Как найти первоначальную сумму сложные проценты

Задача 1

Через
сколько лет первоначальная сумма увеличится в 1000 раз, если на нее начисляются
сложные годовые проценты по ставке 12% при: а) начислении процентов в конце
года; б) ежемесячном начислении процентов?


Задача 2

Господин
Н поместил в банк 50 тыс. руб. на условиях начисления каждый квартал сложных
процентов по годовой ставке 12%. Через полтора года он снял со счета 20 тыс.
руб., а через 2 года после этого закрыл счет. Определить сумму, полученную им
при закрытии счета.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 3

Два
денежных взноса, один из которых на 30 000 руб. больше другого, вырастут за 15
лет с процентной ставкой 6% так, что вместе составят 100 000 руб. Капитализация
полугодовая. Чему равны эти два денежных взноса?


Задача 4

Необходимо
инвестировать 350 000 руб. сроком на три года. Есть два варианта: вклад с
простой процентной ставкой 15% и вклад с ежедневным начислением сложных
процентов по годовой ставке 14%. Определите наиболее выгодный для инвестора
вариант расчета процентов и вложения средств.


Задача 5

10 млн.
руб. инвестированы на два года по ставке 30% годовых. Требуется найти
наращенную сумму за два года, если начисление процентов производится: а) по
полугодиям; в) ежеквартально.


Задача 6

11 лет
назад в банк было вложено 34560 руб., а 5 лет назад – 45000 руб. Какой капитал
нужно вложить сегодня, чтобы сумма всех вложений через 16 лет была равна 835000
руб. Процентная ставка равно 10%, а капитализация годовая.


Задача 7

Первоначальный
долг в размере 10000 руб. через 180 дней вырос до 20000 руб. Определить годовую
процентную ставку, по которой начислялись проценты:

а)
простые проценты;

б)
сложные проценты один раз в год;


Задача 8

На вклад
в размере 15000 руб. ежеквартально начисляются проценты по номинальной годовой
процентной ставке 12%. Какой будет величина вклада через 1,5 года?


Задача 9

Определить
ставку начисления сложных процентов, если известно, что по истечении 3 лет было
получено 240 000 руб., при этом начальная сумма вклада составляла 180 000 руб.


Задача 10

Вклад в
размере 20000 руб. под 10% годовых сроком на 2 года предусматривает начисление
и капитализацию процентов по полугодиям. Рассчитать величину вклада в конце
каждого квартала в течение срока вклада. Повторить расчет для случая начисления
простых процентов по той же ставке и сравнить полученные результаты.


Задача 11

На
начальную сумму в 1000$ в течение 4 лет начисляются каждые полгода сложные
проценты по номинальной ставке 5%. На сколько увеличится или уменьшиться
наращённая сумма, если номинальная ставка и число периодов капитализации процентов
возрастут вдвое?


Задача 12

Сумма
18000 руб. выплачивается через 3,8 года. Номинальная ставка процентов – 18,5%
годовых. Определить современную стоимость при ежемесячном начислении процентов.


Задача 13

Остров
Манхэттен был куплен в 1624 г. у индейского вождя за 24$. Стоимость земли этого
острова 350 лет спустя оценивалась в 40 млрд.$. При какой ставке годовых
процентов возможен такой рост?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 14

Вы
делаете вклад в банк в размере 100 тыс. руб. сроком на 5 лет. Банк начисляет 8
% годовых. Какая сумма будет на счете к концу срока, если начисление процентов
производится по схеме простых и сложных процентов: а) ежегодно б) каждые
полгода?


Задача 15

Кредит в
сумме 2500$ выдан на 8 лет. Сложная ставка годовых процентов менялась от
периода к периоду: на протяжении первых 3 лет действовала ставка 7,5%, в
следующие 3 года – 8%, в последнем периоде – 8,2%. Какую сумму нужно вернуть в
конце восьмого года?


Задача 16

Каково
минимально приемлемое значение годовой ставки сложных процентов, если ссуда
должна быть удвоена в течение 3-х лет.


Задача 17

Первоначальная
сумма ссуды 20,0 тыс. руб. срок ссуды 3 года, проценты начисляются в конце
каждого квартала по номинальной ставке 8 % годовых. Определить множитель
наращения и погашаемую сумму.


Задача 18

Первоначальная
сумма ссуды 50 тыс. руб. выдана на 2 года. Проценты начисляются по годовой
номинальной ставке 12%. Чему равна конечная сумма долга, если:

– проценты начисляются один раз в конце года,

– проценты начисляются четыре раза в год (в конце
каждого квартала).

Результаты
сравнить и сделать выводы.


Задача 19

Какова
ставка сложных процентов, если сумма долга удвоилась за 5 лет?


Задача 20

Вкладчик намерен положить деньги в
банк под 15% годовых. Определить сумму вклада, необходимую для накопления через
2 года 50 тыс. руб. в случае простых и сложных процентов.


Задача 21

На 1 марта 2011 г. принято
обязательство выплатить 1 млн. руб. (с процентами) к сроку 1 марта 2013 г. При
расчетах принять ставку (схема сложных процентов) 15% годовых. Требуется: найти
наращенную сумму долга к сроку выплаты.


Задача 22

За какой период первоначальный
капитал в размере 40000 руб. вырастет до 75000 руб. при простой (сложной)
ставке 15% годовых?


Задача 23

Сравнить сроки удвоения суммы 1000
руб. при начислении сложных процентов:

а) по полугодиям;

б) ежеквартально;

в) непрерывно.


Задача 24

 Банк ежегодно начисляет сложные проценты на
вклады по ставке 25% годовых. Определить сумму, которую надо положить в банк,
чтобы через 3 года накопить 100 млн. руб.


Задача 25

Вкладчик закрывает в банке
двухгодичный депозит и получает сумму 124 тыс.р. Какую сумму он внес на депозит
два года назад, если сложная процентная ставка 11% с полугодовым начислением
процентов?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 26

Промышленное предприятие вносит на
счет в банке некоторую сумму, чтобы через пять лет обновить оборудование в
цехе. Сколько денег необходимо внести предприятию, если обновление цеха
обойдется 10.5 млн.р., а сложная ставка процента 10%, при ежеквартальном
начислении процентов.


Задача 27

Сравните скорость наращения суммы в 1000
руб. по простым и сложным процентам, если годовая ставка равна 20%, для сроков
в полгода, год, два года, три года. Сравните результаты, сделайте выводы.


Задача 28

Банк выдает ссуду на 10 лет или под
процент 7 % годовых (сложных), или под простые проценты. Какую ставку простых
процентов должен установить банк, чтобы полученный им доход не изменился?


