Данная статья посвящена перпендикулярным плоскостям. Будут даны определения, обозначения вместе с примерами. Будет сформулирован признак перпендикулярности плоскостей и условие, при котором он выполним. Будут рассмотрены решения подобных задач на примерах.
Перпендикулярные плоскости – основные сведения
При наличии угла между пересекающимися прямыми можно говорить об определении перпендикулярных плоскостей.
При условии, что угол между перпендикулярными прямыми равен 90 градусов, их называют перпендикулярными.
Обозначение перпендикулярности принято писать знаком «⊥». Если в условии дано, что плоскости α и βперпендикулярные, тогда запись принимает вид α⊥β. На рисунке ниже показано подробно.
Когда в улови дано, что плоскость α и β перпендикулярны, это значит, что α перпендикулярна β и наоборот. Такие плоскости называют взаимно перпендикулярными. Например, стена и потолок в комнате являются взаимно перпендикулярными, так как при пересечении дают прямой угол.
Перпендикулярность плоскостей – признак и условие перпендикулярности
На практике можно встретить задания, где необходимо определить перпендикулярность заданных плоскостей. Для начала нужно определить угол между ними. Если он равен 90 градусам, тогда они считаются перпендикулярными из определения.
Для доказательства перпендикулярности двух плоскостей применяют признак перпендикулярности двух плоскостей. Формулировка содержит понятия перпендикулярная прямая и плоскость. Напишем точное определение признака перпендикулярности в виде теоремы.
Если одна из двух заданных плоскостей пересекает прямую, перпендикулярную другой плоскости, то заданные плоскости перпендикулярны.
Доказательство имеется в учебнике по геометрии за 10-11 класс, где есть подробное описание. Из признака следует, что, если плоскость перпендикулярна линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей.
Существует необходимое и достаточное условия для доказательства. Рассмотрим их для перпендикулярности двух заданных плоскостей, которое применяется в качестве проверки их перпендикулярности, находящихся в прямоугольной системе координат трехмерного пространства. Чтобы доказательство имело силу, необходимо применить определение нормального вектора плоскости, который способствует доказать необходимое и достаточное условие перпендикулярности плоскостей.
Для того, чтобы перпендикулярность пересекающихся плоскостей была явной, необходимо и достаточно, чтобы нормальные векторы заданных плоскостей пересекались под прямым углом.
Пусть в трехмерном пространстве задана прямоугольная система координат. Если имеем n1→=(A1, B1, C1) и n2→=(A2, B2, C2), являющимися нормальными векторами заданных плоскостей α и β, то необходимым и достаточным условием перпендикулярности векторов n1→ и n2→ примет вид
n1→, n2→=0⇔A1·A2+B1·B2+C1·C2=0
Отсюда получаем, что n1→=(A1, B1, C1) и n2→=(A2, B2, C2) – нормальные векторы заданных плоскостей, а для действительности перпендикулярности α и β необходимо и достаточно, чтобы скалярное произведение векторов n1→ и n2→ было равным нулю, а значит, принимало вид n1→, n2→=0⇔A1·A2+B1·B2+C1·C2=0.
Равенство выполнено.
Рассмотрим подробнее на примерах.
Определить перпендикулярность плоскостей, заданных в прямоугольной системе координат Oxyz трехмерно пространства, заданного уравнениями x-3y-4=0 и x23+y-2+z45=1 ?
Решение
Для нахождения ответа на вопрос о перпендикулярности для начал необходимо найти координаты нормальных векторов заданных плоскостей, после чего можно будет выполнить проверку на перпендикулярность.
x-3y-4=0 является общим уравнением плоскости, из которого можно сразу преобразовать координаты нормального вектора, равные n1→=(1,-3, 0).
Для определения координаты нормального вектора плоскости x23+y-2+z45=1 перейдем от уравнения плоскости в отрезках к общему.
Тогда получим:
x23+y-2+z45⇔32x-12y+54z-1=0
Тогда n2→=32, -12, 54- это координаты нормального вектора плоскости x23+y-2+z45=1.
Перейдем к вычислению скалярного произведения векторов n1→=(1, -3, 0) и n2→=32, -12, 54.
Получим, что n1→, n2→=1·32+(-3)·-12+0·54=3.
Видим, что оно не равно нулю, значит, что заданные векторы не перпендикулярны. Отсюда следует, что плоскости также не перпендикулярны. Условие не выполнено.
Ответ: плоскости не перпендикулярны.
Прямоугольная система координат Oxyz имеет четыре точки с координатами A -154, -78, 1, B 178, 516, 0, C 0, 0, 37, D -1, 0, 0. Проверить, перпендикулярны ли плоскости АВС и ABD.
Решение
Для начала необходимо рассчитать скалярное произведение векторов данных плоскостей. Если оно равно нулю, только в этом случае можно считать, что они перпендикулярны. Находим координаты нормальных векторов n1→ и n2→ плоскостей АВС и ABD.
Из заданных координат точек вычислим координаты векторов AB→, AC→, AD→. Получаем, что:
AB→=478, 1916, -1, AC→=154, 78, -47, AD→=114, 78, -1.
Нормальный вектор плоскости АВС является векторным произведением векторов AB→ и AC→, а для ABD векторное произведение AB→ и AD→. Отсюда получим, что
n1→=AB→×AC→=i→j→k→4781916-115478-47=1156·i→-1128·j→+1116·k→⇔n1→=1156, -1128, 1116n2→=AB→×AD→=i→j→k→4781916-111478-1=-516·i→+258·j→+158·k→⇔n2→=-516, 258, 158
Приступим к нахождению скалярного произведения n1→=1156, -1128, 1116 и n2→=-516, 258, 158.
Получим: n1→, n2→=1156·-516+-1128·258+1116·158=0.
Если оно равно нулю, значит векторы плоскостей АВС и ABD перпендикулярны, тогда и сами плоскости перпендикулярны.
Ответ: плоскости перпендикулярны.
Можно было подойти к решению иначе и задействовать уравнения плоскостей АВС и ABD. После нахождения координат нормальных векторов данных плоскостей можно было бы проверить на выполнимость условие перпендикулярности нормальных векторов плоскостей.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
174 Глава 7
Предположим, что дана некоторая плоскость и прямая АK — перпендикуляр к этой плоскости, причем точка K, лежащая в плоскости , является основанием перпендикуляра (рис. 7.28). Если прямая АK — перпендикуляр, то она перпендикулярна любой прямой, принадлежащей этой плоскости.
Рис. 7.28. Прямая AK, перпендикулярная плоскости
Через точку K проведем горизонталь KN. Угол АKN — прямой. Учитывая особенности проецирования прямого угла, у которого хотя бы одна сторона параллельна плоскости проекций (см. разд. 6.3), угол А K N— тоже прямой.
Таким образом, горизонтальная проекция перпендикуляра перпендикулярна горизонтальной проекции горизонтали и горизонтальному следу плоскости. Аналогично можно доказать, что фронтальная проекция перпендикуляра перпендикулярна фронтальной проекции фронтали и фронтальному следу плоскости.
Посмотрим на конкретных примерах, как из некоторой точки опустить перпендикуляр к заданной плоскости. Пусть из точки K требуется опустить перпендикуляр к плоскости , заданной следами (рис. 7.29). Выполнить построения несложно:
горизонтальная проекция перпендикуляра перпендикулярна горизонтальному следу плоскости h0;
фронтальная проекция перпендикуляра перпендикулярна фронтальному следу плоскости f0 .
Позиционные задачи с прямой и плоскостью или с двумя плоскостями |
175 |
Рис. 7.29. Проведение перпендикуляра к плоскости, заданной следами
Теперь из точки L опустим перпендикуляр к плоскости, заданной треугольником АВС (рис. 7.30). Строим горизонталь А1 (А 1 , А 1 ) и фронталь А2 (А 2 , А 2 ) заданной плоскости. Из точки L проводим перпендикуляр к заданной плоскости:
горизонтальная проекция перпендикуляра перпендикулярна горизонтальной проекции горизонтали А 1 ;
фронтальная проекция перпендикуляра перпендикулярна фронтальной проекции фронтали А 2 .
Рис. 7.30. Проведение перпендикуляра к плоскости, заданной треугольником
176 Глава 7
Пример 23. Через точку А провести плоскость , перпендикулярную прямой ВС (рис. 7.31).
