ) · e ⁻ ᵞ r ₂ . (***)
Делим (**) на (***) и, с учётом (*), получаем:

η = ( r ₂ / r ₁ ) · e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ отсюда η r ₁ / r ₂ = e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ , отсюда, по определению логарифма, имеем

ln ( η r ₁ / r ₂ ) = γ( r ₂ – r ₁ ), отсюда

γ = ln(3 · 5 /10 )/(10 – 5 ) ≈ 0,08 м ⁻ ¹ .

б). Для нахождения скорости смещения частиц среды V найдём частную производную по времени t от (1):
V = ∂ ξ / ∂ t = ( A ₀ / r ) · e ⁻ ᵞ ʳ ·( – ω sin ( ω t – kr ) ).
С учётом ω = 2πν, имеем
V = – ( 2 π ν A ₀ /r ) ·e ⁻ ᵞ ʳ ·sin ( ω t-kr ) .
Отсюда амплитуда колебаний скорости частиц среды Vm (множитель перед синусом):

4.3-5. Плоская звуковая волна, частота которой 100 Гц и амплитуда 5 мкм, распространяется со скоростью 300 мс в воздухе, плотность которого равна 1 , 2 кгм ³ . Определить интенсивность волны.

Решение:
ν = 100 Гц
а = 5·10⁻⁶ м
V = 300 мс
ρ = 1,2 кгм³
I − ?
Интенсивность I звуковой волны
I = ρ а² ω ² V /2 и т.к. ω = 2 πν , то
I = ρ а²(2 πν )² V /2.
I = 1,2·(5·10⁻⁶)²·(2·3,14·100)²·300/2 = 1,77·10⁻³ Вт/м².
Ответ: I = 1,77·10⁻³ Вт/м².

4.3-6. Стальная струна длины l = 100 см и диаметра d = 0,50 мм даёт основной тон частоты ν = 256 Гц. Найти силу её натяжения.

Решение:
l = 1 м
d = 0,5·10⁻³ м
ν = 256 Гц
ρ = 7800 кг/м³ (плотность стали)
F − ?
В закреплённой с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны. Основной тон частоты ν колебаний струны:
ν = V/2l, отсюда
V = 2lν, (1)
где

− фазовая скорость поперечных волн в струне. Отсюда

F = V²ρ₁ , (2)
где ρ₁ = m/l − линейная плотность струны, m = ρV₀ − масса струны, V₀ = (πd²/4)l = πd²l/4 − объём струны.
Имеем: ρ₁ = ρV₀/l = ρ(πd²l/4)/l = ρπd²/4. Получили
ρ₁ = ρπd²/4. (3)
Подставляя в (2) V из (1) и ρ₁ из (3), получим силу натяжения F струны
F = (2lν)²ρπd²/4, или
F = πρ(lνd)².
F = 3,14·7800· (1·256·0,5·10⁻³)² ≈ 401,3 Н.
Ответ: F = πρ(lνd)² ≈ 401,3 Н.

_______________________________________________________________________________________________

4.4. Электромагнитные волны. Излучение.

4.4-1. Электромагнитная волна с частотой 6 · 10 ¹⁴ Гц распространяется в стекле, показатель преломления которого 1,5. Какова скорость волны в стекле и значение волнового числа?

Решение:

ν = 6 · 10¹⁴ Гц
n = 1,5
c = 3 · 10⁸ м/с (скорость света в вакууме)
V – ? k – ?
Скорость V волны в стекле:
V = c / n . (1)
Длина волны в стекле:
λ = V / ν = c /( nν ). (*)
Волновое число k:
k = 2 π / λ или с учётом (*)
k = 2 πnν /с. (2)
Вычисления по (1), (2)
V = 3 · 10⁸/1,5 = 2 · 10⁸ м/с.
k = 2 · 3,14 · 1,5 · 6 · 10¹⁴/(3 · 10⁸) = 1,88 · 10⁷ (1/м).
Ответ: V = 2 · 10⁸ м/с; k = 1,88 · 10⁷ (1/м).

4.4-2. Определить показатель преломления призмы из парафина , если его диэлектрическая проницаемость Ԑ = 2 и магнитная проницаемость μ = 1.

Решение:
Ԑ = 2
μ = 1
n – ?
Показатель преломления среды
n = C / V . (1)
С – скорость света в вакууме.
Скорость света в среде
V = C /√( Ԑμ ). (2)
Из (1) и (2) имеем
n = √( Ԑμ ).
n = √(2·1) = 1,41.
Ответ: n = 1,41.
___________________________________________________________________________________

Уравнение плоской синусоидальной волны найти период

Уравнения плоской и сферической волн

Уравнением волны называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x, y, z) и времени t.

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t: . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

– это уравнение плоской волны.

Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z.

В общем виде уравнение плоской волны записывается так:

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны.

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид:

.

Уравнение волны можно записать и в другом виде.

Введем волновое число , или в векторной форме:

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

Уравнение сферической волны

В случае, когда скорость волны υ во всех направлениях постоянна, а источник точечный, волна будет сферической.

Предположим, что фаза колебаний источника равна wt (т.е. ). Тогда точки, лежащие на волновой поверхности радиуса r, будут иметь фазу . Амплитуда колебаний здесь, даже если волна не поглощается средой, не будет постоянной, она убывает по закону . Следовательно, уравнение сферической волны:

где А равна амплитуде на расстоянии от источника равном единице.

Уравнение (5.2.7) неприменимо для малых r, т.к. при , амплитуда стремится к бесконечности. То, что амплитуда колебаний , следует из рассмотрения энергии, переносимой волной.

[spoiler title=”источники:”]

http://www.sites.google.com/site/viktortsekunov/services/fizika/4-kolebania-i-volny

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9A%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B.%20%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%B0%D1%8F%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0/05-2.htm

[/spoiler]

Уравнение плоской синусоидальной волны

Несмотря на
большое разнообразие физических
процессов, вызывающих волны, образование
волн и их распространение происходит
по одному общему типу и описывается
одинаковыми уравнениями.

Пусть в направлении
оси ОХ распространяется плоская волна,
полученная от источника волн, в котором
изменения колеблющейся величины
происходит по закону

с амплитудой А,
циклической частотой 
и начальной фазой 0.
Совместим положение источника волн с
началом координат (рис.). Если пренебречь
затуханием волны, то колебания частиц
в точке, отстоящей на расстоянии Х от
источника, будут происходить тоже по
закону (74), но с опаздыванием по времени
на величину


ЗАП
=

,

где V
– скорость распространения фронта волны.
Поэтому смещение S
физической величины от положения
равновесия в точках, находящихся на
расстоянии Х от источника в момент
времени t,
является уже функцией двух переменных
Х и t:

Уравнение называется
у р а в н е н и е м п л о с к о й с и н у
с о и д а л ь н о й в о л н ы, распространяющейся
вдоль оси ОХ.