Задача 29

Банк предоставил ссуду в размере
9000 рублей на 3.5 года под 20% годовых на условиях полугодового начисления
процентов. Определить возвращаемую сумму при различных схемах начисления
процентов: простых и сложных.


Задача 30

Банк начисляет проценты на вклады до
востребования по сложной ставке 9% годовых. Определить сумму вклада для
накопления через 1.5 года 50 тыс. рублей


Задача 31

Рассчитайте, какая сумма будет на
счете, если вклад 10000 руб. положен на 2,5 года по 9 процентов годовых. Решите
задачу для простых и сложных процентов, которые начисляются:

а) раз в год;

б) раз в полугодие;

в) ежеквартально;

г) ежемесячно;

д) ежедневно;

е) непрерывно.


Задача 32

Рассчитайте, какая сумма будет через
4 года на счете, если в конце каждого месяца вносится по 1000 руб. Проценты
сложные, начисление ежемесячное, годовая ставка 9%.


Задача 33

Фермер взял в банке кредит на сумму
5 млн. руб. под 8 % годовых (сложных). Через год он вернул банку 3 млн. руб., а
еще через год взял кредит на сумму 2 млн. руб. Через 2 года после этого фермер
вернул полученные кредиты полностью. Какую сумму он при этом выплатил банку?


Задача 34

Кредит в размере 910 000 руб.
выдан на два года и 80 дней под 16% годовых по сложной ставке. Найти сумму
долга на конец кредита.


Задача 35

За сколько лет долг возрастет с
750 000 руб. до 1 200 000 руб., если ставка сложная годовая 25%.


Задача 36

Кредит в размере 2.350.000 рублей
выдан на 4 года и 30 дней под 21% годовых по сложной ставке. Найти сумму долга
на конец срока кредита.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 37

За сколько лет долг возрастет с
830.000 рублей до 1.220.000 рублей, если ставка сложная годовая 18%.


Задача 38

 Г-н Иванов может вложить деньги в банк, выплачивающий
проценты по ставке j6 = 10%. Какую сумму он должен вложить, чтобы получить
20000 руб. (е) через 3 года 3 месяца?


Задача 39

Банк выплачивает на вложенные в него
деньги 8% годовых (сложных). Какую ставку jm должен установить банк,
чтобы доходы клиентов не изменились, если (е) m = 4?


Задача 40

Определите время, за которое
происходит удвоение первоначальной суммы при начислении простых и сложных
процентов, если процентная ставка равна: а) 5 %; б) 10 %; в) 15 %; г) 25 %; д)
50 %; е) 75 %; ж) 100 %


Задача 41

Сумма выплаченных процентов
составляет 570 тыс. руб. Ссуда выдана сроком на 2 года. Ставка сложных
процентов составляет 10% годовых.

Определить:

1. Первоначальную сумму долга.

2. Величину наращенной суммы.


Задача 42

Банк на денежный вклад начисляет
проценты в размере 20%. Определить число лет, необходимое для увеличения
первоначального капитала в 3 раза при начислении простых и сложных процентов.


Задача 43

Определить число дней, за которое
начальный банковский депозит в 2174.03 руб. рублей достигнет величины 2775,64
руб.  при сложной ставке наращения ic=11.43%.


Задача 44

Найдите период времени, за который
сумма, положенная на депозит, возрастет в 2 раза при начислении процентов:

а) По простой ставке 16%;

б) По сложной ставке 18%.


Задача 45

За сколько лет сумма в 1000 у.е.
достигнет 25000 у.е. при начислении % по сложной ставке в 16%:

а) Раз в год;

б) Поквартально


Задача 46

Ссуда в размере $100000 выдана на
пять с половиной лет под 6% годовых. Проценты начисляются в конце каждого
квартала. Найти сумму процентов к выплате.


Задача 47

Облигация стоит 18,75 тысяч рублей,
по ней выплачивается 25 тысяч рублей через 10 лет, какая процентная ставка j2
обеспечит этот рост?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 48

Депозит
рассчитывается по схеме сложных процентов с годовой процентной ставкой 10%. За
какое время первоначальная сумма увеличивается в 5 раз?


Задача 49

Определить
более выгодный вариант вложения денежных средств в объеме 200 тыс. руб.:

а) сроком
на 1 год, получая доход в виде простой процентной ставки 10% годовых;

б) по
сложной ставке 8% с поквартальной капитализацией.


Задача 50

Вы имеете
10 млн. р. и хотели бы удвоить эту сумму через 5 лет. Каково минимально
приемлемое значение процентной ставки?


Задача 51

На счете
в банке 1,2 млн. р. Банк платит 12,5% годовых. Предлагается войти всем
капиталом в совместное предприятие, при этом прогнозируется удвоение капитала
через 5 лет. Принимать ли это предложение?


Задача 52

Рассчитайте
наращенную сумму с исходной суммы в 2 млн. р. при размещении ее в банке при условиях
начисления: а) простых б) сложных процентов, если годовая ставка 15%, а периоды
начисления 90 дней, 180 дней, 1 год, 5 лет, 10 лет.


Задача 53

Владелец
80 тыс. руб. положил эту сумму в Сбербанк сроком на три года из расчета
процентной ставки, равной 10% годовых. Вычислите размер дохода по этому вкладу
за три года, исходя из того, что владелец денег не снимал проценты по
завершению первого и второго годов.


Задача 54

Рассчитать
сумму начисленных % (сложные %)

Период 5
лет

Годовая
процентная ставка 24%

Капитализация
– ежеквартальная

Вклад –
6000 руб.


Задача 55

Вклад в размере 8 тыс. руб. хранился
2 года под 7% годовых, 1 год – под 8% и 3 года – под 9% с полугодовой
капитализацией процентов. Определить сумму начисленных процентов.


Задача 56

Найти
срок долга, при котором сумма вклада удвоится, если процентная ставка сложных
процентов j=0,22
. Проценты начисляются 4
раза в год.


Задача 57

Клиент
желает накопить 20 000 руб. через три года 5 месяцев. Банк начисляет проценты
по сложной номинально процентной ставки 12 % годовых с ежеквартальным
начисление процентов. Какую сумму должен вложить клиент?


Задача 58

Определить
минимальную годовую ставку сложных процентов, необходимую для удвоения
банковского вклада в течение 4 лет.


Задача 59

Банк
начисляет 20% годовых. Чему должен быть равен первоначальный вклад, чтобы через
3 года иметь на счете 4 млн. р., если проценты начисляются ежеквартально.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 60

Банк
начисляет 20% годовых. Чему должен быть равен первоначальный вклад, чтобы через
3 года иметь на счете 15 млн. р., если проценты начисляются ежеквартально.


Задача 61

Найдите
период времени, за который сумма, положенная на депозит, возрастет в 2 раза при
начислении процентов:

а) По
простой ставке 17%;

б) По
сложной ставке 18%.