1. Проведем через точку А горизонталь h искомой плоскости: т. к. горизонтальный след плоскости должен быть перпендикулярен В С , то и горизонтальная проекция горизонтали h должна быть перпендикулярна В С(рис. 7.32). В пересечении hc осью х отмечаем горизонтальную проекцию фронтального следа N этой горизонтали. Затем строим
N и h :
А h ; N h ; hx.
Рис. 7.32. Построение плоскости, |
|
Рис. 7.31. Исходные проекции точки А |
проходящей через заданную точку А |
и отрезка прямой ВС |
и перпендикулярной прямой ВС |
2.Через фронтальную проекцию фронтального следа Nпроводим фронтальный след плоскости :
f0 В С .
3. В пересечении f0 с осью х отмечаем точку схода следов Х , и через нее проводим горизонтальный след плоскости :
h0А N .
Позиционные задачи с прямой и плоскостью или с двумя плоскостями |
177 |
7.9. Взаимно перпендикулярные плоскости
Две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.
Различают два способа построения плоскости, перпендикулярной плоскости:
плоскость проводится через прямую, перпендикулярную другой плоскости;
плоскость проводится перпендикулярно прямой, лежащей в другой плоскости.
Для получения единственного решения требуются дополнительные условия.
Рассмотрим построение плоскости , перпендикулярной плоскости и проходящей через прямую KL (рис. 7.33).
1.Из любой точки прямой KL, например из точки K, проводим перпенди-
куляр к заданной плоскости . Строим проекции следов прямой KL ( M1 и M1, N1 и N1 ) и перпендикуляра ( M2 и M2 , N2 и N2 ).
Рис. 7.33. Построение плоскости , перпендикулярной плоскости и проходящей через прямую KL
2. Строим следы плоскости :
через горизонтальные проекции горизонтальных следов M1 и M2 про-
водим горизонтальный след плоскости ;
через фронтальные проекции фронтальных следов N1 и N2 — ее фронтальный след.
3. Проверяем правильность построений: следы h0 и f0 |
пересекаются в точ- |
ке схода следов Х на оси x. |
|
Таким образом, плоскость перпендикулярна плоскости |
, т. к. проходит через |
прямую KL, перпендикулярную плоскости . Следует обратить внимание на то, что одноименные следы плоскостей и не перпендикулярны друг другу.
Если одна из рассматриваемых плоскостей является плоскостью частного положения, то существует несколько очевидных случаев, когда перпендикулярность следов может служить признаком перпендикулярности самих плоскостей. Например, перпендикулярность горизонтальных следов плоскости общего положения и горизонтально-проецирующей плоскости соответствует взаимной перпендикулярности этих плоскостей (рис. 7.34). Это нетрудно доказать, выбрав в плоскости прямую АВ, перпендикулярную плоскости .
Рис. 7.34. Горизонтально-проецирующая плоскость , перпендикулярная плоскости общего положения
По аналогии с рассмотренным примером перпендикулярность фронтальных следов фронтально-проецирующей плоскости и плоскости общего положения также соответствует взаимной перпендикулярности этих плоскостей.
Если одноименные следы двух плоскостей общего положения взаимно перпендикулярны, то такие плоскости не перпендикулярны между собой. Несмотря на перпендикулярность горизонтальных следов плоскостей и (рис. 7.35), указанные плоскости не перпендикулярны между собой.
Позиционные задачи с прямой и плоскостью или с двумя плоскостями |
179 |
Рис. 7.35. Взаимно неперпендикулярные плоскости и
Пример 24. Построить следы плоскости , проходящей через прямую KL и перпендикулярной плоскости треугольника АВС (рис. 7.36).
1.В плоскости треугольника АВС строим любую горизонталь и любую фронталь этой плоскости, например, горизонталь С1 (С 1 , С 1 ) и фрон-
таль А2 (А 2 , А 2 ) (рис. 7.37).
2.Из любой точки прямой KL, например из точки L, проводим перпендикуляр к заданной плоскости треугольника ABC:
горизонтальная проекция перпендикуляра перпендикулярна горизонтальной проекции горизонтали С 1 ;
Рис. 7.36. Исходные проекции прямой KL и треугольника АВС
Рис. 7.37. Построение плоскости , перпендикулярной плоскости треугольника АВС
ипроходящей через прямую KL
фронтальная проекция перпендикуляра перпендикулярна фронтальной проекции фронтали А 2 .
3.Строим следы прямой KL и перпендикуляра и затем проводим следы ис-
комой плоскости :
через горизонтальные проекции горизонтальных следов M1 и M2 проводим горизонтальный след плоскости h0 ;
через фронтальные проекции фронтальных следов N1 и N2 — фронтальный след f0.
4. Проверяем правильность построений: h0 и f0 должны пересечься в точке схода следов Хна оси x.
Соседние файлы в предмете Геополитика
- #
- #
- #
- #
27.03.201875.81 Mб12Пестриков В.М., Морозов Е.М. – Механика разрушения на базе компьютерных технологий. Практикум – 2007.pdf
- #
- #
- #
- #
- #
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг – геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть – данная прямая и – точка на ней (рис. 5.2). Возьмем вне прямой а произвольную точку и проведем через эту точку и прямую плоскость (следствие из аксиом). В плоскости через точку можно провести прямую , перпендикулярную . Теорема доказана.
Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть и – данные перпендикулярные прямые и , а также прямая пересекает в точке , а прямая пересекает в точке (рис. 5.3). Тогда и лежат в плоскости , а прямые и – в плоскости , которые будут параллельными по признаку параллельности плоскостей. Соединим точки и . Выберем на прямой точку , а на прямой – точку Проведем и .Тогда .
Четырехугольники и – параллелограммы, отсюда и . Поскольку , то они лежат в одной плоскости , пересекающей плоскость по прямой , а плоскость – по прямой , которые параллельны, т.е. .
Итак, четырехугольник -параллелограмм, у которого . Таким образом, треугольники и равны по третьему признаку равенства треугольников. , отсюда , поэтому . Итак, прямая перпендикулярна прямой Теорема доказана.
Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые и попарно перпендикулярны (рис. 5.5). Найдите отрезок , если .
Дано:
Найти:
Решение:
Из по теореме Пифагора . поэтому , отсюда .
Из по теореме Пифагора . поэтому
Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых и – перпендикулярна, т.е. образует прямые углы. Соединив последовательно точки с , с и с , получим прямоугольные треугольники.
- : известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом. – сторона .
- : один катет известен по условию, второй – найден из ; неизвестной является третья сторона – гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка .
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая перпендикулярной плоскости , нужно через точку ее пересечения с плоскостью провести множество прямых (рис. 5.10) и доказать, что она перпендикулярна каждой из них. Этот путь нерациональный. Поэтому, чтобы установить перпендикулярна ли прямая плоскости, пользуются признаком перпендикулярности прямой и плоскости.
Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть – данная плоскость, – прямая, пересекающая ее в точке , и – прямые, которые принадлежат плоскости , проходят через точку (рис. 5.11) и перпендикулярны прямой . Докажем, что , т.е., что прямая с перпендикулярна любой прямой плоскости , которая проходит через точку .
Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой от точки равные отрезки и ;
- обозначим на прямой некоторую точку , а на прямой – точку ; соединим точки: с , с , с , с и с ;
- проведем через точку произвольную прямую , которая пересечет в точке , и также соединим ее с и .
Рассмотрим образованные при этом треугольники.
- – медиана и высота; по построению; – общая сторона треугольников и ; . Итак, по двум сторонам и углу между ними. Отсюда .
- . Равенство отрезков и доказывается аналогично, как и равенство отрезков и .
- , поскольку и -общая сторона. Отсюда вытекает равенство соответствующих углов: .
- по двум сторонам и углу между ними: – общая сторона; по доказательству выше. Итак, , т.е. – равнобедренный: – основание треугольника, – середина , поэтому – медиана . В равнобедренном треугольнике медиана является высотой, т.е. , а это означает, что . Поскольку прямая – произвольная прямая плоскости , проходит через точку пересечения прямой и плоскости , перпендикулярна прямой , то .
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть – плоскость, и – две прямые, пересекающие ее в точках и , причем , (рис. 5.12). Проведем через точку произвольную прямую на плоскости , а через точку -прямую , параллельную . Поскольку прямая , перпендикулярна плоскости , то прямые и перпендикулярны. Тогда, по теореме 2, прямые и также перпендикулярны. Таким образом, прямая перпендикулярна произвольной прямой, которая лежит на плоскости и проходит через их точку пересечения . Это определяет перпендикулярность прямой к плоскости .
Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть и две прямые, перпендикулярные плоскости (рис. 5.13). Допустим, что прямые и не параллельные. Выберем на прямой точку , которая не принадлежит плоскости . Проведем через точку прямую параллельную прямой . Она перпендикулярна плоскости по предыдущему следствию. Пусть прямая пересекает плоскость в точке , а прямая пересекает в точке . Тогда пряма перпендикулярна пересекающимся прямым и . А это невозможно, предположение неверно. Таким образом, прямые параллельны.
Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка принадлежит плоскости (рис. 5.14). Тогда через точку в плоскости проведем прямую . Выбрав точку , не принадлежащую , проведем через нее и прямую плоскость (следствие из аксиом). Проведем в плоскости прямую , а в плоскости -прямую . Через эти две прямые проходит плоскость у, которая будет перпендикулярна прямой (теорема о перпендикулярности прямой и плоскости).
Тогда в плоскости достаточно провести прямую . Она будет перпендикулярна и прямой , поскольку лежит в у и проходит через точку пересечения. Поскольку перпендикулярна двум прямым плоскости , то она перпендикулярна и самой плоскости. Итак, мы построили прямую , которая перпендикулярна плоскости и проходит через заданную точку .
Второй случай. Пусть точка не принадлежит плоскости . Выбрав произвольную точку на плоскости , аналогично предыдущему случаю, проведем прямую , которая проходит через точку . Тогда через эту прямую и точку можно провести некоторую плоскость , а на ней -некоторую прямую , которая проходит через точку параллельно . Прямая будет перпендикулярна (если одна из двух параллельных прямых перпендикулярна плоскости, то вторая также перпендикулярна). Построение выполнено. Итак, прямую построить можно. Ч.т.д.
Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости (рис. 5.20). Обозначим на прямой произвольный отрезок.
Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой , перпендикулярной плоскости , можно разместить множество отрезков, которые будут перпендикулярны плоскости .
На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок лежит по одну сторону от плоскости и не пересекает ее (рис. 5.21, а);
- отрезок пересекает плоскость (концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок лежит по одну сторону от плоскости и точка – конец отрезка – принадлежит плоскости (рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок называют перпендикуляром, проведенным из данной точки к плоскости.
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок – перпендикуляр, проведенный из точки на плоскость . Отрезок – наклонная, проведенная из точки на ту же плоскость . Точка – основание перпендикуляра, а точка – основание наклонной, отрезок – проекция наклонной на плоскость . Угол , образованный наклонной и ее проекцией , называют углом наклона наклонной к плоскости .
Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая .
Доказательство:
Докажем вторую часть теоремы. Пусть – перпендикуляр к плоскости , – наклонная. Прямая принадлежит плоскости , проходит через основание наклонной и перпендикулярна ей (рис. 5.23). Т.е. . Проведем через основание наклонной прямую , параллельную . , т.е. . Прямые и лежат в одной плоскости . Поскольку и , то по признаку . . Итак,. Ч.т.д. Первую часть теоремы докажите самостоятельно.
Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: – перпендикуляр к плоскости (рис. 5.24); и – наклонные; на 26 см; .
Найти: и .
Решение:
Пусть , тогда . В – гипотенуза; – катет. По теореме Пифагора: , отсюда , .(1)
В – гипотенуза; – катет. По теореме Пифагора: , отсюда , , .(2)
Из (1) и (2) имеем:
Ответ. 15 см и 41 см.
Почему именно так?
– перпендикуляр к , поэтому и . Перпендикуляр, наклонная и ее проекция образуют прямоугольный треугольник. Две различные наклонные, один перпендикуляр и две проекции образуют два прямоугольных треугольника с общим катетом. Составить соотношение между сторонами прямоугольного треугольника можно по теореме Пифагора.
Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для и:
и
Отсюда имеем равенство: и соответствующее уравнение с одной переменной, что приводит к решению задачи.
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если .
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: ; плоскость проходит через . Доказать:
Доказательство:
Построим произвольную плоскость через прямую и некоторую точку вне ее (рис. 5.33). – общая точка плоскостей и , поэтому они пересекаются по некоторой прямой , проходящей через точку . Проведем на плоскости некоторую прямую (на плоскости такая прямая единственная). Поскольку и , то . Итак, прямая с перпендикулярна двум пересекающимся прямым и . Построим через прямые и плоскость . Она перпендикулярна прямой (поскольку две ее прямые перпендикулярны ). Поэтому ее линии пересечения с плоскостями и образуют прямой угол. Т.е. плоскость , перпендикулярная прямой пересечения плоскостей и , пересекает их по перпендикулярным прямым и , что по определению доказывает перпендикулярность плоскостей и .
Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.34), т.е. некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Проведем через точку прямую . Тогда , отсюда плоскость, проходящая через прямые и , будет перпендикулярна прямой . Поскольку , то перпендикулярными будут и прямые . Кроме того, (по условию), поэтому . Теорема доказана.
Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.35). Тогда некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Итак, дано и . Т.е. . В плоскости через точку проведен отрезок По следствию, две прямые, перпендикулярные одной и той же плоскости, будут параллельными. . Таким образом, они лежат в одной плоскости – . Если одна из двух параллельных прямых пересекает в плоскости прямую , то и другая пересекает ее. Отсюда вытекает, что точка должна принадлежать прямой . Тогда она будет общей для двух плоскостей. Но если две точки и принадлежат , то вся прямая принадлежит плоскости .
Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек и , лежащих на двух взаимно перпендикулярных плоскостях (рис. 5.36), проведены перпендикуляры и на прямую пересечения плоскостей и . Найдите длину отрезка , если , .
Дано:
Найти:
Решение:
Поскольку , отсюда .
– прямоугольный: – катет, – катет, – гипотенуза (искомый отрезок). Рассмотрим на плоскости , тогда , поэтому и – прямоугольный.
Из – катет; – катет; – гипотенуза, которая является неизвестным катетом для . Из Из
Отсюда, учитывая что , имеем .
Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях и , но и использовать признак и свойства перпендикулярных плоскостей. Таким образом можно выйти на новый прямоугольный треугольник или , третью сторону которого находят по известному и найденному катетам. В том или ином случае остается наклонной, меняются только перпендикуляры к соответствующим плоскостям и и проекции наклонной на плоскость или на плоскость .
Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые и пересекаются, а перпендикулярные прямые и скрещиваются.
Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой плоскости записывают так: Говорят также, что и плоскость перпендикулярна прямой и пишут
Прямая перпендикулярная плоскости обязательно эту плоскость пересекает. Если допустить, что прямая лежит в плоскости или параллельна ей, то в плоскости есть прямые, параллельные прямой и угол между и такими прямыми не равен 90°.
Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые и обе перпендикулярны плоскости (рис. 212). Докажем, что прямые и параллельны друг другу.
Через какую-либо точку прямой проведём прямую параллельную прямой Тогда Докажем, что прямая совпадает с прямой Допустим, что это не так. Тогда получается, что в плоскости заданной прямыми и через точку проведены две прямые, перпендикулярные прямой по которой пересекаются плоскости и что невозможно. Значит, прямые и совпадают, тогда и параллельны.
Пусть имеются плоскость и прямая которая её пересекает и не перпендикулярна (рис. 213). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая пересекает плоскость в точке и перпендикулярна пересекающимся прямым и лежащим в плоскости а (рис. 214). Докажем, что прямая перпендикулярна плоскости т. е. что прямая перпендикулярна прямой произвольно выбранной в плоскости
Проведём через точку прямые и соответственно параллельные прямым и В плоскости проведём какую-либо прямую так, чтобы она пересекала прямые и в точках (рис. 215). На прямой отметим точки и на равных расстояниях от точки Прямые и — серединные перпендикуляры к отрезку поэтому и Значит, треугольники и равны по трём сторонам, поэтому углы и равны. Учитывая это, получим, что треугольники и равны по двум сторонам и углу между ними. Поэтому Это означает, что треугольник является равнобедренным, поэтому его медиана является и высотой, т. е. прямые и а также прямые и перпендикулярны.
Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости и параллельны и прямая перпендикулярна плоскости а (рис. 216). Докажем, что прямая перпендикулярна плоскости Для доказательства проведём через прямую две какие-либо плоскости и Пусть они пересекают плоскость по прямым и а параллельную ей плоскость — по прямым и Поскольку и и то и По теореме 2 получаем, что
Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая и точка В случае, когда точка не лежит на прямой (рис. 217), в плоскости, которая определяется точкой и прямой через точку проведём прямую перпендикулярную прямой и через точку пересечения прямых и — ещё одну прямую перпендикулярную прямой
В случае, когда точка лежит на прямой (рис. 218), через точку проведём прямые и перпендикулярные прямой . Через прямые и проведём плоскость Эти плоскости и прямая перпендикулярны по признаку перпендикулярности прямой и плоскости.
Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку проведены две плоскости и перпендикулярные прямой (рис. 219 и 220). Через прямую и точку проведём какую-либо плоскость Она пересекает плоскости и по некоторым прямым и так как плоскость имеет с плоскостями и общую точку Поскольку и то и Получается, что в плоскости через точку проведены две прямые и перпендикулярные прямой что невозможно.
Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка и плоскость Пусть — прямая в плоскости а — плоскость, которая проходит через точку и перпендикулярна прямой Пусть плоскости и пересекаются по прямой (рис. 221). В плоскости через точку проведём прямую перпендикулярную прямой Прямая — искомая, так как она перпендикулярна пересекающимся прямым и по построению; так как и принадлежит
Прямая — единственная. Допустим, что это не так. Пусть через точку проходит ещё одна прямая перпендикулярная плоскости (рис. 222 и 223). Тогда по теореме 1 прямые и параллельны друг другу. Но такое невозможно, так как прямые и пересекаются в точке
Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть — прямоугольный параллелепипед (рис. 224). Поскольку ребро перпендикулярно плоскости то треугольник прямоугольный с прямым углом Поэтому А поскольку треугольник также прямоугольный с прямым углом то Учитывая, что и получаем, что
Пример №5
Докажите, что если рёбра и а также и четырёхугольной пирамиды основанием которой является параллелограмм, равны между собой (рис. 225), то отрезок, соединяющий вершину с точкой пересечения диагоналей этого параллелограмма, перпендикулярен основанию
Решение:
— параллелограмм и поэтому и
Поскольку равнобедренный и то
Поскольку равнобедренный и то
и и поэтому (теорема 2).
Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки и а также и соединяют точку перпендикуляра, проведённого из центра параллелограмма с противоположными его вершинами, то эти отрезки попарно равны».
Пример №6
В правильной треугольной пирамиде точка — середина ребра (рис. 227). Докажите, что прямая перпендикулярна плоскости
Решение:
— правильная треугольная пирамида, поэтому — равносторонний и — равнобедренный.
— равносторонний, и — середина поэтому
— равнобедренный, и — середина поэтому
и поэтому
Пример №7
Докажите, что диагональ куба перпендикулярна плоскости треугольника (рис. 228).
Решение:
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
и поэтому
Используя рисунок 228, установите, в какой точке прямая пересекает плоскость
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость и точка вне её (рис. 241). Через точку проведём прямую перпендикулярную плоскости и пусть — точка пересечения прямой с плоскостью Отрезок называется перпендикуляром к плоскости, проведённым из точки а точка — основанием перпендикуляра.
Соединим точку ещё с какой-либо точкой плоскости Отрезок называется наклонной к плоскости, проведённой из точки а точка — основанием наклонной. Отрезок называется проекцией наклонной на плоскость
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок на рисунке 243 — перпендикуляр, а отрезок — наклонная к плоскости Эти перпендикуляр и наклонная в прямоугольном треугольнике являются соответственно катетом и гипотенузой. Поэтому
В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости и (рис. 245). Пусть какая-либо точка плоскости отрезок — перпендикуляр, проведённый из точки к плоскости Возьмём произвольную точку плоскости и проведём из неё перпендикуляр к плоскости Тогда по теореме 1 прямые и параллельны, а по теореме 12 из параграфа 6 отрезки и равны друг другу. Это означает, что расстояние от любой точки плоскости до плоскости равно отрезку Поскольку отрезок перпендикулярен плоскости то он является расстоянием от точки до плоскости Понятно, что расстояние от любой точки плоскости до плоскости равно отрезку
Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые и (рис. 249). Докажем, что на этих прямых можно выбрать такие точки и что прямая перпендикулярна и прямой и прямой
Пусть — плоскость, проходящая через прямую параллельно прямой Возьмём на прямой точку и опустим перпендикуляр на плоскость Пусть — плоскость, проходящая через пересекающиеся прямые и Обозначим — прямую, по которой пересекаются плоскости и Поскольку то прямые и пересекаются в некоторой точке В плоскости опустим перпендикуляр на прямую Прямые и лежат в одной плоскости и перпендикулярны прямой Поэтому и значит, и
Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые и имеют ещё один общий перпендикуляр причём точка принадлежит прямой а точка — прямой (рис. 250).
Точки и и совпадать не могут, так как из одной точки к прямой можно провести только один перпендикуляр. Поскольку и то прямая как и прямая перпендикулярна плоскости проходящей через прямую параллельно прямой Поэтому и точки принадлежат одной плоскости. Значит, и прямые и принадлежат одной плоскости. Получили противоречие с тем, что эти прямые скрещиваются.
Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной и диагональ грани, которая с этим ребром не имеет общих точек.
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 251). Поскольку и то — общий перпендикуляр скрещивающихся прямых и а потому искомое расстояние равно ребру куба, т. е.
б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде рёбра основания равны 4, а боковые рёбра — 6. Найдём расстояние между прямыми и где — середина ребра
Решение:
Пусть — центр квадрата Через прямую проведём плоскость параллельную прямой (рис. 252). Поскольку плоскость перпендикулярна прямой и содержит прямую то перпендикуляр, опущенный из любой точки прямой на плоскость принадлежит плоскости
Пусть — такая точка на прямой что Учитывая, что — середина стороны треугольника получаем, что равно половине высоты треугольника проведённой к стороне Поэтому Найдем площадь треугольника и его медиану
Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 253). Плоскость, которая содержит и параллельна пересекает грань по прямой, параллельной т. е. по прямой а грань — по прямой Рассуждая так же, получаем, что плоскость, которая содержит и параллельна пересекает грань по прямой а грань — по прямой
Диагональ куба как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости, а как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости. Поэтому прямая перпендикулярна как плоскости так и параллельной ей плоскости
Плоскость пересекается с плоскостями и по прямым и где и — центры граней и (рис. 254), прямая пересекает плоскости и в точках и на прямых и Поскольку то по теореме Фалеса и Поэтому общий перпендикуляр плоскостей и имеет длину т. е.
Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде все рёбра равны Найдём расстояние между скрещивающимися рёбрами и (рис. 255).
Решение:
Из теоремы 8 следует, что на прямых и есть такие точки и что прямая перпендикулярна как прямой так и прямой и, вместе с этим, плоскости, проходящей через одну из этих прямых параллельно другой.
Пусть — плоскость, проходящая через точку перпендикулярно прямой Она проходит через середины и рёбер и Тогда и проекцией отрезка на плоскость будет отрезок, равный
Определим, в какие точки спроектируются точки и Поскольку то вся прямая проектируется в точку Значит, точка проектируется в точку
Поскольку точки и проектируются в точки и N соответственно, то прямая проектируется в прямую Учтём также, что прямая принадлежит плоскости, параллельной прямой Поэтому искомая проекция отрезка — перпендикуляр к прямой проведённый из точки
Длину этого перпендикуляра найдём, используя площадь равнобедренного треугольника с основанием и боковыми сторонами
Получим откуда
Ответ:
Пример №12
Точка отстоит на 40 см от каждой вершины правильного треугольника со стороной 60 см. Найдите расстояние от точки до плоскости
Решение:
и — правильный треугольник, поэтому — центр окружности, описанной около треугольника и — её радиус (рис. 257).
поэтому — прямоугольный.
Тогда
Ответ: 20 см.
Пример №13
Из вершины равнобедренного треугольника с основанием возведён перпендикуляр и точка соединена с серединой этого основания (рис. 258). Докажите, что прямые и перпендикулярны.
Решение:
— перпендикуляр к плоскости поэтому и — проекции наклонных и на
— равнобедренный треугольник с основой поэтому
и — проекции наклонных и на и поэтому
и — середина поэтому
Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые и пересекаются, то их взаимное расположение характеризует угол между ними, расстояние между такими прямыми считается равным нулю (рис. 266). Если прямые и параллельны, то их взаимное расположение характеризует расстояние между ними, угол между такими прямыми равен нулю (рис. 267). Если прямые и скрещиваются, то их взаимное расположение характеризует угол и расстояние между ними (рис. 268).
Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки и — соответственно перпендикуляр и наклонная к плоскости а, тогда отрезок — проекция наклонной на эту плоскость (рис. 269).
Пусть прямая плоскости а перпендикулярна проекции Докажем, что прямая перпендикулярна самой наклонной
Прямая перпендикулярна пересекающимся прямым и плоскости — первой прямой по условию, а второй — так как она лежит в плоскости которой перпендикулярна прямая Поэтому прямая перпендикулярна и прямой плоскости
Пусть прямая плоскости перпендикулярна наклонной Докажем, что прямая перпендикулярна проекции этой наклонной.
Прямая перпендикулярна пересекающимся прямым и плоскости Поэтому она перпендикулярна и прямой плоскости
Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины к плоскости треугольника стороны которого равны 13, 20, 11 соответственно, возведён перпендикуляр длиной 36 (рис. 270). Найдём расстояние от точки до прямой
Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки на прямую Проведение этого перпендикуляра потребует найти его основание на прямой Для этого в плоскости треугольника построим высоту этого треугольника. Поскольку прямая перпендикулярна высоте которая является проекцией наклонной то по теореме о трёх перпендикулярах прямая перпендикулярна наклонной т. е. отрезок выражает искомое расстояние.
Найдём сначала высоту треугольника По формуле Герона определим площадь этого треугольника, что позволит найти и его высоту
Треугольник — прямоугольный с прямым углом по теореме Пифагора найдём
Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка равноудалена от сторон многоугольника и — перпендикуляр из точки на плоскость этого многоугольника. Тогда перпендикуляры опущенные из точки на стороны многоугольника, равны друг другу (рис. 271).
Соединим точку с точками Поскольку отрезки — проекции отрезков на плоскость многоугольника, стороны которого перпендикулярны наклонным то эти стороны и, соответственно, отрезки перпендикулярны.
Треугольники прямоугольные, и все они имеют общий катет и равные гипотенузы. Значит, эти треугольники равны, соответственно, равны и отрезки что означает равноудалённость точки от сторон многоугольника. Значит, в этот многоугольник можно вписать окружность с центром
Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость и прямая которая её пересекает и не перпендикулярна (рис. 273). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая перпендикулярна плоскости то её проекцией на эту плоскость является точка пересечения прямой с плоскостью (рис. 274). В этом случае прямая образует со всеми прямыми плоскости углы, равные 90°. Этот угол и принимается в качестве угла между прямой и перпендикулярной ей плоскостью.
Если прямая параллельна плоскости то её проекцией на плоскость является прямая параллельная . Угол между параллельными прямыми считается равным 0°. Поэтому угол между параллельными прямой и плоскостью принимается равным 0°.
Пример №17
В треугольной пирамиде рёбра основания равны 6, а боковые рёбра — 5. Найдём угол между медианой основания и плоскостью
Решение:
Пусть — перпендикуляр, опущенный из точки на плоскость Поскольку наклонная перпендикулярна прямой то и её проекция перпендикулярна прямой Значит, точка К находится на серединном перпендикуляре к отрезку (рис. 275).
Искомый угол между медианой основания и плоскостью — это угол Его можно найти через теорему косинусов, если знать стороны треугольника Находим:
тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол между прямой и плоскостью угол между другой прямой этой плоскости и проекцией на неё прямой и угол между прямыми и связаны равенством
Доказательство: Пусть точка принадлежит прямой — точка пересечения прямой с плоскостью прямая лежит в плоскости и проходит через точку — основание перпендикуляра, опущенного из точки на прямую — проекция точки на плоскость (рис. 276).
Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и имеем:
и
Пример №18
В треугольной пирамиде ребро перпендикулярно плоскости и равно 20. Найдём угол между прямыми и учитывая, что и
Решение:
Используем теорему о трёх косинусах, учитывая, что угол между прямыми и равен углу между прямой и прямой которая проходит через точку параллельно (рис. 277), поэтому
Поскольку и
то и Значит,
Ответ:
Пример №19
Основанием треугольной пирамиды является прямоугольный треугольник с гипотенузой и углом в 30° (рис. 279). Найдите высоту грани проведённую из вершины учитывая, что боковое ребро перпендикулярно плоскости основания и равно 4 см, а катет равен 6 см.
Решение:
поэтому — проекция наклонной на
— высота грани — проекция наклонной на поэтому
и поэтому
прямоугольный,
прямоугольный, поэтому
Ответ: 5 см.
Пример №20
Докажите, что если луч не лежит в плоскости неразвёрнутого угла и острые углы и равны, то проекция луча на плоскость является биссектрисой угла (рис. 280).
Решение:
Пусть и
(по гипотенузе и острому углу), поэтому
— проекция на и
— проекция на и
(проекции равных наклонных).
— биссектриса угла (точка равноудалена от сторон угла
Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник в котором гипотенуза представляет эскалатор, а катет — глубину расположения той станции метро, на которую ведёт данный эскалатор.
- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: (см. рис. 293) или (рис. 294). При необходимости можно присоединить названия граней или названия точек на гранях: (3 (см. рис. 293), или (см. рис. 294), или (см. рис. 294).
Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре двугранного угла точку и в его гранях и из этой точки проведём лучи и перпендикулярные ребру (рис. 298). Полученный угол стороны которого и ограничивают часть плоскости принадлежащую двугранному углу называют линейным углом двугранного угла. Плоскость линейного угла перпендикулярна ребру двугранного угла, так как по построению лучи и перпендикулярны ребру
Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть и — линейные углы двугранного угла (рис. 300). Докажем, что
Отложим на сторонах углов и равные отрезки Тогда получатся четырёхугольники и у которых противоположные стороны и а также и равны по построению и параллельны как перпендикуляры к одной прямой, проведённые в соответствующей плоскости. Поэтому и А это означает, что четырёхугольник является параллелограммом, что позволяет сделать вывод о равенстве отрезков PS и QR. Получили, что у треугольников и равны соответственные стороны, поэтому треугольники равны, а значит, равны и их углы и
Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен то ещё один из них также равен а, а два остальных — 180° – Среди этих углов есть не превосходящий 90°, его величину и принимают за величину угла между пересекающимися плоскостями.
Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую которая перпендикулярна плоскости и пересекает её в точке проходит плоскость (рис. 308). Докажем, что a
Плоскости и пересекаются по некоторой прямой перпендикулярной прямой так как по условию прямая и плоскость перпендикулярны.
В плоскости проведём прямую перпендикулярную прямой Полученный угол где — точка прямой является линейным углом двугранного угла Поскольку по условию то угол — прямой, и, значит, плоскости и перпендикулярны.
Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости и пересекаются по прямой и через точку плоскости проведена прямая перпендикулярная плоскости Докажем, что эта прямая принадлежит плоскости
Через точку в плоскости проведём прямую перпендикулярную и через точку их пересечения в плоскости — прямую также перпендикулярную (рис. 310). Угол между прямыми и прямой как линейный угол прямого двугранного угла. Получили, что прямая проходит через точку и перпендикулярна плоскости так как она перпендикулярна пересекающимся прямым и этой плоскости. А поскольку через эту точку к данной плоскости можно провести только одну перпендикулярную прямую, то прямые и совпадают. Значит, прямая а принадлежит плоскости
Пример №21
Точка — середина ребра при основании правильной пирамиды (рис. 311). Докажем, что плоскость перпендикулярна плоскости основания
Решение:
Прямая является основанием равнобедренных треугольников и Поэтому она перпендикулярна медианам и этих треугольников и вместе с этим плоскости Из теоремы 12 следует, что плоскость проходящая через перпендикуляр к плоскости ей перпендикулярна.
Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде плоский угол при вершине равен Найдём величину двугранного угла при боковом ребре.
Решение:
Пусть — середина ребра — перпендикуляр к ребру проведённый из точки (рис. 313).
Из равенства треугольников и следует, что . Поэтому угол — линейный угол двугранного угла
Из прямоугольных треугольников и получаем: Из прямоугольного треугольника находим, что
Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол двугранного угла, угол между ребром этого двугранного угла и прямой, лежащей в одной из его граней, и угол между этой прямой и плоскостью другой грани связаны равенством
Доказательство: Пусть прямая лежит в плоскости точка принадлежит прямой — точка пересечения прямой с ребром двугранного угла — основание перпендикуляра, опущенного из точки на грань ) — основание перпендикуляра, опущенного из точки на ребро угла (рис. 314). Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и будем иметь: и
Следствие 1. Если точка лежит в грани двугранного угла величиной то расстояние от неё до плоскости другой грани угла равно где — точка на ребре двугранного угла, а — угол между прямой и ребром двугранного угла (рис. 315).