Д л и н о й в о
л н ы 
называется расстояние, пройденное
фронтом волны за период колебаний
источника волн

=VT=
=

.

Величина

называется в о л
н о в ы м ч и с л о м и показывает, сколько
длин волн укладывается на расстоянии,
равном 2
единиц длины. С учетом уравнение будет
иметь вид

На рис. представлена
как бы «мгновенная фотография» плоской
поперечной синусоидальной волны с
длиной волны 
и начальной фазой 0=0.

При переходе
волны из одной среды в другую частота
ее =/2
не меняется, пока источник волн работает
по закону. Но длина волны 
будет меняться, так как изменяются
свойства среды. Поэтому скорость волны
тоже будет меняться, в одной среде V1=1
, в другой V2=2
.

При распространении
плоской волны вдоль произвольного
направления r

,

где

– в о л н о в о й в е к т о р, по модулю
равный волновому числу к и направленный
вдоль луча в рассматриваемой точке
среды, характеризующейся радиус-вектором


.

Учитывая (1а),
уравнение (80) можно записать в
экспоненциальной форме, удобной для
дифференцирования:


.

Уравнение
синусоидальной сферической волны имеет
вид


,

где А/r
– амплитуда сферической волны, убывающая
обратно пропорционально расстоянию
фронта волны от источника колебаний r.
Это происходит потому, что энергия,
переносимая сферической волной за
единицу времени через любую сферическую
поверхность, должна быть одна и та же и
равна энергии, расходуемой источником
за это же время

(

а так как

~
,
то

~

).

П л о с к а я с
к а л я р н а я волна произвольного вида,
распространяющаяся вдоль оси ОХ со
скоростью V,
имеет вид


.

Предположим теперь,
что некоторая векторная величина

(скорость, напряженность электрического
и магнитного поля и так далее) является
функцией координат и времени

В этом случае
говорят о п л о с к о й в е к т о р н о й
волне, распространяющейся вдоль оси
ОХ со скоростью V.
Если вектор

перпендикулярен к направлению
распространения волны, то векторная
волна называется п о п е р е ч н о й, если
вектор

параллелен направлению распространения
волны, то волна будет п р о д о л ь н о
й.

Волновое уравнение

Уравнение для
любой волны вида являются решениями
дифференциального уравнения, называемого
в о л н о в ы м. Установим вид волнового
уравнения для плоской волны произвольного
вида. Для этого сопоставим вторые частные
производные по х и t:


;

;

;

.

Из соотношений
следует


.

Это дифференциальное
уравнение в частных производных второго
порядка, которое называется в о л н о
в ы м у р а в н е н и е м. Любая функция,
удовлетворяющая этому уравнению, будет
описывать плоскую волну, распространяющуюся
со скоростью V
в направлении оси ОХ.

Распространение
волн в трех измерениях в однородной не
поглощающей среде описывается волновым
уравнением

или

,

где =

– оператор Лапласа.

Для векторной
волны волновое уравнение имеет вид


.

Волны различной
природы

Упругие волны в
твердом теле

Рассмотрим
упругую волну в тонком упругом твердом
стержне (рис.). Пусть частицы стержня с
координатой x1
в момент времени t
испытывают относительную деформацию
сжатия

,

частицы с координатой
x2
в этот же момент времени –

. Результирующая сила F,
действующая на элемент объема V=S0x
, при условии выполнения закона Гука

;

,

где Е – модуль Юнга
вещества стержня. По второму закону
Ньютона

,

где

– плотность вещества стержня. При х
0
с учетом того, что ускорение

:

;

согласно скорость
фронта продольной волны в стержне

V

=

,

Таким же образом
можно показать, что скорость поперечных
волн, обусловленных распространением
упругой деформацией сдвига, в неограниченной
твердой среде

V
=


,

где G
– модуль сдвига среды, а 
– ее плотность.

Скорость
поперечных волн в натянутой струне
зависит от силы натяжения струны

,

Энергия
волны

При распространении
волн происходит перенос энергии без
переноса вещества. В силу того, что
энергия волны распределена в пространстве
неравномерно, имеет смысл говорить о
плотности энергии.

Упругая среда,
в которой распространяются м е х а н и
ч е с к и е в о л н ы, обладает как
кинетической энергией колебательного
движения частиц, так и потенциальной
энергией, обусловленной деформацией
среды.

Рассмотрим
плоскую продольную упругую волну в
тонком стержне S(x,t)=f(1-x/V)
. Объемная плотность кинетической
энергии определяется следующим
равенством:

,

где dK
– кинетическая энергия всех частиц в
бесконечно малом объеме dv
стержня, выбранном так, что в его пределах
скорость частиц среды
U(x,t)=

одинакова;

– плотность среды.

Объемная
плотность потенциальной энергии

,

где dП
– потенциальная энергия однородно
деформированного малого участка среды
объемом dV=S0dx;

k
– малого участка стержня длиной dx
и сечением S0
, прямо пропорциональная произведению
(ES0)
и обратно пропорциональная длине этого
участка;

– относительная
деформация рассматриваемого участка.

Учитывая
выражение (99) и равенство

,получим

.

Таким образом,
плотности кинетической и потенциальной
энергий упругой волны равны между собой
в любой момент времени в любой точке
среды. Следует отметить, что в отличие
от локализованных колебаний осциллятора,
где кинетическая и потенциальная энергии
изменяются в противофазе (см. (12) и (13)),
в бегущей волне колебания кинетической
и потенциальной энергий происходят в
одинаковой фазе.

Плотность полной
энергии упругой волны

.

Из равенства
(114) следует, что энергия бегущей волны
перемещается вместе с волной с той же
скоростью V
без переноса частиц среды, колеблющихся
около своих положений равновесия. При
этом,

согласно закону
сохранения энергии, должна уменьшаться
энергия источника волн. Для синусоидальной
волны (79)

;

.

Вектором
плотности потока энергии

(вектором Умова) называется вектор,
направленный в сторону переноса энергии
волны и равный по величине отношению
энергии, переносимой волной за единицу
времени сквозь малую площадку dS
к площади dS
– проекции этой площадки на плоскость,
перпендикулярную направлению переноса
энергии. Так как энергия dEмех
заключена в элементе объема

, то

;

.

Скалярная
величина I
, равная модулю среднего значения вектора
Умова, называется и н т е н с и в н о с т
ь ю в о л н ы :

.