Задача 62

За
сколько лет сумма в 1000 у.е. достигнет 25000 у.е. при начислении % по сложной
ставке в 17%:

а) Раз в
год;

б)
Поквартально


Задача 63

Гражданин
решил купить легковой автомобиль за 595 тыс. руб. Какая годовая ставка сложных
процентов по депозиту в банке обеспечит накопление необходимо суммы через 4
года, если сейчас у гражданина имеется всего 265 тыс. руб.?


Задача 64

Сколько
времени потребуется для того, чтобы начисленные проценты сравнялись с
первоначальной вложенной суммой, если сложная годовая учетная ставка составляет
9,5%? Дробную часть года перевести в дни, используя временную базу в 365 дней.


Задача 65

В долг
предоставлена сумма в 50 тыс. руб. с условием возврата 85 тыс. руб. через 28
месяцев. Найдите доходность данной финансовой операции в виде сложной процентной
ставки. Временная база 360 дней.


Задача 66

Годовая ставка сложных процентов
равна 8 %. Через сколько лет начальная сумма удвоится?


Задача 67

Банк
предоставил ссуду в размере 150 тыс. руб. на 39 месяцев под процентную ставку
30% годовых на условиях единовременного возврата основной суммы долга и
начисленных сложных процентов. Какую сумму предстоит вернуть банку при
различных вариантах начисления сложных процентов: а) годовом; б) полугодовом;
в) ежеквартальном.


Задача 68

Клиенту
требуется через полгода иметь на счете 10 млн. рублей. На какую процентную
ставку рассчитывает вкладчик, если собирается положить в банк 9,8 млн. рублей
(проценты начисляются ежеквартально).

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 69

Стоимость
нового автомобиля составляет 15000 долларов. Если процентная ставка в банке на
вклады сроком более года равна 6%, на какую сумму следует открыть депозит,
чтобы собрать в течение двух лет 15000 долларов? Проценты по вкладу начисляются
ежеквартально.


Задача 70

Рассчитайте,
какая сумма окажется на счете, если 28 тыс. денежных единиц размещены на 33
года под 13,5% годовых. Проценты начисляются каждые полгода.


Задача 71

Господин
Филиппов хочет вложить 5 тыс. руб., чтобы через 2 года получить 7 тыс. руб. Под
какую процентную ставку

 он должен вложить свои деньги?


Задача 72

Сумма
размером 5 тысяч рублей инвестирована на 1 год по ставке 15% годовых. Найдите
наращенную за это время сумму и ее приращение при начислении процентов: а)
ежегодно; б) по полугодиям; в) ежеквартально; г) ежемесячно.


Задача 73

В течение
семи лет на первоначальную сумму начислялись сложные проценты по ставке 13%.
Определите современную величину суммы в 330 млн.р., если проценты начислялись:

а) один
раз в год;

б) один
раз в полгода.


Задача 74

Кредит
получен в сумме 5000000 руб. В конце срока долга уплатили 12000000 руб.
Определить срок долга, если начисляются сложные проценты ежемесячно по годовой
процентной ставке 0,13.


Задача 75

За какой срок первоначальный капитал
в 58 млн. д.е. увеличивается до 180 млн. д.е. если:

А) на него будут начисляться сложные
проценты по ставке 24% годовых;

Б) проценты будут начисляться
ежеквартально?


Задача 76

Вкладчик
положил в банк под сложную ставку 18% годовых 3000 руб. Какая сумма будет на
счете вкладчика а) через 3 месяца; б) через год; в) через 3,5 года?


Задача 77

Депозит
рассчитывается по схеме сложных процентов с годовой процентной ставкой 10%. За
какое время первоначальная сумма увеличивается в 5 раз?

Многие активы не учитывают в своей потенциальной доходности такой важный элемент, как сложный процент. Используя механизм капитализации, можно даже маленький капитал превратить в колоссальную сумму. Расскажем в статье, как работает сложный процент в инвестициях и в чем состоит его феномен.

Сложный процент — что это такое

Простыми словами, сложный процент – это процент, который начисляется на начальную сумму вложений и на проценты, накопленные за предыдущие периоды.

Основное преимущество инвестиций со сложным процентом состоит в том, что регулярное реинвестирование прибыли увеличивает доходность финансового актива и позволяет заработать еще больше в будущем.

Как работает и где используется

Механизм сложного процента действует по подобию снежного кома: инвестиции приносят доход, который в свою очередь также вкладывается и создает уже новый дополнительный доход. Чтобы получать эффект сложного процента от своих инвестиций, дополнительных стратегий или особых экономических знаний не требуется. Достаточно реинвестировать доходы, а не тратить их.

Сегодня капитализация процентов активно используется в банковской сфере и на рынке ценных бумаг (акции, облигации, ПИФы, ETF и т. д.). Также сложный процент можно применять и в недвижимости, когда доход от аренды направляется на покупку и сдачу в аренду новых недвижимых объектов.

Формула сложного процента

В интернете есть большое количество ресурсов, которые предлагают клиенту автоматически рассчитать капитализацию. Такие калькуляторы сложных процентов сильно экономят время. Однако если вы хотите досконально разобраться в работе капитализации процентов, лучше рассчитать ваши доходы от инвестиций вручную.

Итак, как капитализация процентов определяется по формуле?

Самая простая формула для расчета сложных процентов выглядит следующим образом:

FV = PV х (1+r/100)n , где

  • FV – будущая сумма;
  • PV – начальная сумма вложений;
  • r – процентная ставка;
  • n – количество лет (дней, месяцев и т. д.).

Главное качество, которое должны развить в себе все инвесторы, желающие применять силу сложных процентов, – это терпеливость. В первые годы реинвестирования капитала прибыль будет незначительной по сравнению с простым процентом, но на длительном промежутке времени доходность будет расти в геометрической прогрессии. Эффект сложных процентов позволяет доходу, который вы реинвестируете, приносить вам в будущем «проценты на проценты». Наиболее очевидный пример сложного процента – описание схемы работы банковского депозита.

Пример расчета

Допустим, клиент открыл банковский вклад на 100 000 рублей под 10% годовых.

Срок вложения – 5 лет. По договору также есть право каждый год снимать проценты со вклада. Сколько в итоге можно заработать?

Есть два подхода к формированию прибыли:

  1. Простая ставка процента. Каждый год инвестор будет снимать со счета все начисленные проценты и тратить их на свои нужды.
  2. Сложная ставка процента. Инвестор не снимает проценты. Начисленный доход реинвестируется и приносит еще больше прибыли.