Пример №23
Стороны и правильного треугольника лежат соответственно в гранях и острого двугранного угла величиной Сторона образует угол с ребром двугранного угла. Найдём величину угла между плоскостью и плоскостью
Решение:
Пусть искомый угол равен сторона треугольника имеет длину Тогда расстояние от точки до плоскости можно найти двумя способами (рис. 316): и Поэтому
Ответ:
Следствие 2. Пусть рёбра и — грани двугранных углов величиной и соответственно. Тогда (рис. 317).
Пример №24
Плоскости правильных треугольника и четырёхугольника перпендикулярны (рис. 319). Найдите учитывая, что
Решение:
и тогда по теореме 12
поэтому — прямоугольный. так как правильный и
так как четырёхугольник правильный и
Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек и ребра двугранного угла в разных его гранях возведены перпендикуляры и (рис. 320). Определите величину двугранного угла, учитывая, что и расстояние между точками и равно 50 см.
Решение:
Пусть и Тогда — параллелограмм и см, 48 см.
и поэтому
— линейный угол двугранного угла
и тогда
и , тогда
и тогда
поэтому — прямоугольный.
Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость называется точка пересечения с этой плоскостью прямой, проходящей через данную точку перпендикулярно
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если — треугольная пирамида, и то
«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
Как провести перпендикуляр к плоскости
На комплексном чертеже (эпюре) перпендикулярность прямой и плоскости определяется основными положениями: если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол проектируется без искажения; если прямая перпендикулярна двум пересекающимся прямым плоскости, она перпендикулярна этой плоскости.
Вам понадобится
- Карандаш, линейка, транспортир, треугольник.
Инструкция
Пример: через точку M провести перпендикуляр к плоскостиЧтобы провести перпендикуляр к плоскости, следует найти две пересекающиеся прямые, лежащие в этой плоскости, и построить перпендикулярную к ним прямую. В качестве этих двух пересекающихся прямых выбираются фронталь и горизонталь плоскости.
Горизонталь h(h₁h₂) – это прямая, лежащая в плоскости и параллельная горизонтальной плоскости проекции П₁. Значит ее проекция h₁, а h₂ всегда параллельна x₁₂.
Фронталь f(f₁f₂) – это прямая, лежащая в плоскости и параллельная фронтальной плоскости проекций П₂. Значит f₂ равна ее натуральной величине, а f₁ всегда параллельна x₁₂. Из точки А₂ проведите h₂ параллельно x₁₂ и получите на В₂С₂ точку 1₂.
С помощью проекционной линии связи найдите точку 1₁ на В₁С₁. Соедините с А₁ – это будет h₁ – натуральная величина горизонтали. Из точки В₁ проведите f₁‖x₁₂, на А₁С₁ получите точку 2₁. Найдите с помощью линии проекционной связи точку 2₂ на А₂С₂. Соедините с точкой В₂ – это будет f₂ – натуральная величина фронтали.
Построенные натуральные величины горизонтали h₁ и фронтали f₂ определяют направление проекций перпендикуляра к плоскости. Из точки М₂ проведите его фронтальную проекцию a₂ под углом 90 градусов к f₂, а из точки М₁ – его горизонтальную проекцию a₁ под углом 90 градусов к h₁. Таким образом, прямая a(a₂,a₁) является искомым перпендикуляром к плоскости треугольника АВС.
Полезный совет
Построение перпендикуляра к плоскости можно использовать при графическом решении различных задач начертательной геометрии:
– определение расстояния от точки до плоскости;
– определение расстояния между двумя параллельными плоскостями;
– построение взаимно перпендикулярных плоскостей;
– построение на заданном расстоянии двух параллельных плоскостей и т.п.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
План урока:
Понятие перпендикуляра
Расстояния между плоскостями и прямыми
Теорема о трех перпендикулярах
Угол между прямой и плоскостью
Задачи на перпендикуляры, наклонные, расстояния
Понятие перпендикуляра
Пусть есть некоторая плоскость α и точка М в пространстве, не лежащая на α. Проведем через М прямую, перпендикулярную α. Она пересечет α в какой-нибудь точке К. Отрезок МК именуют перпендикуляром к плоскости α.
Если через М мы проведем ещё одну прямую, пересекающую α, то она пересечет α в какой-нибудь точке Н. В результате мы получим прямоугольный ∆МНК:
Запомним некоторые геометрические термины. В таком построении:
- отрезок МН – это наклонная;
- отрезок НК – это проекция наклонной, или просто проекция;
- К – основание перпендикуляра;
- Н – основание наклонной.
Заметим, что в ∆МНК отрезок МН – это гипотенуза, а МК – это катет. Напомним, что катет всегда меньше гипотенузы. Отсюда вытекает вывод – длина перпендикуляра всегда меньше длины наклонной (конечно, если они проведены из одной точки).
Это значит, что из всех отрезков, которыми можно соединить точку и плоскость, именно перпендикуляр будет кратчайшим. Поэтому его называют расстоянием между точкой и плоскостью.
Расстояния между плоскостями и прямыми
Докажем довольно очевидный факт:
Действительно, пусть α и β – параллельные плоскости. Выберем на α произвольные точки М и Р, а далее опустим перпендикуляры из точек М и Р на β, которые пересекут β в точках Н и К соответственно:
Так как МН и РК перпендикулярны плоскости α, то они параллельны. Но также и α||β. Тогда, по теореме 12 из этого урока, отрезки МН и РК одинаковы, ч. т. д.
Этот факт позволяет ввести понятия расстояния между параллельными плоскостями.
Уточним, что если плоскости пересекаются, то расстояние между ними не может быть определено.
Далее рассмотрим случай с плоскостью α и параллельной ей прямой m. Оказывается, и в этом случае точки прямой равноудалены от плоскости.
Действительно, отметим на m произвольную точку К. Далее через K проведем такую плоскость β, что α||β. Так как точки β равноудалены от α, то нам достаточно показать, что m будет полностью принадлежать β:
Так как m и β уже имеют общую точку K, то они m либо пересекает β, либо лежит в ней. Будем рассуждать от противного и предположим, что m и β пересекаются. Так как m||α, то в α можно построить прямую n, параллельную m. Если m пересекает β, то и nтакже должна ее пересекать (по теореме 3 из этого урока). Но если n пересекает β, то точка их пересечения будет одновременно принадлежать и β, и α. То есть у этих плоскостей будет общая точка. Но α и β параллельны и потому не могут иметь общих точек. Значит, на самом деле m и β НЕ пересекаются. Остается один вариант – m принадлежит β, ч. т. д.
Из этой теоремы вытекает понятие расстояния между прямой и плоскостью.
Уточним, что если плоскость и прямая не параллельны, то расстояние между ними определить нельзя.
Осталось понять, как определять расстояние между прямыми в пространстве. Для параллельных прямых определение расстояния известно ещё из курса планиметрии. Естественно, что для пересекающихся прямых расстояние определить невозможно. Остается только случай скрещивающихся прямых.
Пусть прямые m и n скрещиваются. Тогда через n можно построить плоскость α, параллельную m. И наоборот, через m возможно провести плоскость β, параллельную n:
Далее опустим из какой-нибудь точки m перпендикуляр на α. Обозначим этот перпендикуляр как р. Тогда через пересекающиеся прямые m и р можно провести единственную плоскость γ:
Заметим, что плоскости α и γ обязательно пересекутся по некоторой прямой m’, причем m’||m. Действительно, m’ и m не могут скрещиваться, ведь они находятся в одной плоскости γ. Не могут они и пересекаться, ведь в противном случае точка их пересечения была бы общей для m и α, а они параллельны и общих точек не имеют.
Также заметим, что прямые n и m’ пересекаются, ведь они располагаются в одной плоскости α. Параллельными они быть не могут, ведь тогда по свойству транзитивности параллельности получилось бы, что и n||m, а это не так. Обозначим точку пересечения n и m’ буквой K.
Далее через K в плоскости γ проведем прямую р’, параллельную р:
Теперь начнем рассуждения. Если р⊥α, то также р⊥m’. Так как р’||р, то и р’⊥m’, ведь прямая, перпендикулярная одной из параллельных прямых, будет перпендикулярна и второй прямой. По этому же правилу из того факта, что m’||m и р’⊥m’ вытекает, что и m⊥р’. Наконец, если р⊥α, то р⊥n. Для ясности отметим все найденные нами прямые углы на рисунке:
В итоге получилось, что отрезок HK перпендикулярен и n, и m. По этой причине его называют общим перпендикуляром к прямым n и m. Именно он и считается расстоянием между скрещивающимися прямыми m и n.