Для синусоидальной
волны

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Волновое движение:

Процесс распространения колебаний в упругой среде называют механической волной. Для механических волн нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию, она должна обладать инертными и упругими свойствами.

Различают поперечные и продольные волны. Продольные волны могут распространяться в любых средах: твердых, жидких и газообразных; поперечные – только в твердых средах.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. Волны переносят энергию колебаний.

Изучив страницу, вы сможете:

  • исследовать образование стоячих звуковых волн в воздухе;
  • объяснять механизм образования стоячих волн, определять узлы и пучности, используя графический метод;
  • исследовать интерференцию от двух источников на поверхности воды;
  • объяснять принцип Гюйгенса и условия наблюдения дифракционной картины механических волн.

Уравнение бегущей волны

Колебательное движение тела в упругой среде является источником механической волны.

Волну, переносящую энергию, называют бегущей волной.

В однородной среде скорость распространения волны остается величиной постоянной. Смещение y (x, t) от положения равновесия частиц среды при распространении волны зависит от координаты x на оси 0х, вдоль которой распространяется волна, и от времени t по закону:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами

Введем волновое число Волновое движение в физике - формулы и определение с примерами тогда уравнение бегущей волны примет вид Волновое движение в физике - формулы и определение с примерами

Смещение точек упругой среды в волне, бегущей в противоположном направлении выбранной оси 0х, можно определить по формуле: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Вспомните! Основные характеристики волн. Волны, созданные источником, совершающим гармонические колебания, характеризуются амплитудой колебания частиц среды A, частотой Волновое движение в физике - формулы и определение с примерами длиной волны Волновое движение в физике - формулы и определение с примерами и скоростью распространения Волновое движение в физике - формулы и определение с примерами

Длиной волны Волновое движение в физике - формулы и определение с примерами называют расстояние между двумя соседними точками на оси 0х, колеблющимися в одинаковых фазах. Расстояние, равное длине волны Волновое движение в физике - формулы и определение с примерами, волна пробегает за период Т, следовательно, Волновое движение в физике - формулы и определение с примерами В однородных средах скорость распространения волны величина постоянная.

Физический смысл волнового числа

Запишем формулу (2), выразив циклическую частоту через период Волновое движение в физике - формулы и определение с примерами с учетом определения длины волны Волновое движение в физике - формулы и определение с примерами получим: Волновое движение в физике - формулы и определение с примерами

Бегущая волна обладает двойной периодичностью – во времени и в пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны Волновое движение в физике - формулы и определение с примерами Волновое число Волновое движение в физике - формулы и определение с примерами является пространственным аналогом циклической частоты Волновое движение в физике - формулы и определение с примерами

Фронт волны и волновая поверхность

Волна за время, равное периоду колебаний, достигает точек пространства, расположенных от источника на расстоянии длины волны. Совокупность этих точек представляет собой фронт волны, который отделяет колеблющиеся точки среды от точек, не вовлеченных в колебательное движение. Фронт волны от точечного источника представляет собой сферу, от плоской пластины – плоскость, от струны – форму цилиндра (рис. 79–81).

Волновое движение в физике - формулы и определение с примерами

Фронт волны – это геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Направление распространения волны указывает луч, который перпендикулярен фронту волны.

В волне можно рассмотреть множество поверхностей, все точки которых совершают колебания синфазно, их называют волновыми поверхностями. При множестве волновых поверхностей, фронт волны только один.

Геометрическое место точек пространства, которые совершают колебания в одинаковой фазе в данный момент времени, называют волновой поверхностью.

Стоячие волны

Уравнение стоячей волны При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на Волновое движение в физике - формулы и определение с примерами то есть на противоположную. В результате сложения падающей и отраженной волн образуется стоячая волна. Она имеет вид, представленный на рисунке 83. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Получим уравнение стоячей волны путем сложения уравнений бегущих волн: Волновое движение в физике - формулы и определение с примерами

Заменив волновое число его значением Волновое движение в физике - формулы и определение с примерами запишем уравнение стоячей волны в виде: Волновое движение в физике - формулы и определение с примерами

Координаты точек пучностей и узлов определяются из условий наибольшего и наименьшего значений амплитуды. При Волновое движение в физике - формулы и определение с примерами образуется пучность с амплитудой равной 2 А (рис. 84). Расстояния от источника стоячей волны до пучностей равны: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

При Волновое движение в физике - формулы и определение с примерами образуются узлы, амплитуда колебаний в этой точке равна 0. Расстояния от источника волны до узлов равны:

Волновое движение в физике - формулы и определение с примерами

Расстояния между двумя соседними пучностями или двумя соседними узлами равны:

Волновое движение в физике - формулы и определение с примерами

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не переносится в другие части струны. В каждом таком отрезке происходит дважды за период превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Отсутствие переноса энергии является отличительной особенностью стоячей волны.

Пример:

Уравнение бегущей волны, изображенной на рисунке (рис. 85): Волновое движение в физике - формулы и определение с примерами. Уравнение отраженной волны: Волновое движение в физике - формулы и определение с примерами

А. Получите уравнение стоячей волны как сумму падающей и отраженной волн.

В. Полученное выражение запишите, заменив волновое число и циклическую частоту через длину волны и период.

С. Определите положение узлов и пучностей.

Волновое движение в физике - формулы и определение с примерами

Дано:

Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Решение: А. Уравнение стоячей волны определятся сложением уравнений бегущих волн:Волновое движение в физике - формулы и определение с примерами Волновое движение в физике - формулы и определение с примерами

В. Волновое движение в физике - формулы и определение с примерами

С. При Волновое движение в физике - формулы и определение с примерами образуется пучность с амплитудой 2А. Расстояние от источника до пучностей Волновое движение в физике - формулы и определение с примерами

С. Расстояние от узлов определим из условия Волновое движение в физике - формулы и определение с примерами тогдаВолновое движение в физике - формулы и определение с примерами

Ответ: Волновое движение в физике - формулы и определение с примерами Волновое движение в физике - формулы и определение с примерами

Интерференция волн

Если в некоторой среде несколько источников возбуждают механические волны, то они распространяются независимо друг от друга. Все точки среды принимают участие в колебаниях, вызванных каждой волной в отдельности. Наложение волн, в результате которой появляется устойчивая картина чередующихся максимумов и минимумов колебаний частиц среды, называют интерференцией.

Интерферировать могут только волны, имеющие одинаковую частоту и постоянный сдвиг фаз. Такие волны называют когерентными, их создают источники, колеблющиеся с одинаковой частотой и постоянным значением сдвига фаз.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны: например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников (рис. 87).

Запомните! Волны называют когерентными, если их источники совершают колебания одной частоты с постоянным сдвигом фаз.