Годовая доходность инвестора по вкладу в первый год составляет 10 000 рублей. Если регулярно снимать проценты, то за 5 лет клиент заработает 50 000 рублей чистой прибыли. Можно ли заработать больше? Можно. Если не снимать проценты, то доходность вклада с каждым годом будет увеличиваться, так как начисленные проценты будут реинвестироваться и генерировать новый доход. В таком случае через 5 лет инвестор заработает уже 61 051 рубль. Более наглядно математическую «магию» можно проследить в таблице ниже.

Годы

Прибыль

Разница

Простой процент

Сложный процент

1

10 000 р.

10 000 р.

0 р.

2

20 000 р.

21 000 р.

+1000 р.

3

30 000 р.

33 100 р.

+3100 р.

4

40 000 р.

46 410 р.

+4610 р.

5

50 000 р.

61 051 р.

+11 051 р.

Через 5 лет разница в реальном выражении составит 11 051 рублей. Благодаря капитализации процентов инвестор сможет заработать не 50 000 рублей, а 61 051 рубль чистой прибыли. Данный пример показывает, что на длительной дистанции эффект сложного процента очевиден. Чем дольше реинвестировать, тем больше можно заработать.

Более упрощенно наши расчеты доходности можно было бы записать через ранее рассмотренную формулу сложного процента с капитализацией: FV = PV х (1+r/100)n

Нам известны следующие данные:

  • PV = 100 000 рублей;
  • r = 10%;
  • n = 5 лет.

Подставим все значения в формулу расчета сложных процентов:

FV = 100 000 х (1+10/100)5  = 161 051 рубль

Как видно, результат тот же. Через 5 лет банковский вклад с капитализацией превратит 100 000 рублей клиента в 161 051 рубль.

Важно отметить, что многие банки практикуют политику ежемесячной капитализации, а не годовой. Это значит, что даже при номинальной годовой ставке в 10% (как в нашем примере) вкладчик, который не снимал деньги со счета все 12 месяцев, в конце первого финансового года получит уже не 10 000 рублей, а 10 446 рублей.

Примечание. Ежемесячная ставка составляет 1,0083%. (10% / 12 месяцев). В таком случае по формуле сложных процентов среднегодовая ставка с учетом капитализации составит уже 10,46%.

Сложный процент в инвестировании

Помимо банковской сферы, капитализация процентов активно используется и на фондовом рынке. Ведь реинвестирование прибыли – эффективный инструмент, который позволяет многим профессиональным участникам рынка добиваться значительных результатов даже без сложных финансовых стратегий и умных алгоритмов торговли. Рассмотрим, как работает сложный процент в разных инвестиционных активах.

Реинвестиции дивидендов по акциям

Заработать на акциях можно не только путем купли-продажи по более высокой цене, но и за счет получения дивидендов. При этом многие инвесторы придерживаются более долгосрочных взглядов и реинвестируют дивиденды, покупая новые акции. Как и при банковском вкладе, инвестор имеет возможность получить гораздо большую прибыль в будущем при условии, что курсовая стоимость новых акций будет расти, а не падать.

Среди российских компаний инвесторы чаще всего получают дивиденды от Газпрома, МТС и Лукойла.

Реинвестирование облигаций

Все владельцы облигаций (кроме дисконтных бумаг) получают от эмитента купонный доход. Он может выплачиваться компанией или государством один раз в месяц, квартал или даже год. Если инвестор не планирует тратить купонный доход, его также можно реинвестировать.

При этом важно понимать, что номинальная стоимость облигации обычно составляет 1000 рублей. Поэтому, если инвестор покупает долговую ценную бумагу, например, за 1100 рублей (рыночная цена), то выплата процентов и погашение основной суммы долга будет осуществляться из расчета именно в 1000 рублей. И в таком случае вкладчик будет нести убытки.

Чтобы реинвестирование купонных доходов приносило инвестору ощутимую прибыль, необходимо покупать бумаги по цене ниже номинальной стоимости, а не наоборот.

Вложения в ETF или ПИФ

Как правило, владельцы акций ETF или паев ПИФа не получают никаких дивидендов. Инвесторы зарабатывают только на купле-продаже ценных бумаг. Однако это не значит, что механизм реинвестирования в этих финансовых инструментах не работает. Дело в том, что структура активов ETF и ПИФов также состоит из акций и облигаций, по которым выплачивается периодический доход. Но чаще всего управляющие фондов сами автоматически реинвестируют дивиденды и купонные доходы без участия акционеров и пайщиков.

Таким образом, реинвестирование в ETF и ПИФах есть, но напрямую инвесторы на этот процесс повлиять практически не могут.

Банковский вклад с капитализацией

Банковские вклады с капитализацией – самый прибыльный вид депозитов. Каждое последующее начисление процентов всегда больше предыдущего, в результате чего общая доходность вклада также возрастает.

Чаще всего многие банки при рекламе вкладов с капитализацией пишут только номинальную ставку. Однако если вклад учитывает сложные проценты, то средняя процентная ставка будет немного выше.

Например, номинальная ставка при 5-летнем вкладе составляет 10%. А средний процентный доход с капитализацией уже будет исчисляться по ставке 12,21%. Это не означает, что каждый год клиент банка будет получать на 2,21% больше, чем написано в договоре. Просто реинвестирование процентов позволит в конце 5-летнего срока вклада заработать на 11,05% больше обычного (2,21% х 5 лет).

Благодаря сложным процентам прирост прибыли по вкладу со временем будет ускоряться, поскольку каждый раз банк начисляет проценты на всё более крупную сумму, а не на первоначальные вложения.

Делаем выводы

Главная цель всех инвесторов – получать максимальный доход от своих инвестиций. Добиться этого можно по-разному. Но самый простой способ – реинвестировать свои доходы. Механизм сложного процента позволяет инвестору зарабатывать на дистанции гораздо больше при прочих равных условиях. Повторно вкладывать капитал можно во что угодно. Например, покупать новые акции, облигации, паи ПИФов, акции ETF или даже просто открывать банковский вклад. Такой подход позволит увеличить капитал в долгосрочной перспективе и быстрее достичь финансовых целей.

Процесс реинвестирования не всегда приносит только прибыль. Чтобы не получать убытки от своих вложений, важно ответственно подходить к выбору активов и соотносить уровень риска с потенциальной доходностью.

Только при разумном инвестировании доход, полученный от первоначального капитала, способен генерировать новые денежные потоки и увеличивать совокупную доходность инвестиционного портфеля. В противном случае инвестора будет ожидать не рост капитала, а его падение.

Популярные вопросы

В чем разница между простыми и сложными процентами?

Простые проценты начисляются исключительно на начальную сумму вложений и не изменяют размер доходности инвестора со временем. Сложные учитывают ранее начисленные проценты и увеличивают общую прибыль вкладчика в долгосрочной перспективе.

Что сказал Эйнштейн про сложный процент?

