Как найти первообразную в фотоматч

Содержание

  1. PhotoMath: помощник в школьной математике?
  2. Photomatch как посчитать производную
  3. Калькулятор производных
  4. Производная функции
  5. Синтаксис описания формул
  6. педагогическая практика
  7. Интегралы для чайников: как решать, правила вычисления, объяснение
  8. Изучаем понятие « интеграл »
  9. Неопределенный интеграл
  10. Полная таблица интегралов для студентов
  11. Определенный интеграл
  12. Правила вычисления интегралов для чайников
  13. Свойства неопределенного интеграла
  14. Свойства определенного интеграла
  15. Примеры решения интегралов
  16. App Store PhotoMath: карманный решебник по алгебре
  17. Обзор Photomath — больше, чем просто калькулятор
  18. Photomath

PhotoMath: помощник в школьной математике?

Как часто мучительно найденный икс в итоге не сходится с ответом в учебнике. Но эту проблему поможет решить приложение PhotoMath.

Недавно мы цитировали профессора Кита Девлина, говорившего о том, что школьная математика устарела, потому что телефоны, которые мы носим в кармане, решают уравнения быстрее любого человека. Компания MicroBlink с помощью приложения для смартфонов PhotoMath сделала ещё один шаг к сближению телефонов и школьных уравнений. PhotoMath решает за вас примеры – нужно только сфотографировать страницу с заданием.

Приложение можно установить бесплатно на телефоны с iOS или Windows Phone, версия под Android будет готова к началу 2015 года. Программа распознает напечатанный текст с листа учебника и, немного хуже, с экрана компьютера. С примерами, написанными от руки, PhotoMath пока не справляется.

Правильное решение выдаётся за несколько секунд, а дальше можно посмотреть, как именно решалось уравнение, шаг за шагом. Приложение поддерживает арифметические действия, дроби, корни и степени и простые линейные уравнения. По мнению разработчиков, PhotoMath делает математику проще, потому что не просто решает задачи, но и учит пользователя, как решать их самостоятельно.

Photo3%20PhotoMath

Компания MicroBlink несколько лет разрабатывала собственную систему распознавания текста, а теперь начала придумывать ей различные применения. Сначала было приложение PhotoPay, которое позволяет оплачивать счета с помощью их сканирования. Информация с телефона передаётся в банк, который оплачивает счёт автоматически. Теперь их система распознавания добралась и до школ.

Похоже, что PhotoMath устроит революцию в школьной математике. Бесплатное приложение, работающее под всеми основными платформами, довольно быстро дойдёт и до наших школ. Люди, уже попробовавшие его в деле, отмечают, что у программы есть свои пределы – длинные уравнения не всегда влезают в красную рамку, или наоборот – другие примеры «заползают» в эту рамку и мешают сканированию. Но это, разумеется, случается не так уж часто.

Конечно, кому-то это приложение поможет понять ранее непонятые алгоритмы, но есть подозрения, что большинство просто будет переписывать правильные ответы в тетрадь, аргументируя это тем, что математика им всё равно никогда больше не пригодится. Как справится с этим наша, ориентированная на решение примеров, школьная математика? Не доказывает ли появление PhotoMath, что в этой системе что-то нужно менять? Если же новые технологии так и будут существовать совместно со старой учебной программой, то в каком качестве?

Источник

Photomatch как посчитать производную

318

Лень, как известно, двигатель прогресса. А мобильный сегмент — реактивный двигатель. Ведь это устройство практически всегда (а у тебя — всегда) под рукой. Лентяям и двоечникам компания PhotoPay сделала шикарный подарок — бесплатное (!) приложение для решения уравнений и функций при одном лишь наведении…

Приложение Photomath вызвало большой резонанс в некоторых сообществах (лепра, например). На фоне общей деградации умственных способностей нынешнего поколения, есть мнение, что подобные приложения до конца угробят «молодых и талантливых», которые после этого идут в инженеры и проектируют мотор барабан мб3. Он, кстати, используется для ленточных конвееров и стоит довольно существенный суммы — до 85 тысяч рублей. Различаются они, по большей части, по длине рабочей части и мощности электродвигателя. Вообще, доля правды во всем этом есть, однако стоит заметить, что при изобретении калькулятора люди не разучились считать.