Волновое движение в физике - формулы и определение с примерами

Условие максимума и минимума при интерференции двух волн

Амплитуда колебаний при наложении волн определяется в соответствии с принципом суперпозиции (рис. 88). Если в некоторой точке среды накладываются гребни когерентных волн, то происходит усиление колебаний, амплитуда принимает значение, равное сумме амплитуд. Если накладывается гребень одной волны с впадиной другой волны, то при равенстве амплитуд отдельно взятых волн данная точка пространства не совершает колебания. Если амплитуды отличаются, то колебания в этой точке совершаются с амплитудой равной разности амплитуд распространяющихся волн.

Волновое движение в физике - формулы и определение с примерами

Для определения результата интерференции волн, распространяющихся от двух источников А и В, находящихся на расстоянии Волновое движение в физике - формулы и определение с примерами от точки С, достаточно определить разность хода волн и сравнить с длиной волны. Если разность хода равна целому числу длин волн, то в точке С произойдет наложение гребней или впадин, амплитуда колебаний возрастет (рис. 89). Выполняется условие максимума:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами − разность хода волн, Волновое движение в физике - формулы и определение с примерами – натуральное число, равное 0, 1, 2, 3 … Разность хода лучей соответствует разности фаз колебаний:

Волновое движение в физике - формулы и определение с примерами

так как волна за период пробегает расстояние равное длине волны Волновое движение в физике - формулы и определение с примерами периоду Т соответствует фаза Волновое движение в физике - формулы и определение с примерами

Минимум колебаний в рассматриваемой точке среды наблюдается в том случае, если от двух когерентных источников распространяются волны со сдвигом фаз, равным нечетному числу p, а разность хода лучей кратна нечетному числу полуволн. В этом случае колебания происходят в противофазе (рис. 90).

Возьмите на заметку:

Интерференция волн приводит к перераспределению энергии колебаний между частицами среды. Это не противоречит закону сохранения энергии, так как в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Волновое движение в физике - формулы и определение с примерами

Распространение волн. Принцип Гюйгенса – Френеля

На основе принципа Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн, невозможно объяснить, почему источники вторичных волн создают фронт только по направлению распространения волны. Для объяснения явлений распространения волны французский физик О. Френель в 1815 г. дополнил принцип Х. Гюйгенса представлениями о когерентности и интерференции вторичных волн. При наложении вторичных когерентных волн происходит интерференция, в результате которой амплитуда колебаний в различных точках пространства становится разной: по направлению распространения волны усиливается, в обратном направлении – уменьшается. Огибающая фронты вторичных волн является фронтом результирующей волны (рис. 92).

Волновое движение в физике - формулы и определение с примерами

Дифракция механических волн

Вторичные волны, созданные точками среды, которые находятся на краю отверстия или препятствия, искривляются и волна огибает препятствие (рис. 93 а–г).

Волновое движение в физике - формулы и определение с примерами

Дифракция – это явление огибания волнами препятствий.

Все волны способны огибать препятствия, если длина волны соизмерима с размерами препятствия. Дифракция становится заметной, если размеры препятствия меньше длины волны.

Физика в нашей жизни:

Струнные музыкальные инструменты

Интересно знать! Адырна (рис. 96 а) – один из древнейших казахских струнных инструментов. В его форме отобразилась воинственность кочевников-казахов: он напоминает изогнутый лук воина. Деревянный корпус инструмента легкий, так как он пустотелый. Струны изготавливают из кусков специально выделанной кожи или сплетенных из верблюжьей шерсти нитей. Музыкант играет, перебирая струны. Их в инструменте 13. Жетыген (рис. 96 б) – семиструнный музыкальный инструмент. Он имеет прямоугольную форму, изготовлен из дерева, струны – из конского волоса. Легенда о жетыгене раскрывает причину использования именно семи струн. Старик, потерявший семерых сыновей, вылил свое горе, исполняя кюи о них. Вспоминая каждого из сыновей, он натягивал новую струну на музыкальном инструменте.

Волновое движение в физике - формулы и определение с примерами

Условие возникновения стоячей волны в струне

Стоячая волна в струне возникает только в том случае, если длина Волновое движение в физике - формулы и определение с примерами струны равняется целому числу длин полуволн: Волновое движение в физике - формулы и определение с примерами

Набору значений Волновое движение в физике - формулы и определение с примерами длин волн соответствует набор возможных частот Волновое движение в физике - формулы и определение с примерами Каждая из частот Волновое движение в физике - формулы и определение с примерами и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота называется основной частотой, все остальные частоты называются гармониками.

В отличие от груза на пружине или маятника, у которых имеется единственная собственная частота, струна обладает бесконечным числом собственных резонансных частот. На рисунке 96 в изображены несколько типов стоячих волн в струне. Стоячие волны различных типов могут одновременно присутствовать в колебаниях струны.

Визуализация звуковых волн

Существует несколько способов демонстрации стоячей волны, один из них – фигуры Хладни (рис. 97). Немецкий физик Эрнст Хладни получал узор, посыпая пластинку песком и проводя по краю смычком. Движения смычка заставляли пластинку колебаться на некоторой резонансной частоте. Песок скапливался и лежал неподвижно в узлах, а на участках, где отраженная волна усиливала бегущую, песок смещался.

Волновое движение в физике - формулы и определение с примерами

Интересно знать! В Шотландии есть рослинская капелла св. Матвея, на одной из арок которой есть 213 резных каменных кубов, с вырезанным на них геометрическим рисунком. Многие исследователи пытались понять, что зашифровано в рисунках на кубах. Отставной генерал ВВС Томас Митчел со своим сыном, пианистом Стюартом Митчелом предложили оригинальный способ расшифровки послания. Они сопоставили геометрические рисунки с фигурами Хладни и пришли к выводу, что на кубах записаны ноты. Собрав ноты воедино и творчески обработав их, они представили миру произведение «Рослинский Мотет».

Итоги:

Волновое движение в физике - формулы и определение с примерами

Глоссарий

Волновая поверхность – геометрическое место точек, имеющих одинаковую фазу колебаний.

Дифракция – явление огибания волнами препятствий.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Когерентные волны – волны, имеющие одинаковую частоту и постоянный сдвиг фаз.

Механическая волна – процесс распространения колебаний в упругой среде.

Фронт волны – геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Распространение колебаний в упругих средах. Продольные и поперечные волны

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды, с течением времени передаются в ее другие точки. В качестве примера достаточно вспомнить, что измерение пульса осуществляется на запястье, хотя сердце расположено внутри грудной клетки. Такие явления связаны с распространением механических волн.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Механические волны не могут распространяться в вакууме.
Источником механических волн является колеблющееся тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в ней с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы колеблются вблизи положений равновесия. Среднее смещение частиц за большой промежуток времени равно нулю.
Рассмотрим основные характеристики волны.

Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

Волновое движение в физике - формулы и определение с примерами

Основными характеристиками волны являются (рис. 208):

Рассмотрим колебания источника волны, происходящие с циклической частотой Волновое движение в физике - формулы и определение с примерами и амплитудой А:
Волновое движение в физике - формулы и определение с примерами
где x(t) — смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна v, то зависимость от времени t координаты (смещения) х колеблющейся точки, находящейся на расстоянии r от источника, описывается функцией
Волновое движение в физике - формулы и определение с примерами
где k — волновое число Волновое движение в физике - формулы и определение с примерамифаза волны.

Выражение х(t, r) называется уравнением плоской волны, распространяющейся (бегущей) вдоль направления радиус-вектора Волновое движение в физике - формулы и определение с примерами
 

Бегущую волну можно наблюдать, проведя следующий опыт: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна, описываемая уравнением плоской волны.

Рассмотрим классификацию бегущих волн по направлению колебаний частиц среды, в которой они распространяются.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн. Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 209).

Волновое движение в физике - формулы и определение с примерами

При этом каждый виток пружины будет колебаться вдоль направления распространения волны ВС. Примерами продольных волн являются звуковые волны в воздухе и жидкости.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны. С помощью длинной пружины можно продемонстрировать распространение поперечных волн, если совершать колебания незакрепленного конца перпендикулярно пружине (рис. 210).

Волновое движение в физике - формулы и определение с примерами

Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.

Продольные колебания симметричны относительно линии распространения ВС, и их действие на любой регистрирующий прибор не изменяется, если прибор будет поворачиваться вокруг направления распространения.

Действие поперечных волн на регистрирующий прибор зависит от того, в какой плоскости, проходящей через линию распространения, происходит колебание. Эта особенность поперечных волн носит название поляризации. Если колебания происходят в одной плоскости, то волну называют плоско или линейно поляризованной. Если конец вектора колебаний, например вектора смещения, скорости, напряженности электрического поля, описывает эллипс или окружность, то волну называют эллиптически или циркулярно-поляризованной.

До сих пор мы рассматривали волны, распространяющиеся в какой-либо среде. Волны, которые распространяются на границе раздела двух сред, называются поверхностными волнами. Примером данного типа волн служат волны на поверхности воды.

Звуковые волны. Скорость звука. Ультразвук

Звуком называются колебания среды, воспринимаемые органами слуха.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.
 

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в пространстве с течением времени. Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук Волновое движение в физике - формулы и определение с примерами
  • слышимый человеком звук Волновое движение в физике - формулы и определение с примерами
  • ультразвук Волновое движение в физике - формулы и определение с примерами
  • гиперзвук Волновое движение в физике - формулы и определение с примерами

Многие животные могут воспринимать ультразвуковые частоты. Например, собаки могут слышать звуки до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Звуковые волны приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и безошибочно можем отличить пение птиц от шума городской улицы.

Одной из важнейших характеристик звуковых волн является спектр. Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

В сплошном спектре присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
В

дискретном спектре — конечное число волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.
 

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).
 

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию па различных музыкальных инструментах.
 

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить

основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью.

Интенсивность I — это энергия Волновое движение в физике - формулы и определение с примерами переносимая волной в единицу времени Волновое движение в физике - формулы и определение с примерами = 1 с через единичную площадку площадью Волновое движение в физике - формулы и определение с примерами расположенную перпендикулярно к направлению распространения волны:
Волновое движение в физике - формулы и определение с примерами

Другими словами, интенсивность любой волны — мощность, переносимая волной через единичную площадку, расположенную перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является ватт на метр в квадрате Волновое движение в физике - формулы и определение с примерами
Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости.

С возрастом порог слышимости человека возрастает.

Интенсивность звуковых волн, при которой возникает ощущение боли, называют порогом болевого ощущения или болевым порогом. Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Волновое движение в физике - формулы и определение с примерами (порог слышимости) до Волновое движение в физике - формулы и определение с примерами (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Реактивный самолет может создать звук интенсивностью Волновое движение в физике - формулы и определение с примерами мощные усилители на концерте в закрытом помещении — до Волновое движение в физике - формулы и определение с примерами поезд метро — около Волновое движение в физике - формулы и определение с примерами

Уровни интенсивности звука L определяют обычно, используя шкалу, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б самый слабый звук, который воспринимает наше ухо. Единица названа в честь изобретателя телефона А. Г. Белла. Измерение уровня интенсивности в децибелах проще, поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Волновое движение в физике - формулы и определение с примерами
где I — интенсивность данного звука, Волновое движение в физике - формулы и определение с примерами — интенсивность Волновое движение в физике - формулы и определение с примерами соответствующая минимально возможной интенсивности звука, улавливаемого ухом человека.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это связано с тем, что восприятие звука — процесс не только

физический, но и физиологический. Действительно, человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.
 

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах, т. е. его способностью улавливать звуки различных частот. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до <5000 Гц. Порог слышимости зависит от частоты звука: при частоте 1000 Гц он примерно 120—130 дБ, а при частоте 50 Гц — примерно 50 дБ. С частотой изменяется также и кажущаяся громкость звука. Звук, имеющий уровень интенсивности 20 дБ на частоте 1000 Гц, вследствие особенностей восприятия будет иметь такую же громкость, как и звук в 50 дБ на частоте 100 Гц. Следует отметить, что болевой порог в зависимости от частоты изменяется не столь существенно, как порог слышимости.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на . 20 дБ. Вследствие этого звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.
 

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.
 

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяется к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 6) и т. д.
Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 7).

Скорость звука в идеальных газах с ростом температуры растет пропорционально Волновое движение в физике - формулы и определение с примерами где Т — абсолютная температура. В воздухе скорость звука Волновое движение в физике - формулы и определение с примерами при температуре t = 0 °C и с = 343 Волновое движение в физике - формулы и определение с примерами при температуре t = 20 °C. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение — вода).

Таблица 6
 

Частота колебаний различных источников звука
Волновое движение в физике - формулы и определение с примерами

Таблица 7
Скорость звука с в различных средах
Волновое движение в физике - формулы и определение с примерами

Впервые скорость распространения звука в воздухе была определена в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле. Мерсенн определил, что скорость звука в воздухе равна Волновое движение в физике - формулы и определение с примерами

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами. Наиболее известные животные, обладающие способностью к эхолокации, — летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокацию используют различные китообразные, а также птицы гуахаро, V. гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук, navigation — навигация, range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение, в отличие от рентгеновского, безвредно для человека.