Цитата Альберта Эйнштейна: «Сложные проценты – восьмое чудо света. Тот, кто понимает это, зарабатывает; тот, кто не понимает, платит».

Что такое сложные проценты по кредиту?

Сложные проценты по кредиту банк начисляет на оставшуюся сумму кредитного долга и на сумму ранее неуплаченных процентов по займу.

Вычисления на
основе сложного (кумулятивного) процента
означают, что начисленные на первоначальную
сумму проценты к ней присоединяются, а
начисление процентов в последующих
периодах производится на уже наращенную
сумму. Сумма, полученная в результате
накопления процента, называется
наращенной, или будущей стоимостью
суммы вклада по истечении периода, за
который осуществляется расчет.
Первоначальная сумма вклада называется
текущей стоимостью.

Механизм наращения
первоначальной суммы (капитала) по
сложным процентам называют капитализацией.

Расчет наращенной
суммы по сложным процентам производиться
по формуле:


, (1.1)

где FV
– наращенная (будущая) сумма;

PV
– первоначальная (текущая) сумма, на
которую начисляется процент;

i
– ставка сложных процентов, выраженная
десятичной дробью;

n
– число лет, в течение которых начисляются
проценты.

ПРИМЕР 1.
Вкладчик внес в банк 500 руб. под 10% годовых.
Определить величину наращенной суммы
через 4 года.

Начисление процентов
может производиться чаще, чем один раз
в год – по полугодиям, кварталам,
помесячно и, наконец, ежедневно. В
подобных случаях для расчета наращенной
суммы можно использовать формулу
наращения (1.1), в которой величина n
будет означать общее число периодов
начисления процентов, а ставка i
– процентную ставку за соответствующий
период.

Однако в большинстве
случаев указывается не квартальная или
месячная ставка, а годовая, которая
называется номинальной. Кроме того,
указывается число периодов (m)
начисления процентов в году. Тогда для
расчета наращенной суммы используется
формула:

(1.2)

где j
– номинальная годовая процентная
ставка;

m
– число периодов начисления процентов
в году;

n
– число лет.

ПРИМЕР 2.
Депозит в размере 500 руб. внесен в банк
на 3 года под 10% годовых; начисление
процентов производится ежеквартально.
Определить наращенную сумму.

При увеличении
числа периодов m начислений процентов
возрастает темп процесса наращения.
Так, например, если исходя из условий
предыдущей задачи начисления процентов
производить ежемесячно, то наращенная
сумма:

Кроме номинальной
ставки существует понятие эффективной,
или действительной, процентной ставки.
Эффективная ставка измеряет тот
относительный доход, который получает
владелец капитала в целом за год. Другими
словами, отвечает на вопрос: какую
годовую ставку процентов необходимо
установить, чтобы получить такой же
финансовый результат, как и при m-разовом
(ежемесячном или ежеквартальном)
начислении процентов в году по ставке
j/m.
Эффективная ставка сложных процентов:


+

ПРИМЕР 3.
Необходимо определить эффективную
ставку сложных процентов с тем, чтобы
получить такую же наращенную сумму, как
и при использовании номинальной ставки
j=18%, при ежеквартальном
начислении процентов.

Начисление процентов
на проценты это эффективное средство
накопления денег. Это становится
очевидным, если рассчитать, как много
времени понадобится для того, чтобы
удвоить сумму инвестиций (табл. 2).

Таблица 2

Расчет времени
удвоения первоначальной суммы, вложенной
в банк

Процентная
ставка (i)

Время удвоения
первоначальной суммы, лет

0,02

0,05

0,10

0,15

0,20

35,0

14,2

7,3

5,0

3,8

Правило 72
(см. лекции, тема 3) используется для
примерного расчета количества лет,
необходимых для увеличения наличной
суммы в два раза при условии, что весь
процент остается на депозите.

Количество периодов,
необходимое для удвоения первоначальной
суммы вычисляется как

где i
– ставка сложных процентов

Данное правило
рекомендуется применять при ставке,
изменяющейся от 3 до 18%.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Условия расчёта

Изначальная сумма вклада(S)

Результаты расчёта

Сумма вашего депозита к концу срока,

12243234

Сумма начисленных процентов

15750.3

Дата окончания срока

15750.3

Таблица процентов

Номер Окончание периода Проценты Сумма депозита

График роста суммы вклада от времени

График роста депозита

График роста процентов по вкладу за период

Структура дохода от инвестирций

Формула сложного процента

Для расчета сложного процента используется формула

P = S *( 1 + in )n * T

Где:

  • P — конечная сумма вклада
  • S первоначальная сумма вклада
  • i — ставка % годовых
  • T — срок или период нахождения денег
  • n — число периодов капитализации

Число периодов капитализации определяется как значение

n = T/частота начисления процентов

Т.е. для примера, если у нас вклад на 1 год с частотой начисления раз в месяц, то имеем

n = 12 / 1 = 12

Если у нас вклад с начислением процентов раз в квартал(4 мес), то имеем.

n = 12 / 3 = 4

О чем говорит формула сложного процента

Исходя из математики можно сделать следующие выводы, когда сложный процент будет наиболее эффективен.

  1. Чем больше сумма вклада, тем больше будет доход
  2. Чем больше ставка, тем больше будет доход
  3. Чем больше периодов капитализации, тем больше будет доход. n стоит в степени, чем больше степень, тем больше значение

Мнение эксперта

Екатерина Капризова

Банковский эксперт, специалист по кредитам и картам. Более 10 лет работы в коммерческих банках РФ в качестве кредитного эксперта, специалиста по РКО и кассира.

Задать вопрос

Исходя из формулы нужно выбирать депозиты с наиболее частым начислением процента, лучше всего за 1 день

.

Максим прошел «Тест: Грамотный вкладчик» и набрал 10 баллов.

Что такое сложный процент

Сложный процент (или начисление процента на процент) — способ начисления процентов, при котором прибыль полученная в конце каждого интервала начисления не забирается, а добавляется к сумме вклада(реинвестируется). Происходит капитализация. При этом в следующем периоде нахождения вклада в банке проценты начисляются не на начальную сумму вклада, а на сумму вклада + прибыль, полученную в конце предыдущего интервала начисления.

При этом доход растет лавинообразно, т.е. получается что работает не только изначальная сумма вклада, а еще и проценты, которые были получены ранее по вкладу.

Под интервалом начисления понимаем период, в конце которого выплачиваются проценты. К примеру — вклад с ежемесячным начислением процента — это значит проценты начисляются 12 раз в год 1 раз в каждом месяце начиная со следующего месяца с открытия вклада.