Photomath выпущено для всех популярных мобильных ОС — Android, Windows Phone 8/8.1, iOS. Самый весомый плюс приложения в том, что оно не только показывает правильный ответ, но ход решения. На момент написания статьи Photomath «понимает» дроби, десятичные числа, линейные уравнения и несколько функций, логарифмов. Списанное наспех задание в тетрадке не покатит — приложение распознает только печатный текст.

1419317923 1st

Еще одно преимущество перед онлайн-шпаргалками — приложение работает без подключения к интернету. В последней версии улучшили сканер для камер без автофокусировки. В целом, приложение прекрасно подходит для учащихся 1-8 классов. Высшую математику с ним, конечно, не решить

1419318263 2nd

— Нет русского языка
— Если страница просвечивает, программа может «захватить» часть уравнения с другой стороны листа.
— Дифференциалы и лимиты пока не ищу
— Иногда очень долго распознает текст

Вычисляет производную заданной функции.

Данный калькулятор вычисляет производную функции и затем упрощает ее.
В поле функция введите математическое выражение с переменной x, в выражении используйте стандартные операции + сложение, вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции. Полный синтаксис смотрите ниже.
Упрощение полученной производной может занять некоторое время, для сложных функций — весьма продолжительное. Если ждать до конца нет сил — нажмите кнопку остановить. У меня получался достаточно простой вариант уже после 10-15 секунд работы алгоритма упрощения.

Калькулятор производных

Производная функции

Синтаксис описания формул

В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

педагогическая практика

photomath

Среди математических калькуляторов Photomath, безусловно, занимает особое место. Во-первых, он предназначен для андроидов. Во-вторых, задание можно не вводить, а сканировать.

Достаточно навести камеру на математическую задачу и Photomath покажет результат, причём с пошаговыми инструкциями, как это решается.

Photomath поддерживает арифметику, целые числа, дроби, десятичные числа, корни, алгебраические выражения, линейных уравнений, неравенств, квадратных уравнений, логарифмы, тригонометрию, производные, интегралы и многое другое.

math1

А теперь из области фантастики.

Ещё один плюс данного приложения — умение распознать рукописный шрифт.

Проверено вашим покорным слугой.

Между тем, педагоги прекрасно понимают, что любое новое изобретение может быть использовано как во благо, так и во вред. Конечно, такой калькулятор облегчит расчёты в лабораторной работе, обработку больших массивов.

Однако мы прекрасно понимаем, что подобные приложения могут и помешать учащимся шаг за шагом познавать глубинные секреты математики.

Помню, как в школе мы соревновались, кто представит учителю больше вариантов решения тригонометрического уравнения. И пятёрки мы получали не только за правильные ответы, но и за самые изящные варианты.

Учителю математики придётся думать, как сделать так, чтобы это и другие новшества помогли ученикам в их успешной учёбе.

Так или иначе их не скроешь.

Хотелось бы узнать мнение учителей математики.

Источник

Интегралы для чайников: как решать, правила вычисления, объяснение

e99cecf9b1aa45b685c544ecba264b35

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие « интеграл »

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

1.JPG

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Screenshot 11 1

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Screenshot 1 2

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов

146114 nomer 62940af5

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Integral as region under curve.svg

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:

Screenshot 2 2

Точки а и b называются пределами интегрирования.

bari

Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

Screenshot 3 2

Screenshot 4 3

Screenshot 5 2

Свойства определенного интеграла

Screenshot 7 2

Screenshot 8 1

Screenshot 9 1

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Screenshot 6 2

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Screenshot 10 1

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

c38b6d050dfd47d58c2cff2970fdd37e.small

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

App Store PhotoMath: карманный решебник по алгебре

photomathmain

photomathmain

«Решите систему уравнения, принимая во внимание следующее неравенство…», – с этим сталкивались все. Кому-то математика в школе давалась легко, а для кого-то она так и осталась чем-то далеким и непостижимым. Как ни крути, иногда умение считать деньги не спасает от необходимости решения сложных математических уравнений и неравенств. «Смартфон» дословно переводится как «умный телефон» и благодаря стороннему софту ему можно доверить даже самые сложные задачи.

Приложение PhotoMath всего за несколько секунд поможет решить сложные алгебраические уравнения, неравенства и задачи, показав подробный ход расчетов.