Отдельно отметим, что HK – это ещё и общий перпендикуляр к α и β. Понятно, что так как р⊥α и р’||р, то и р’⊥α, то есть HK – перпендикуляр к α.
Теперь через точку H проведем прямую n’, параллельную n. Так как β||n, то n’ будет находиться в β (по теор. 6 в этом уроке).
Раз n||n’ и р’⊥n, то и р’⊥n’. Тогда получается, что в β есть сразу две пересекающихся прямых (это m и n’), которые перпендикулярны р’. Поэтому можно утверждать, что р’⊥β, то есть HK– перпендикуляр к β.
Отсюда сразу вытекает ещё один важный вывод – плоскости α и β параллельны, так как имеют общий перпендикуляр.
Итак, мы показали, что общий перпендикуляр можно построить для любых двух скрещивающихся прямых. Но можно построить ещё один такой перпендикуляр? Нельзя, и это можно показать.
Сначала заметим, что второй перпендикуляр нельзя провести через точку К, ведь в таком случае получалось бы, что к m проведены два различных перпендикуляра из одной и той же точки, что невозможно. Аналогично перпендикуляр не может проходить и через Н.
Предположим тогда, что второй перпендикуляр проходит через точки С и D, причем С находится на m, а D находится на n. То есть CD⊥m и СD⊥n:
Проведем через С прямую n’’, параллельную n. Раз СD⊥n и n||n’’, то и СD⊥n’’. При этом n’’ находится в β (это доказывается также, как и в случае с n’). Тогда получается, что в β есть две прямые, n’’ и m, каждая из которых перпендикулярна СD, и при этом n’’ и m пересекаются. Тогда CD⊥β. Из этого вытекает, что СD и HK параллельны, а потому через них можно провести плоскость δ. Этой плоскости будут принадлежать точки С, H, К и D. Но тогда в этой плоскости должны находиться прямые m и n, ведь они имеют с ней по две общих точки. Но m и n – скрещивающиеся прямые, то есть они никак не могут находиться в одной плоскости. Это противоречие означает, что второй общий перпендикуляр CD не существует.
Итак, из всех наших рассуждений мы можем сделать следующие выводы:
Теорема о трех перпендикулярах
Сформулируем важное утверждение, которое называют теоремой о трех перпендикулярах.
Проиллюстрируем теорему с помощью картинки:
Доказательство этой теоремы очень простое. Так как МК⊥α, то также МК⊥m. Теперь рассмотрим расположение плоскости МНК и прямой m. МК⊥m и HK⊥m. Тогда по признаку перпендикулярности можно утверждать, что m перпендикулярна всей плоскости HM, то есть каждой находящейся в ней прямой. В частности, m⊥HK, ч. т. д.
Оказывается, верно и обратное утверждение (так называемая обратная теорема о трех перпендикулярах):
Доказательство аналогично предыдущему. Так как m⊥MH и m⊥MK, то m⊥HMK. Отсюда вытекает, что и m⊥HK.
Угол между прямой и плоскостью
Проекция наклонной позволяет ввести такое понятие, как угол между прямой и плоскостью.
Пусть надо определить угол между прямой HM и плоскостью α:
Здесь надо просто построить перпендикуляр МК. В результате появится отрезок HK– проекция HM на α. Тогда угол между HM и HK, то есть ∠MHK, как раз и будет углом между HM и α.
Однако не всегда таким образом можно построить проекцию прямой. Проблемы возникнут, если прямая либо параллельна, либо перпендикулярна плоскости. В таких случаях используются такие правила:
Задачи на перпендикуляры, наклонные, расстояния
Рассмотрим несколько задач, в каждой из которых рассматривается куб АВСDEFGH. При этом предполагается, что ребро такого куба имеет длину, равную единице.
Задание. В кубе АВСDEFGH найдите расстояние между точкой А и гранью CDHG:
Решение. Ребро AD перпендикулярно грани DH (так как AD⊥DH и AD⊥CD). Поэтому как раз АD и является расстоянием между А и СDHG. Значит, оно равно единице.
Ответ: 1.
Примечание. Для решения следующих задач запомним, что ребро DH перпендикулярно грани АВСD. Вообще в кубе все ребра, пересекающиеся с гранями, перпендикулярны таким граням.
Задание. Найдите в кубе расстояние между вершиной А и плоскостью BDH:
Решение. Проведем на грани АВСD перпендикуляр АК из А к прямой BD:
Докажем, что АК – перпендикуляр в BDH. Для этого надо найти две прямые в BDH, перпендикулярные АК. Первая такая прямая – это BD (мы специально провели АК⊥BD). Вторая такая прямая – это DH. Действительно, DH перпендикулярна всей грани АВСD, а значит, и прямой АК.
Теперь найдем длину АК. Ее можно вычислить из прямоугольного ∆АКD. В нём ∠ADB =45°, ведь это угол между стороной квадрата АВСD и его диагональю.
Найти АК можно с помощью тригонометрии в ∆АКD:
Задание. Найдите расстояние от H до плоскости EDG:
Решение. Обозначим середину отрезка ЕD буквой М.Далее в ∆МНG опустим высоту из НК на сторону MG:
Попытаемся доказать, что HK – это перпендикуляр к EDG. Заметим, что ∆HDG и ∆EHG равны, ведь у них одинаковую длину имеют ребра DH, EH, ребро GH – общее, а ∠DHG и ∠EHG прямые. Тогда одинаковы отрезки EG и DG. Это означает, что ∆EGD – равнобедренный.
В ∆EGDMG– это медиана. Так как ∆EGD – равнобедренный, то MG одновременно ещё и высота, поэтому MD⊥MG.
Аналогично ∆EHD– равнобедренный (EH = HD), а потому MH в нем – и медиана, и высота. Поэтому MD⊥MH.
Получили, что MD перпендикулярен и MH, и MG, то есть двум прямым в плоскости MHG. Тогда MD перпендикулярен всей плоскости MHG, и, в частности, отрезку HK: HK⊥MD.
Но также MD⊥MG. Получается, KH перпендикулярен двум прямым в плоскости EDG, и потому он является перпендикуляром к плоскости EDG. Значит, именно его длину нам и надо найти.
Рассмотрим ∆MDH. Он прямоугольный, а ∠MDH = 45° (угол между стороной и диагональю квадрата). Тогда длину MH можно найти так:
Так как ребро GH перпендикулярно грани АЕНD, то ∆MHG – прямоугольный. Тогда по теореме Пифагора можно найти MG:
Далее можно найти HK разными способами, но проще воспользоваться подобием ∆MHG и ∆MKH. Они оба – прямоугольные, и у них есть общий угол ∠KMH, этого достаточно для подобия треугольников. Записываем пропорцию:
Здесь слева записано отношение сторон, лежащих против ∠KMH, а справа – отношение сторон, лежащих против прямых углов (то есть отношение гипотенуз). Используем пропорцию дальше:
Задание. Найдите расстояние между прямыми ВС и DH:
Решение. ВС и DH – скрещивающиеся. Надо найти общий перпендикуляр к ним. В данном случае он очевиден – это отрезок CD. Действительно, CD⊥ВС как стороны квадрата АВСD, но и DH⊥CD как стороны в другом квадрате, СDHG.. Длина же ребра CD равна единице, ведь у куба все ребра одинаковы.
Ответ: 1.
Задание. Каково расстояние между прямыми ВС и DG:
Решение.На грани СDHG опустим из С перпендикуляр СК на диагональ GD:
Будет ли СК являться расстоянием между ВС и DG? Ясно, что СК⊥DG. При этом ребро ВС перпендикулярно грани СGHD, так как ВС⊥СG и ВС⊥СD. Значит, также ВС⊥СК. То есть СК – общий перпендикуляр к ВС и DG, и по определению как раз и является искомым расстоянием.
Длину СК найдем из прямоугольного ∆СKG. ∠СGK составляет 45°, ведь это угол между диагональю DG и стороной квадрата СG. Тогда можно записать:
Задание. Найдите расстояние между ребрами АВ и HG:
Решение. Здесь ребра АВ и HG параллельны, так как каждая их них параллельна ребру CD. Проведем отрезок АН. Так как и АВ, и HG перпендикулярны грани АЕНD, то эти ребра одновременно перпендикулярны и АН. То есть АН – общий перпендикуляр к АВ и HG, и поэтому именно его длину и надо найти.