В чем сила сложных процентов

Сила сложных процентов заключается в эффекте капитализации. Т.е. деньги работают намного лучше, чем при простом проценте за счет постоянного увеличения суммы депозита за счета ранее начисленных процентов.
График выгоды сложного процента
А раз растет сумма депозита, значит при каждой дате выплаты дохода по депозиту сумма процентов увеличивается. Рассмотрим отличия простого и сложного процента

Cравнение сложных и простых процентов

Простой процент Сложный процент
Доход начисляется и выплачивается в конце срока Доход выплачивается каждый период начисления
При расчете процентов за очередной период учитывается только исходная сумма вклада Учитывается изначальная сумма вклада + проценты прошлых периодов

Пример расчета

Для примера рассмотрим расчет для накопительного счета в Тинькофф. Накопительный счет — это аналог вклада.
См. также: Вклад или накопительный счет - что лучше
Изначальные условия:

  • Начальная сумма S = 100000 рублей
  • Ставка = 6% годовых или 0.06
  • Срок нахождения депозита = 1 год или 12 месяцев
  • Период начисления процентов — 1 раз в месяц, значит n = 12/1 = 12

Имеем

P = 100000 *( 1 + 0.0612 )12 * 1 = 106167,78

Для простоты расчета можно использовать формулу для Excel

=100000*СТЕПЕНЬ((1+0,06/12); 1*12) = 106167,78

Если бы мы использовали простой процент, то получили бы сумму в конце вклада 106000 рублей, что на 167 рублей меньше.

Как рассчитать для дивидендов

Для дивидендов и облигаций формула сложного процента применима, но с ограничениями.
Это происходит, потому что начисленные проценты не всегда можно обратно реинвестировать, т.е. добавить к сумме вклада.

Дивиденды связаны с покупкой акции. Купить акции на дивиденды не всегда возможно, т.к. сумма дивиденда с 1 акции намного меньше цены 1 акции. Аналогичная ситуация с облигациями — купон с 1 облигации всегда меньше цены 1 облигации, поэтому купить 1 облигацию на купон нельзя. Кроме того курс акций может и расти и падать, да и дивиденды могут меняться.

Для примера возьмем 1 акцию AT&T с выплатой дохода 4 раза в год. Каждый квартал компания платит 0.52 доллара.

Поэтому формулу сложного процента и данный калькулятор можно использовать для расчета дохода по дивидендным акциям чисто условно и для больших сумм. Обычно выплата дивидендов происходит 1 или 4 раза в году, поэтому нужно выбрать период раз в квартал или раз в год.

Для облигаций период будет — раз в квартал(n=4). Значение дивидендной доходности(или ставки купона) можно указать как ставку процента.
Кроме того нужно еще учесть налоги(13% на доход по облигациям) и налоги по дивидендам, которые зависят от страны, где зарегистрирована и осуществляет деятельность данная компания.

Инструкция для калькулятора

Для успешного расчета на данном калькуляторе вам нужно знать следующие данные

  • Первоначальную сумму вклада S. Это те средства, которые вы вносите на депозит при его открытии
  • Ставка по вкладу(i). Это ставка, которая указана в договоре банковского вклада и по которой будут начисляться проценты
  • Срок нахождения денег на вкладе(T) — обычно это срок вклада или срок вложения денег. Исчисляется в годах или месяцах
  • Период начисления процентов — это интервал, в течение которого банк начисляет проценты. Величина n — обратная этому интервалу. Т.е. если например проценты начисляются раз месяц при периоде вклада 1 год, то n = 12, если проценты начисляются раз в погода n=2

Все изначальные данные нужно ввести в поля калькулятора и нажать «рассчитать».
Калькулятор выдаст сумму, которую вы получите в конце срока, построит график выплат

Популярные вопросы

Подойдет ли формула и калькулятор для проверки банка?

Банк начисляет проценты исходя из числа дней между интервалами нахождения денег и с учетом точных дат пополнений и снятий. Поэтому данная формула и калькулятор лишь могут показать примерно доход по вкладу с капитализацией. Для сравнения дохода по вкладу на точные значения ориентироваться не стоит, в формуле не учтены даты.

Чем сложный процент отличается от простого?

При простом проценте величина вклада всегда постоянна и проценты начисляются на нее каждый раз примерно одинаковые. Для сложного процента величина суммы, на которую начисляется процент, каждый раз растет – а значит и растет сумма начисленных процентов.

Что лучше - вклад с капитализацией или без?

С точки зрения финансовой грамотности сложный процент позволяет получить больший доход по сравнению с простым. Деньги растут быстрее за счет капитализации

Дмитрий Тачков

Дмитрий Тачков

Разработчик калькуляторов

Специалист по микрозаймам

Создатель калькулятора

Привет. Я разработчик данного калькулятора. Буду рад, если вы оцените⭐ калькулятор, выбрав один из 3х вариантов ниже. Ваши оценки помогут улучшить работу🔧 инструмента. За оценку респект и спасибо.


Загрузить PDF


Загрузить PDF

Сложный процент отличается от обычного тем, что он начисляется не только на основную сумму вклада, но и на сумму накопленных на нем процентов. По этой причине суммы на накопительных счетах со сложной ставкой процента растут быстрее, чем на счетах с простой процентной ставкой. Более того, накопления будут расти еще быстрее, если капитализация процентов осуществляется много раз в году. Сложные проценты встречаются в различных типах инвестиций, а также в отдельных видах займов, например, по кредитным картам.[1]
Рассчитать увеличение исходной суммы по ставке сложного процента достаточно просто, если знать правильную формулу.

  1. Изображение с названием Calculate Compound Interest Step 1

    1

    Определите годовую капитализацию. Процентная ставка по инвестициям или кредитным соглашениям устанавливается на год. Например, если ставка по вашему автокредиту составляет 6%, то вы ежегодно платите 6% от суммы займа. При капитализации процентов раз в год расчитать сложный процент проще всего.[2]

    • Проценты по долгам и инвестициям могут капитализироваться (причисляться к основной сумме) ежегодно, ежемесячно и даже ежедневно.
    • Чем чаще происходит капитализация, тем быстрее прирастает сумма процентов.
    • На ставку сложного процента можно смотреть как с точки зрения инвестора, так и сточки зрения должника. Частая капитализация говорит о том, что доходы инвестора по процентам будут расти быстрее. Для должника это означает, что ему придется платить больше процентов за пользование заемными средствами, пока займ не погашен.
    • Например, капитализация по депозитному вкладу может осуществляться раз в год, а капитализация по займу может проводиться ежемесячно или даже еженедельно.
  2. Изображение с названием Calculate Compound Interest Step 2

    2

    Рассчитайте капитализацию процентов для первого года. Предположим, у вас есть $1000, и вы вложили их в гособлигации США со ставкой 6% годовых. Начисление процентов по гособлигациям США производят ежегодно на основании ставки процента и текущей стоимости ценной бумаги.[3]