Эволюция калькуляторов началась еще в середине прошлого века. О микрокомпьютере Электроника МК-52 мечтал практически каждый учащийся старших классов и, уж тем более, студент. Потом появились инженерные калькуляторы и на прилавках стали мелькать недешевые помощники Citizen, Casio и Assistant. Одни были оснащены лишь минимальным количеством тригонометрических функций, другие (дорогие и редкие модели) даже строили графики.

С появление смартфонов потребность в них отпала, но сотни различных приложений-калькуляторов по-прежнему оставались бессильными против самостоятельного решения поставленной задачи.

casio

Приложение PhotoMath умеет не только самостоятельно рассчитывать требуемое значение «икс и игрик», но и показывает весь ход решения. Все, что потребуется от вас – навести камеру на уравнение и подождать несколько секунд.

Photomath1

Появление на экране различных точек означает, что приложение распознает «увиденные» символы. Если PhotoMath все понятно, он тут же выдаст правильный ответ. Для того, чтобы увидеть ход решения достаточно нажать клавишу Steps (Шаги).

Photomath2

Весь ход решения будет представлен в виде нескольких последовательных шагов, последним из которых станет результат решения.

PhotoMath автоматически сохраняет историю всех, когда-либо решенных примеров. Количество настроек сведено к минимум и единственное, что может сделать пользователь – включить/отключить вспышку.

Photomath3

При работе с приложением следует учитывать ряд его особенностей:

    – PhotoMath распознает исключительно печатный текст (поддержку рукописного разработчики планируют внедрить в ближайшее время);
    – следите за качеством изображения примера или неравенства;
    – приложение с трудом справляется со сложными уравнениями и неравенствами, но идеально решает простые линейные уравнения;
    – распознавание с экрана компьютера/планшета проходит хуже, чем с бумаги.

Учитывая полную бесплатность приложения, отсутствие навязчивой рекламы и действительно интересную задумку, PhotoMath заслуживает весьма высокой оценки. Текущая версия 1.1.0 работает стабильно, но, как и любой человек, учится решать более сложные и запутанные математические задачи.

iPhone: Бесплатно [Скачать из App Store]

Источник

Обзор Photomath — больше, чем просто калькулятор

photomath review

Школьные и студенческие годы для большинства людей раньше были мучительными по многим причинам, но одной из самых главных всегда оставалась математика. Простая арифметика, превращающаяся в многоэтажные интегральные уравнения — вот что заставляло ненавидеть этот предмет. Именно поэтому в App Store все чаще стали появляться приложения, помогающие решить математические выражения любого рода. Сегодня посмотрим на Photomath — незаменимого помощника в решении уравнений.

Главное преимущество приложения в том, что вводить огромные уравнения с множеством символов вовсе не обязательно — Photomath с легкостью распознает печатный текст, причем делает это весьма быстро. Просто открой приложение и наведи камеру на выражение, а программа все сделает за тебя.

IMG 0004 2IMG 0059 e1452515836415

На экране сразу появится решаемое уравнение и ответ. Photomath только 1 раз из 10 ошиблось при распознавании текста — отличный результат, учитывая еще и то, как быстро эта операция происходит. Разработчики также учли возможность промаха и добавили функцию редактирования выражений — если приложение неправильно читает нужный текст, ты всегда можешь поправить распознаваемое уравнение.

IMG 0005 2

Отличным дополнением ко всему этому является возможность самостоятельно ввести нужное выражение, ведь написанный от руки текст Photomath пока не умеет распознавать. Разработчики обещают в скором времени устранить как этот недостаток, так и ограничение по сложности решаемых задач. Так, приложение решает простые линейные уравнения и системы с двумя неизвестными, а также считает логарифмы и частично интегралы. И все это с подробными пошаговыми инструкциями.

IMG 0002 2IMG 0007 2

Photomath без сомнений можно назвать идеальным помощником как для школьников, так и для их родителей, ведь вспомнить то, что учил с десяток лет назад (да еще и с такой неохотой), — задача не из легких. К тому же разработчики утверждают, что создали приложение скорее как пример доступности технологии, нежели в образовательных целях.