Электромагнитные волны. Скорость электромагнитных волн

Основные характеристики механических волн:

Бегущая волна

Длина волны Волновое движение в физике - формулы и определение с примерами — наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. с. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника Волновое движение в физике - формулы и определение с примерами
Скорость распространения волны:
Волновое движение в физике - формулы и определение с примерами
Уравнение бегущей волны:
Волновое движение в физике - формулы и определение с примерами
 

Продольная волна

Волна называется продольной, если колебания происходят вдоль направления распространения волн.
 

Поперечная волна

Волна называется поперечной, если колебания происходят в направлениях, перпендикулярных к направлению распространения волны.
Впервые гипотезу о существовании электромагнитных волн высказал в 1864 г. Максвелл. Он показал, что источниками электрического поля могут быть либо электрические заряды, либо магнитные поля, меняющиеся во времени. Магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями. Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве вихревого электрического поля. Силовые линии этого поля замкнуты, а вектор его напряженности Волновое движение в физике - формулы и определение с примерами в любой точке пространства перпендикулярен вектору индукции Волновое движение в физике - формулы и определение с примерами магнитного поля (рис. 211).

Волновое движение в физике - формулы и определение с примерами

Максвелл предположил, что любое изменение напряженности электрического поля сопровождается возникновением вихревого магнитного поля.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем. Согласно теории Максвелла переменное электромагнитное поле распространяется в пространстве в виде электромагнитных волн.

Волновое движение в физике - формулы и определение с примерами

При ускоренном движении зарядов в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление вихревого электрического поля уже на большем расстоянии от заряда и т.д. (рис. 212, а, б). Таким образом, попеременно порождая друг друга, в пространстве распространяется электромагнитное поле.

Волновое движение в физике - формулы и определение с примерами

Электромагнитное поле, распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью, называется электромагнитной волной (рис. 213). Электромагнитные волны являются поперечными — вектор скорости Волновое движение в физике - формулы и определение с примерами вектор напряженности Волновое движение в физике - формулы и определение с примерами электрического поля и вектор индукции Волновое движение в физике - формулы и определение с примерамимагнитного поля взаимно перпендикулярны. Этим волнам свойственны все явления, характерные для механических волн (отражение, преломление и т. д.). Но в отличие от механических электромагнитные волны могут распространяться и в вакууме.

Одним из важнейших результатов теории Максвелла было теоретическое определение скорости электромагнитных волн. Согласно этой теории скорость с электромагнитной волны в вакууме связана с электрической постоянной Волновое движение в физике - формулы и определение с примерами и магнитной постоянной Волновое движение в физике - формулы и определение с примерами соотношением

Волновое движение в физике - формулы и определение с примерами

Скорость распространения волны с в вакууме является предельной. В веществе скорость распространения меньше с и зависит от его электрических и магнитных свойств.

Экспериментально электромагнитные волны были открыты в 1887 г. немецким физиком Генрихом Рудольфом Герцем. Для их генерации он использовал специальное устройство (рис. 214).

Волновое движение в физике - формулы и определение с примерами

Длина волны, возникавшей при проскакивании искры между электродами устройства, была Волновое движение в физике - формулы и определение с примерами= 10 м. Это электромагнитное устройство впоследствии
получило название вибратора Герца.    

Волновое движение в физике - формулы и определение с примерами

Герц считал, что такие волны невозможно использовать для передачи информации. Однако 7 мая 1905 г. русский ученый Александр Степанович Попов осуществил первую в мире передачу информации электромагнитными волнами — радиопередачу и положил начало эры радиовещания.
 

Свойства электромагнитных волн очень сильно зависят от их частоты. Спектр электромагнитного излучения удобно изображать в виде шкалы электромагнитных волн, приведенной на рисунке 215, а их классификация в зависимости от частот (длин волн) дается в таблице 8.
 

Таблица 8
 

Классификация электромагнитных волн
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

В настоящее время электромагнитные волны находят широкое применение в науке и технике:

  • плавка и закалка металлов в электротехнической промышленности, изготовление постоянных магнитов (низкочастотные волны);
  • телевидение, радиосвязь, радиолокация (радиоволны);
  • мобильная связь, радиолокация (микроволны);
  • сварка, резка, плавка металлов лазерами, приборы ночного видения (инфракрасное излучение);
  • освещение, голография, лазеры (видимое излучение);
  • люминесценция в газоразрядных лампах, закаливание живых организмов, лазеры (ультрафиолетовое излучение);
  • рентгенотерапия, рентгеноструктурный анализ, лазеры (рентгеновское излучение);
  • дефектоскопия, диагностика и терапия в медицине, исследование внутренней структуры атомов, лазеры, военное дело (гамма-излучение).

Изобретение радио. Принципы радиосвязи

Вспомним колебательный контур, состоящий из конденсатора и катушки индуктивности, в котором возникают электромагнитные колебания (рис. 216).

Волновое движение в физике - формулы и определение с примерами

Он называется закрытым, так как в нем происходит лишь обмен энергией между конденсатором, в котором сосредоточена энергия электрического поля, и катушкой, в которой сосредоточена энергия магнитного поля.

Потери энергии при электромагнитных колебаниях в контуре на излучение в окружающее пространство настолько малы, что можно считать: контур не создает электромагнитного излучения. Таким образом, вследствие изменения электрического и магнитного полей в закрытом пространстве внутри конденсатора и катушки закрытый колебательный контур не может служить источником электромагнитного излучения.

Для эффективного излучения контур нужно «открыть», раздвинув обкладки конденсатора, т. е. создать условия для того, чтобы поля «уходили» в пространство (см. рис. 216). Однако мощность электромагнитного излучения в этом случае невелика. И в таком виде его невозможно использовать на практике.

Исследования по передаче информации электромагнитными волнами, проведенные Поповым, показали, что колебательный контур можно использовать для радиосвязи, если одну обкладку конденсатора заземлить, а к другой присоединить вертикально натянутый провод, оставив его верхний конец свободным. Это устройство называется антенной. Антенна — незамкнутый провод или система проводов, подвешенных высоко над поверхностью Земли, по которым проходят переменные токи.