    • Проценты за первый год инвестиции составят $60 ($1000*6% = $60).
    • Чтобы рассчитать проценты по второму году, сначала вам необходимо добавить к исходной сумме инвестиции ранее начисленные проценты. В приведенном примере это будет $1060 (или $1000 + $60 = $1060). То есть текущая стоимость гособлигации составляет $1060, и дальнейшие проценты рассчитываются из этой стоимости.
  3. Изображение с названием Calculate Compound Interest Step 3

    3

    Рассчитайте капитализацию процентов для последующих лет. Чтобы более очевидно увидеть отличие сложных процентов от обычных, рассчитайте их величину для последующих лет. От года к году суммы процентов будут увеличиваться.[4]

    • Для второго года умножьте текущую стоимость облигации $1060 на ставку процента ($1060*6% = $63,60). Сумма процентов за год станет выше на $3,60 (или $63,60 – $60,00=$3,60). Это связано с тем, что основная сумма инвестиции выросла с $1000 до $1060.
    • На третий год текущая стоимость инвестиции составит $1123,60 ($1060 + $63,60 = $1123,60). Проценты за этот год уже будут равны $67,42. И эта сумма будет причислена к текущей стоимости ценной бумаги для расчета процентов по 4 году.
    • Чем больше срок займа/инвестиции, тем больше заметно влияние сложных процентов на общую сумму. Срок займа – это тот период, пока заемщик все еще не погасил свои долги.
    • Без капитализации проценты по второму году будут составлять $60 ($1000 * 6% = $60). В действительности, проценты за каждый год будут равны $60, если они не причисляются к основной сумме. Другими словами, это простые проценты.
  4. Изображение с названием Calculate Compound Interest Step 4

    4

    Создайте таблицу в Excel, чтобы полностью рассчитать сумму сложных процентов. Полезно будет визуально представить сложные проценты в виде простой таблицы в Excel, которая покажет вам рост ваших инвестиций. Откройте документ и подпишите верхние ячейки в колонках A, B, и C как “Год” “Стоимость” и “Начисленные проценты”.

    • Введите в ячейки A2–A7 годы от 0 до 5.
    • Внесите исходную сумму инвестиции в ячейку B2. Допустим, если вы начали с вложения $1000. Введите здесь 1000.
    • Введите в ячейку B3 формулу “=B2*1,06” (без кавычек) и нажмите клавишу ввода. Такая формула говорит о том, что ежегодно ваши проценты капитализируются по ставке 6% (0,06). Кликните по нижнему правому углу ячейки B3 и перетащите формулу до ячейки B7. Суммы в ячейках рассчитаются автоматически.
    • Поставьте ноль в ячейке C2. В ячейку C3 введите формулу “=B3-B$2” и нажмите клавишу ввода. Так вы получите разницу между текущей и первоначальной стоимостью инвестиции (ячейками B3 и B2), которая представляет собой общую сумму начисленных процентов. Кликните по нижнему правому углу ячейки C3 и растяните формулу до ячейки C7. Суммы рассчитаются автоматически.
    • Тем же самым образом можно произвести расчеты на столько лет вперед, на сколько захотите. Также без труда можно изменить первоначальную сумму и процентную ставку, поменяв формулу расчета процентов и содержимое соответствующих ячеек.

    Реклама

  1. Изображение с названием Calculate Compound Interest Step 5

    1

    Выучите формулу начисления сложных процентов. Формула сложных процентов позволяет определить будущую стоимость инвестиции через некоторое количество лет. Выглядит она следующим образом: FV=P(1+{frac  {i}{c}})^{{n*c}}. А переменные в формуле означают следующее:

    • “FV” – будущая стоимость (конечный результат);
    • “P” – первоначальная сумма инвестиции;
    • “i” – годовая процентная ставка;
    • “c” – частота капитализации (сколько раз в году);
    • “n” – количество лет, для которого производится расчет.
  2. Изображение с названием Calculate Compound Interest Step 6

    2

    Введите свои данные в формулу. Если капитализация процентов происходит чаще одного раза в год, трудно рассчитать сложные проценты вручную. А специальной формулой можно воспользоваться в любой ситуации. Чтобы применить формулу, сначала соберите указанную ниже информацию.[5]

    • Определите первоначальную сумму инвестиции. Это та сумма, которую вы вложили. Например, это может быть сумма, внесенная на депозит, или исходная стоимость облигации. Допустим, что вы внесли на депозит $5000.
    • Узнайте процентную ставку. Ставка должна быть годовой и отражать процентную долю от исходной суммы. Например, для депозита в $5000 может быть установлена ставка 3,45% годовых.
      • В формуле процентная ставка указывается в десятичном виде. Для этого просто переведите проценты в десятичную дробь, разделив их на 100%. В приведенном примере это будет выглядеть так: 3,45%/100% = 0,0345.
    • Также вам будет необходимо узнать частоту капитализации процентов. Обычно капитализация происходит ежегодно, ежемесячно или ежедневно. Допустим, что в вашем случае капитализация ежемесячная. То есть частота капитализации (“c”) равна 12.
    • Определите продолжительность периода, для которого вы хотите произвести расчет. Это может быть срок депозита, например, 5 или 10 лет, либо срок погашения облигаций. Срок погашения облигаций – это период, когда инвестору возвращается вложенная им сумма. Рассмотрим в примере срок в два года, поэтому введите в формулу 2.
  3. Изображение с названием Calculate Compound Interest Step 7

    3

    Примените формулу. Подставьте значения переменных на свои места в формуле. Еще раз проверьте, что все цифры проставлены верно. Особенно внимательно проверьте, чтобы проценты были выражены в десятичном виде и была правильно указана частота капитализации “c”.

    • В приведенном примере формула с данными будет выглядеть так: FV=$5000(1+{frac  {0.0345}{12}})^{{2*12}}.
    • Отдельно рассчитайте степень и выражение в скобках. Это следует делать в строгом порядке осуществления математических действий. Узнать больше об этом можно в справочной информации о порядке арифметических действий.
  4. Изображение с названием Calculate Compound Interest Step 8

    4

    Выполните математические действия по формуле. Упростите выражение, рассчитав отдельные части, начиная со скобок и расположенной там дроби.[6]

  5. Изображение с названием Calculate Compound Interest Step 9

    5

    Вычтите из результата первоначальную сумму. Разница будет представлять сумму накопленных процентов.

    • Вычтите первоначальные $5000 из будущей стоимости вклада $5357,50, и у вас получится $357,50 ($5375,50-$5000=$357,50).
    • То есть через два года вы заработаете $357,50 в виде процентов.