Photomath

Источник

Решение дифференциальных уравнений онлайн

Дифференциальным уравнением называется уравнение которое связывает неизвестную функцию и её производные различных порядков:

F ( x , y ‘ , y ” , . , y ( n ) ) = 0

Порядком дифференциального уравнения называется порядок его старшей производной. Решить дифференциальное уравнение, значит найти неизвестную функцию , которая обращает это уравнение в верное тождество. Этого можно достичь, изучив теоретический материал по дифференциальным уравнениям, или воспользовавшись нашим онлайн калькулятором.

Наш калькулятор может находить как общее решение дифференциального уравнения, так и частное. Для поиска частного решения, необходимо ввести начальные условия в калькулятор. Для поиска общего решения, поле ввода начальных условий необходимо оставить пустым.

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y”’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Photomath – Camera Calculator – Математика – это просто!

Я школу не любил. Вот совсем не любил и до сих пор считаю, что был прав. Но вот полученные знания, кто бы чего ни говорил, мне пригодились в существенной мере. Другое дело, что давались они с какими-то нелепыми и не всегда адекватными усилиями. Ну вот та же математика, к примеру. Решаешь эту систему второй час, приходишь к какому-нибудь вразумительному ответу, который похож (даже!) на правду, а оказывается, что даже не рядом. Причем оказывается потом, завтра, на уроке! Даже если и ответ есть в книге – толку не то чтоб мало – все равно, как его получить, нужно придумывать самому. Не любил я, значит, методику преподавания, ох как не любил. Так вот к чему я – уже в сознательной жизни в качестве хобби появилась легкая мания к установке на телефон всяких разных программ с целью проверки, “как далеко шагнул прогресс” и “что еще я могу не делать лично”. А тут вот и программка как-то нашлась новая, полезная даже в какой-то мере, но что гораздо важнее – программа почти уникальна в своем роде и интересна хотя бы с точки зрения использования телефона в новой роли.

Итак, – Photomath.

Судя по названию (тут уж, правда, в школе английский учить надо было хотя бы до уровня “London is the capital. “) – математика по фотографии. Вот если мы так подумаем, то мы ошибемся ровно наполовину – никаких “по фотографиям” нет и близко. Но, к сути же.

Так вот, приложение предлагает нам помощь в решении почти любых математических (вернее – алгебраических) задач уровня до 9-10 класса. Ну, до 9 класса все решается процентов на 80, выше – как повезет – мат. статистика в действии – все строго 50/50. Причем под “решением” я подразумеваю не ответ посмотреть, а именно показать пути нахождения нужного ответа. А при возможности, еще и ответ в разных представлениях выдать.

Так, задав задачу и увидев ответ (вот тут же увидев, онлайн, так сказать), можно тапнуть на него, и нам откроются практически все шаги, которые необходимо сделать для получения ответа: сокращения, переносы “за равно”, разложение корня – одним словом, полный пошаговый алгоритм.

Я сразу был крайне скептично настроен – руки помнят Microsoft Equation и получасовой ввод формулы в дипломе. Я вот думал, что ввести “нормальную” тригонометрическую задачку будет отнимать настолько много времени, что программа будет просто бесполезна. На деле же оказалось, что средство ввода – клавиатура, так сказать, – крайне продуманна, а ее функциональность, на мой взгляд, практически не требует никаких улучшений.

Так, все необходимые операторы у нас в “шаговой” доступности, а для более редких символов имеется дополнительная клавиатура.

Да, многие символы имеют “множественное” значение – долгий тап выводит дополнительные функции (ну, например, долгий тап на операторе “больше” позволит выбрать еще и “больше или равно”).

Есть и еще одна клавиатура – полноценная QWERTY. Вернее, не QWERTY, а ABCDEF. Вот. Только вот нужна она исключительно для ввода переменных, а набрать на ней полную текстовку навроде “sin2x+ln10-exp89/2” нельзя – не поймет – все операторы должны обязательно выбираться с соответствующей клавиатуры.

Так вот, на ввод вот этой вот штуки у меня ушло около 10-15 секунд. Это без нормальной тренировки, так сказать.

Таким вот образом можно брать и вводить наши примеры, которые программа будет успешно (или не очень, как вот на крайнем скрине) решать. Но это не интересно – таких аналогов в Сети множество, ну пусть не множество, но штук пять точно будет (даже более функциональных и продвинутых – к примеру, тот же MalMath – он еще и графики умеет и вообще. только я с ним не разобрался – слишком крутая и запутанная штука). Но фишка Photomath в том, что она умеет распознавать задачи на лету – нам достаточно навести камеру на требуемый пример. И все.