Применение антенны позволяет значительно увеличить мощность электромагнитного излучения. Колебательный контур, снабженный антенной, называется открытым, причем мощность излучения пропорциональна частоте излучения в четвертой степени Волновое движение в физике - формулы и определение с примерами

Рассмотрим устройство открытого колебательного контура. Основными его элементами являются конденсатор определенной емкости и катушка индуктивности. Отметим, что любой проводник имеет индуктивность, хоть и очень малую. Любые два проводника, разделенные изолятором, могут рассматриваться как конденсатор, имеющий определенную емкость контура  (см. рис. 216). Эта система называется открытым колебательным контуром (вибратором Герца). Радиосвязью называется передача информации электромагнитными волнами, частоты которых охватывают диапазон Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Рассмотрим принцип радиосвязи. В передающей антенне, настроенной в резонанс с генератором (рис. 217), возбуждаются высокочастотные токи, которые, в свою очередь, возбуждают электромагнитные волны в окружающем антенну пространстве. Эти волны, достигая приемной антенны, настроенной в резонанс с генератором, возбуждают токи той же частоты, которые могут быть усилены и использованы.

Токи звуковых частот, а также низкочастотные поля, применяемые в электротехнике, не годятся для радиосвязи по двум причинам:

  1.  электромагнитные волны, возбуждаемые такими токами, обладают очень малой энергией и поэтому не могут распространяться па большие расстояния;
  2. для эффективного излучения таких волн размеры антенн должны быть очень большими (например, при частоте 1000 Гц длина антенны должна быть 150км).

С учетом этих причин для радиосвязи используются электромагнитные волны высоких частот (отВолновое движение в физике - формулы и определение с примерами которые обладают достаточной энергией для передачи на большие расстояния и не требуют антенн значительных размеров. Однако электромагнитные волны высокой частоты, преобразованные в звуковые, не могут восприниматься ухом человека. Для передачи информации (речи, музыки) необходимы низкочастотные сигналы с частотами от 16 Гц до 20 000 Гц.

Инженеры нашли выход в специальном «смешивании» высокочастотных и низкочастотных сигналов. Поэтому радиопередачи осуществляются электромагнитными волнами высокой частоты (рис. 218, а), измененными низкочастотными сигналами (рис. 218, б, в). Этот прием получил название модуляции.

Волновое движение в физике - формулы и определение с примерами
 

Модуляцией электромагнитной волны называется изменение ее параметров (амплитуды, частоты, фазы) по заданному закону. При этом модулируемые величины изменяются с частотой, намного меньшей частоты волны. Модулируемая волна (высокочастотная) называется несущей волной, а ее частота — несущей частотой.

В зависимости от того, какой параметр подвергается изменению, модуляция подразделяется на амплитудную, частотную и фазовую. Простейшей является амплитудная модуляция (см. рис. 218). При амплитудной модуляции в цепь высокочастотного генератора включается устройство, изменяющее ток в ней с частотой звукового сигнала, несущего информацию. При этом амплитуда несущей волны изменяется в соответствии с частотой низкочастотного сигнала.

Обратный процесс — процесс выделения низкочастотного звукового сигнала из модулированного высокочастотного — называется детектированием.
Любая радиосвязь включает работу радиопередатчика и радиоприемника.
 

Радиопередатчиком называется устройство, передающее информацию электромагнитными волнами радиочастотного диапазона.
Основные элементы радиопередатчика:

  • генератор незатухающих колебаний несущей частоты;
  • блок модуляции;
  • усилитель и передающая антенна.

Блок-схема радиопередатчика приведена на рисунке 219.
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Радиоприемником называется устройство, принимающее информацию, кото рая передается электромагнитными волнами радиочастотного диапазона от радиопередатчика.

Основные элементы радиоприемника:

  • приемная антенна с резонансным контуром, преобразующая энергию радио волн в энергию высокочастотных колебаний;
  • блок детектирования, который выделяет модулированные колебания, усиливает и демодулирует их;
  • воспроизводящее устройство (телефон, громкоговоритель), на которое подается низкочастотный модулирующий сигнал после его усиления.

Блок-схема радиоприемника приведена на рисунке 220.

Волновое движение в физике - формулы и определение с примерами

Простейшим радиоприемником является так называемый детекторный приемник (рис. 221). Он состоит из приемной антенны, соединенной с перестраиваемым по частоте колебательным контуром, детектора (полупроводниковый диод — устройство, пропускающее ток только в одном направлении), конденсатора (конденсатор обладает малым сопротивлением для высокочастотного сигнала и большим для низкочастотного, поэтому высокочастотный сигнал идет через конденсатор, а низкочастотный — через динамик) и динамика.

Соединенные параллельно конденсатор емкостью С и резистор сопротивлением R являются сглаживающей цепочкой. Их емкость и сопротивление подбираются таким образом, что Волновое движение в физике - формулы и определение с примерами где Т — период высокочастотных колебаний. Через резистор идет ток низкой частоты, форма которого соответствует форме звуковых колебаний, воспринимаемых динамиком приемника.

  • Заказать решение задач по физике

Радиовещание. Принципы телевидения

В современной технике используются радиоволны различных частот. Классификация радиоволн по длинам волн и частотам приведена в таблице 9.
Радиоволны сильно отличаются по своим свойствам. Например, длинные и средние волны хорошо огибают естественные препятствия. Но на средних волнах дальность приема резко отличается днем и ночью. Это связано с тем, что средние волны сильно поглощаются нижним слоем ионосферы 2 и отражаются от более отдаленного слоя 1 (рис. 222, а). Дальность их приема сильно возрастает ночью, так как из-за отсутствия солнечного излучения нижний слой ионосферы 2 пропадает.
 

Таблица 9
 

Классификация радиоволн но длинам волн и частотам
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами
 

Короткие волны отражаются от ионосферы и, таким образом, многократно отражаясь от поверхности Земли и ионосферы 1 (рис. 222, б), могут распространяться на очень большие расстояния.

Советский радист Э. Кренкель, находясь в северной полярной экспедиции в ” У” 30-е годы XX в., с помощью маломощной радиостанции установил связь с австралийскими радистами.

Ультракороткие волны пропускаются ионосферой и не огибают препятствия. Осуществление связи такими волнами возможно только в пределах прямой видимости. Это привело к сооружению гигантских (400—500 м высотой) телевизионных башен, электромагнитные волны с которых Moгут попадать в приемники, находящиеся от них на расстоянии порядка 70—80 км. Только использование спутников на различных орбитах решило вопрос с приемом теле- и радиопередач и телефонных сообщений в любых уголках Земли.
Останкинская телебашня имеет высоту 535 м и позволяет вести прием теле-визионных передач на расстоянии до 120 км от Москвы.

Области использования радиоволн:

  • радиовещание — передача речи, музыки на длинных, средних, коротких, ультракоротких волнах метрового диапазона;
  • радиосвязь — передача на расстояние телеграфных сигналов и телефонных разговоров на ультракоротких волнах метрового и дециметрового диапазонов;
  • телевидение — передача на расстояние изображения (аудио- и видеосигналов) на ультракоротких волнах метрового и дециметрового диапазонов;
  • радиолокация — обнаружение и определение положения различных объектов на волнах метровых, дециметровых, сантиметровых и миллиметровых диапазонов;
  • радиоастрономия — исследование с помощью радиотелескопов (рис. 223) космических объектов по их ультракоротковолновому излучению.