Сделать это можно из прямоугольного ∆АНD, в котором ∠НАD составляет 45°:
Задание. Чему равно расстояние между ребром AB и диагональю FD:
Решение. Пусть А1, D1, H1 и Е1 – середины ребер АВ, DC, HG, и EF соответственно. Проведем через А1, D1, H1 плоскость. Диагональ FD пересечет ее в какой-нибудь точке К:
Сначала покажем, что плоскости α и ADH (то есть нижняя грань) параллельны.
Заметим, что в четырехугольнике АА1D1D стороны АА1 и DD1 параллельны (ведь они лежат на сторонах квадрата АВСD) и одинаковы (ведь они составляют половину от длины ребер АВ и CD, то есть имеют длину 0,5). Тогда АА1D1D – параллелограмм. Более того, раз у него есть прямые углы ∠А1АDи ∠АDD1, то можно утверждать, что АА1D1D – прямоугольник. Тогда АD||A1D1. Аналогично можно показать, что DHH1D1 – прямоугольник, и DH||D1H1.
Далее можно действовать разными способами. Первый способ – это использование признака параллельности плоскостей (теорема 9 из этого урока). Так как в α есть пересекающиеся прямые А1D1и D1H1, а в плоскости ADH находятся прямые AD и DH, и АD||A1D1, и DH||D1H1, то по этому признаку α||ADH.
Однако, если этот признак вдруг оказался «забыт», то можно использовать отрезок DD1. Он перпендикулярен и грани ADHE, и плоскости α, ведь в каждой из них есть по две прямых, перпендикулярных ему. Это AD и DH на грани ADHE и A1D1и D1H1 в α. Тогда α и ADH перпендикулярны одной и той же прямой, а потому они параллельны. Так или иначе, мы выяснили, что α||ADH.
Отсюда вытекает, что α должна проходить через середину Е1. Действительно, расстояние между параллельными плоскостями не зависит от выбора точек измерения. В данном случае оно равно отрезку АА1, то есть 0,5. Но FE– это также общий перпендикуляр к α и ADH. Значит, α пересекает FE в точке, находящейся на расстоянии 0,5 от Е. А это как раз и есть середина FE, то есть точка Е1.
Далее докажем, что точка К, в которой прямая FD пересекает α – это середина отрезка Е1D1. Для этого удобно отдельно показать плоскость, проходящую через параллельные ребра FE и CD, то есть четырехугольник FEDC:
Заметим, так как ребра FE и CD перпендикулярны верхней и нижней грани, то они перпендикулярны и отрезкам FC и ED, то есть FEDC прямоугольник. Тогда FC||ED, и ∠Е1FD = ∠D1DF (накрест лежащие углы при секущей FD). ∠FKE1 и ∠DKD1 одинаковы уже как вертикальные углы. Тогда ∆FKE1 и ∆DKD1 подобны по 2 углам. Но отрезки FE1 и DD1 одинаковы как половины равных ребер FE и CD. Получается, что ∆FKE1 и ∆DKD1 равны, и поэтому Е1К = KD1. Это и значит, что К – середина Е1D1.
Также отметим, что Е1D1 – диагональ в четырехугольнике А1Е1Н1D1. Докажем, что А1Е1Н1D – это квадрат. Ранее мы уже показали, что АА1D1D и DHH1D1 – прямоугольники. Аналогично можно продемонстрировать, что прямоугольниками являются также АА1Е1Е и ЕЕ1Н1Н. Из этого вытекает равенство сторон:
То есть в А1Е1Н1D1 все стороны одинаковы, и эта фигура – ромб. Теперь надо показать, что и углы в этом четырехугольнике составляют 90°. Продемонстрируем это на примере ∠А1D1H1. AD⊥CDHG и AD||A1D1, поэтому А1D1⊥CDHG. Значит, также А1D перпендикулярна любой прямой на грани CDHG, в том числе и D1H1. То есть ∠А1D1H1 = 90°. Но если в ромбе хотя бы один угол прямой, то он является квадратом.
Итак, мы выяснили, что А1Е1Н1D1 – квадрат, а К – середина его диагонали Е1D1. Получается, что К – точка пересечения диагоналей квадрата А1Е1Н1D1, ведь эта точка пересечения как раз делит диагонали пополам.
Теперь мы можем наконец доказать, что А1К – это и есть искомое расстояние. Действительно, так как АВ – перпендикуляр к α, та А1К принадлежит α, то А1К⊥АВ. Но как же доказать, что А1К⊥FD. Здесь поможет теорема о трех перпендикулярах. Е1К – это проекция FK на α, и Е1К⊥А1К, ведь диагонали квадрата пересекаются под прямым углом. Раз отрезок А1К перпендикулярен проекции, то он перпендикулярен и самой наклонной, то есть А1К⊥FK.
Осталось лишь вычислить длину А1К. Для этого по аналогии с предыдущими задачами используем прямоугольный∆А1Е1К, в котором ∠А1Е1К = 45°:
Отвлечемся от куба и рассмотрим другую задачу.
Задание. В ∆АВС вписана окружность. Через центр этой окружности (точку О) проведена прямая ОН, причем она перпендикулярна плоскости АВС. Верно ли, что точка Н находится на одинаковом расстоянии от прямых АВ, АС и ВС?
Решение. Пусть N, K и M – точки касания окружности и сторон АВ, АС и ВС соответственно. Тогда ОN, OK и OM– радиусы, а они должны быть перпендикулярны касательным, то есть
Заметим, что ОN, OK и OM – это также проекции прямых HN, HK и HM соответственно. Раз отрезки АВ, АС и ВС перпендикулярны этим проекциям, то они должны быть перпендикулярны и наклонным:
Это значит, что HN, HK и HM– это расстояния от H до сторон ∆АВС. Осталось показать, что они одинаковы. Это можно сделать с помощью ∆HON, ∆HOK и ∆HOM. Они все прямоугольные, причем катет OH– общий, а катеты ON, OM и OK одинаковы как радиусы одной окружности. Отсюда вытекает вывод, что эти треугольники равны, то есть одинаковы и их гипотенузы HN, HKи HM, ч. т. д.
Теперь снова вернемся к кубу, чтобы на практике научиться определять угол между прямой и плоскостью.
Задание. Найдите угол между ребром куба BD и гранью СDHG:
Решение. ВС – это перпендикуляр к грани СDHG, поэтому CD– проекция BD на грань СDHG. Тогда нам надо найти ∠BDC. Он составляет 45°, так как это угол между стороной и диагональю квадрата АВСD:
Ответ: 45°.
Задание. Вычислите угол между ребром CD и плоскостью BDHF:
Решение. Нам надо из С опустить перпендикуляр на BDHF. Несложно догадаться, что для этого надо на грани ABCD опустить перпендикуляр СК на диагональ BD:
Действительно, СK⊥BD. Надо найти ещё одну прямую в BDHF, перпендикулярную СК. И такой прямой может быть BF. Так как BF перпендикулярна всей грани АВСD, то она обязательно перпендикулярна и СК. Получаем, что СК⊥BF и CK⊥BD, и тогда СK⊥BDHF.
Если СK– перпендикуляр, то KD – это проекция СD. Тогда искомый нами угол – это ∠СDK. Он равен 45°, ведь BD – диагональ квадрата АВСD, а CD – его сторона.
Ответ: 45°
Задание. Чему равен угол между прямой BD и плоскостью ABGH:
Решение. На нижней грани АЕНD опустим на АН перпендикуляр DK:
Заметим, что ребро АВ перпендикулярно грани АЕНD, поэтому KD⊥АВ. Но также KD⊥AH (мы специально построили так KD). Тогда можно утверждать, что KD – это перпендикуляр ко всей плоскости АВGH.
В таком случае BK – это проекция BD на AB. Значит, нам необходимо вычислить ∠DBK. Его можно найти из прямоугольного ∆DBK, но сперва надо вычислить длины сторон KD и BD.
ВD найдем из прямоугольного ∆ABD:
Теперь мы можем найти ∠DBK, а точнее его синус, из ∆DBK:
По таблице синусов легко определить, что ∠DBK = 30°.
Ответ: 30°.
В ходе сегодняшнего урока мы узнали о перпендикуляре к плоскости. Перпендикуляры используются для определения расстояний в стереометрии, а также угла между прямой и плоскостью.