    Реклама

  1. Изображение с названием Calculate Compound Interest Step 10

    1

    Выучите формулу. Сложные проценты будут расти еще быстрее, если вы будете регулярно увеличивать сумму вклада, например, ежемесячно вносить определенную сумму на депозитный счет. Применяемая в таком случае формула становится больше, но основана на тех же самых принципах. Она выглядит следующим образом: FV=P(1+{frac  {i}{c}})^{{n*c}}+{frac  {R((1+{frac  {i}{c}})^{{n*c}}-1)}{{frac  {i}{c}}}}[7]
    . Все переменные в формуле остаются теми же, но к ним добавляется еще один показатель:

    • “P” – первоначальная сумма;
    • “i” – годовая процентная ставка;
    • “c” – частота капитализации (сколько раз в году проценты причисляются к основной сумме);
    • “n” – продолжительность периода в годах;
    • “R” – сумма ежемесячного пополнение вклада.
  2. Изображение с названием Calculate Compound Interest Step 11

    2

    Определите исходные значения переменных. Чтобы рассчитать будущую стоимость вклада, вам необходимо знать первоначальную (текущую) сумму вклада, годовую процентную ставку, частоту капитализации процентов, срок вклада и величину ежемесячного пополнения вклада. Все это можно найти в соглашении, которое вы подписали со своим банком.

    • Не забудьте перевести годовой процент в десятичную дробь. Для этого просто поделите его на 100%. Например, упомянутая выше ставка 3,45% в десятичном виде будет равна 0,0345 (или 3,45%/100%=0,0345) .
    • В качестве частоты капитализации укажите, сколько раз в году проценты причисляются к общей сумме вклада. Если это происходит ежегодно, укажите единицу, ежемесячно – 12, ежедневно – 365 (не переживайте о високосных годах).
  3. Изображение с названием Calculate Compound Interest Step 12

    3

    Подставьте данные в формулу. В продолжение вышеуказанного примера, допустим, что вы решили ежемесячно пополнять вклад на сумму $100. При этом первоначальная сумма вклада составляет $5000, ставка равна 3,45% годовых, а капитализация происходит ежемесячно. Рассчитаем рост депозита за два года.

    • Подставьте в формулу свои данные: FV=$5,000(1+{frac  {0.0345}{12}})^{{2*12}}+{frac  {$100((1+{frac  {0.0345}{12}})^{{2*12}}-1)}{{frac  {0.0345}{12}}}}
  4. Изображение с названием Calculate Compound Interest Step 13

    4

    Произведите расчет. Опять же, не забудьте правильный порядок операций. Это означает, что начать нужно с выполнения действий в скобках.

    • В первую очередь, вычислите дроби. То есть поделите “i” на “c” в трех местах, чтобы везде получить одинаковый результат 0,00288. Теперь формула будет выглядеть следующим образом: FV=$5000(1+0,00288)^{{2*12}}+{frac  {$100((1+0,00288)^{{2*12}}-1)}{0,00288}}.
    • Выполните сложение в скобках. То есть прибавьте единицу к результату предыдущих вычислений там, где требуется. У вас получится: FV=$5000(1,00288)^{{2*12}}+{frac  {$100((1,00288)^{{2*12}}-1)}{0,00288}}.
    • Вычислите степень. Для этого перемножьте два числа вверху за скобками. В нашем примере значение степени будет равно 24 (или 2*12). Формула предстанет в следующем виде: FV=$5000(1,00288)^{{24}}+{frac  {$100((1,00288)^{{24}}-1)}{0,00288}}.
    • Возведите необходимые числа в степень. Вам следует возвести числа в скобках в ту степень, которая у вас получилась на предыдущем этапе вычислений. Для этого на калькуляторе введите число из скобок (в примере это 1,00288), нажмите кнопку возведения в степень x^{y}, а затем введите значение степени (в данном случае 24). У вас получится: FV=$5000(1,0715)+{frac  {$100(1,0715-1)}{0,00288}}.
    • Выполните вычитание. Вычтите единицу из результата предыдущего расчета в правой части формулы (в примере из 1,0715 вычитаем 1). Теперь формула выглядит так: FV=$5000(1,0715)+{frac  {$100(0,0715)}{0,00288}}.
    • Выполните умножение. Умножьте первоначальную сумму инвестиции на число в первых скобках, а также сумму ежемесячного пополнения на такую же сумму в скобках. У вас получится: FV=$5357,50+{frac  {$7,15}{0,00288}}
    • Выполните деление. Получится такой результат: FV=$5,357.50+$2,482.64
    • Сложите цифры. Наконец, сложите две оставшиеся цифры, чтобы узнать будущую сумму на счете. Другими словами, сложите $5357,50 и $2482,64, чтобы получить $7840,14. Это и будет будущая стоимость вашей инвестиции через два года.
  5. Изображение с названием Calculate Compound Interest Step 14

    5

    Вычтите из результата величину первоначального вклада и сумму пополнений. Чтобы узнать, сколько же процентов вы заработали, необходимо вычесть из итога сумму средств, которые вы внесли на счет. Для этого сначала сложите первоначальный депозит в размере $5000 и произведение общего числа пополнений (2 года*12 месяцев=24) на их величину ($100 в месяц), или $2400. Итоговая сумма $5000 и $2400 составит $7400. Вычтите $7400 из будущей стоимости инвестиции $7840,14, и вы получите сумму начисленных процентов, которая составит $440,14.

  6. Изображение с названием Calculate Compound Interest Step 15

    6

    Расширьте свои расчеты. Чтобы более наглядно представить себе преимущества сложных процентов на пополняемом депозите, предположите, что вы будете продолжать вносить средства на счет не два года, а двадцать лет. В таком случае в будущем на вкладе окажется сумма около $45000, несмотря на то, что сами вы внесете на счет только $29000. Другими словами, вы заработаете $16000 в виде процентов.

    Реклама

Советы

  • Рассчитать сложные проценты можно с помощью онлайн-калькуляторов. Например, на сайте PLANETCALC есть целый ряд калькуляторов сложных процентов для различных ситуаций: https://planetcalc.ru/search/?tag=26 .
  • При расчете сложных процентов можно воспользоваться “правилом семидесяти двух”. Сначала поделите 72 на свою процентную ставку, например на 4%. В таком случае 72/4=18. Полученный результат (18) отражает примерное количество лет, через которое сумма вашей инвестиции удвоится. Помните, что это лишь быстрое приблизительное правило, а не точный расчет.[8]
  • Также можно производить расчеты по типу “что если”, которые покажут вам, сколько потенциально можно заработать при определенных значениях процентной ставки, первоначального вложения, частоты капитализации и длительности вклада.

Реклама

Об этой статье

Эту страницу просматривали 22 696 раз.

Была ли эта статья полезной?

Добавить комментарий