Волновое движение в физике - формулы и определение с примерами

Для радиолокации используются ультракороткие радиоволны, длина которых лежит в метровом, дециметровом, сантиметровом и миллиметровом диапазонах, вследствие того, что:

  • необходимы приемлемые размеры антенн радиолокатора;
  • размеры исследуемых объектов больше или сравнимы с длинами радиоволн;
  • чем меньше длина волны, тем легче обеспечить формирование достаточно короткого импульса;
  • ультразвуковые волны слабо поглощаются атмосферой независимо от погодных условий.
     

Радар (радиолокатор) — прибор, представляющий собой комбинацию ультракоротковолнового радиопередатчика и приемника. С помощью общей антенны для приема и передачи создастся остронаправленный радиолуч. Излучение осуществляется короткими импульсами длительностью порядка Волновое движение в физике - формулы и определение с примерамис. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить расстояние до предмета, скорость и направление его движения.

Важнейшим преимуществом радиолокации является независимость работы радаров от погодных условий и времени суток.

Радиоволнами осуществляется передача на расстояние изображений предметов. На телевизионной станции производится преобразование передаваемого изображения в последовательность электрических сигналов.

Сигнал изображения модулирует несущие высокочастотные колебания. Эти колебания излучаются антенной в виде радиоволн и передаются на большое расстояние. Они принимаются антенной телевизора. В результате детектирования снова получается электрический сигнал изображения. Он преобразуется в видимое изображение на экране кинескопа телевизора. Вместе с сигналом изображения передаются и звуковые сигналы.
Телевизионные передачи ведутся в диапазоне от 50 Мгц до 230 Мгц, в котором волны распространяются только в пределах прямой видимости.

Мобильная сотовая связь

В течение полутора веков, прошедших с момента изобретения телефона, телефонная связь настолько прочно вошла в быт современного человека, что отсутствие телефона в квартире практически стало исключением. К достоинствам проводных телефонных сетей следует отнести надежность связи и развитую систему абонентских сетей, позволяющую пользователю связаться с абонентом практически в любой стране мира.

Однако «жесткая привязка» абонента к стационарному телефонному аппарату, «ограниченная» к тому же длиной провода телефонной трубки, не позволяла пользователю быть мобильным, т. е, свободно перемещаться в пространстве во время разговоров или между ними.

Во второй половине прошлого века по мере совершенствования техники и технологии стала развиваться идея создания всемирной (глобальной) сети мобильной (сотовой) телефонной связи, позволяющей пользователю иметь доступ к развитой абонентской сети при помощи портативной переносной (мобильной) трубки-телефона значительного (десятки километров) радиуса действия.

Реализация этой идеи позволила бы вывести телефонную связь на новый уровень популярности и доступности с точки зрения пользователя, который имел бы свой индивидуальный телефонный номер и практически неограниченную свободу передвижения (мобильности) во время разговоров или между ними.

Предлагаемый принцип действия мобильной телефонной связи достаточно прост: при помощи трубки-телефона (мобильного телефона) абонент связывается с ближайшей базовой станцией (передатчиком) сети (рис. 224).

Волновое движение в физике - формулы и определение с примерами

Эта базовая станция, в свою очередь, связывается со следующим передатчиком сети и т. д. по мере требования абонента (рис. 225).

Волновое движение в физике - формулы и определение с примерами

Описанный принцип создания развитой абонентской сети называется сотовым принципом, поскольку по такому же принципу пчелы выстраивают соты внутри улья. При этом каждая созданная ячейка служит основой для создания следующей точно такой же ячейки и т. д.

В силу этого обстоятельства мобильную телефонную связь принято называть также сотовой телефонной связью. При движении абонента (например, на автомобиле) (см. рис. 225) базовые станции самостоятельно следят за ним и «передают» друг другу, что происходит практически без потери качества связи, быстро и совершенно незаметно для пользователя.

Самая простая часть структурной схемы сотовой связи — мобильный (переносной) телефон, состоит из двух частей: собственно «трубки» или ME (Mobile Equipment) и модуля идентификации абонента, или смарт-карты SIM (Subscriber Identity Module), получаемой при заключении контракта с тем или иным оператором.

Каждому сотовому телефону при производстве присваивается собственный номер или международный идентификатор мобильного устройства IMEI (International Mobile Equipment Identity), позволяющий отличить его от второго точно такого же.

В нашей стране используется стандарт сетей второго поколения GSM (Global System for Mobile Communications), который был разработан в 1990 г. Данный стандарт использует рабочую частоту v = 900 МГц, позволяющую значительно улучшить качество связи по сравнению со стандартами первого поколения.
Первый оператор GSM принял абонентов в 1991 году, а уже к началу 1994 г. мировые сети, основанные на данном стандарте, имели 1,3 миллиона абонентов. К концу 1995 г. их число увеличилось до 10 миллионов!

При включении мобильного телефона с активированной смарт-картой он «сам» находит ближайшую базовую станцию соответствующей сотовой сети, после чего весь пакет телефонных услуг данной сети становится доступным абоненту.
Каждый передатчик обеспечивает радиопокрытие в среднем на расстоянии до двух десятков километров от него (рис. 226).

Волновое движение в физике - формулы и определение с примерами

Для рационального использования сотовой сети передатчиков разрабатываются оптимальные схемы их взаиморасположения на местности с учетом ее рельефа.

Важнейшей характеристикой для выбора того или иного оператора сотовой сети является зона покрытия различных населенных пунктов нашей страны базовыми станциями данной сети.

Волновое движение в физике - формулы и определение с примерами

Современные технологии позволяют в метро или других труднодоступных для электромагнитных волн местах устанавливать микробазовые станции или пикосоты (рис. 227), которые позволяют значительно разгружать мобильный трафик на напряженных направлениях.

Основные формулы

Длина волны:
Волновое движение в физике - формулы и определение с примерами
Скорость волны:
Волновое движение в физике - формулы и определение с примерами
Уравнение бегущей волны:
Волновое движение в физике - формулы и определение с примерами
Скорость распространения электромагнитных волн в вакууме:

Волновое движение в физике - формулы и определение с примерами

  • Продольные и поперечные волны в физике
  • Звуковые волны в физике
  • Электрическое поле в физике
  • Работа по перемещению заряда в электростатическом поле
  • Электромагнитные волны и их свойства
  • Магнитные явления в физике
  • Магнитный поток
  • Волны в физике

Добавить комментарий