Приложение само определит, распознает, выдаст решение и проведет через все этапы.

Отдельный приятный момент – зона распознавания, размер которой меняется не щипком (что как бы естественно, но не очень, в данном случае, удобно) – а простыми жестами по экрану: вертикальный соответственно увеличит/уменьшит высоту, а горизонтальный – ширину зоны распознавания. Для однорукого использования – отличный вариант.

Распознается не только обычный печатный шрифт, но и рукописные каракули (распознается все, на удивление, не плохо, изредка требуются правки в “ручном” режиме). Да, в сложных текстах программа как бы меняет свое мнение, и при дрожании телефона (а как же в руке еще) варианты распознавания могут меняться вот раз в секунду – тут нужно в результат тапнуть, для фиксации.

Конечно, не без проблем – все зависит от корявости почерка.

В идеальном случае, по идее авторов, видать, сидит себе Коля Сорокин и вместо того, чтобы кляксы ставить, направляет камеру своего 7-го иФона (да – программа мультиплатформенна: имеется версия под Андроид и под iOS, по слухам, создавалась редакция и для Windows Phone, но ее развитие больше не поддерживается) на задачу, получает ответ, и радуется. А если ответ не радует, то открывает развернутое решение и по шагам сверяет свое и рекомендуемое программой.

Да, есть еще момент: если тапнуть на развернутое решение, то еще и словами напишется, что же мы таки делаем и зачем!

Свайпы по экрану “решения” листают историю – в памяти сохраняется 10 крайних задач.

Удобно все и правильно. Ну, по крайней мере, так задумывалось.

По факту, как я уже говорил, мы имеем практически беспроблемное решение заданий средних классов – здесь на самом деле не важно ничего – наводим на требуемую систему уравнений и получаем ответ.

Или вводим от руки – все более-менее разумное решается влет. Можно даже с тремя неизвестными делать.

Так же просто решаются квадратные уравнения, простые логарифмы, всякие интегралы с синусами и прочие простые штуки. При этом, задача может достигаться любая – как найти неизвестную, так и решить уравнение относительно одной из нескольких переменных или просто упростить множество (есть еще варианты, но перечислять все просто неинтересно и абсурдно).

А вот задачи посложнее программа упорно воспринимать не хочет.

При этом она их не воспринимает как при ручном вводе (просто не считает и все тут), так и в режиме распознавания (пишет: распознать не удалось).

Мне вот это вот “распознать не удалось” здорово навевает ассоциации с рядовой “отмазкой” – ну не говорить же, что все понятно, но как это вот считать – кто его знает. А так, тактично и аккуратно – нечитабельно, и баста, карапузики. Бывает, что из всей огромной формулы выбрала кусочек – и дала ответ на “2+2”.

Так, программа очень сильно не дружит со сборником задач Сканави, и большая часть его заданий оказывается абсолютно ей не по зубам. Так и уровень одиннадцатого класса тоже с этой софтинкой можно сдать на троечку где-то (по пятибалльной системе), ну, может, на 4 с минусом.

Не обошлось и без недоразумений. Так, я вот не смог найти оператор “не равно” – как ни искал, не вижу. Кроме того, программа упорно отказывается воспринимать тригонометрические tg и ctg – вместо них на клавиатуре tan и cot, соответственно, и пусть бы себе, но в процессе распознавания программа тоже хочет видеть именно эти вот символы, что невозможно, как правило. (Я интуитивно догадываюсь, что такое обозначение принято в западной культуре, но есть же и понятие локализации, не?)

Программа не умеет много чего, более подробно со списком “могу – не могу” можно на сайте ознакомиться, там же есть замечательный список примеров задач, с которыми программа легко разбирается. Но и ее текущего функционала (который постоянно пополняется, обновления выходят раз в пару месяцев) вполне достаточно для практического использования.

Мнение

Софтинка интересна своей задумкой и реализацией – на самом деле и полезно, и удобно, ну и плюс возможность обосновать родителям необходимость покупки телефона с автофокусом (без него программа не работает). Со всех сторон хорошо, как бы. А еще и бесплатная и безрекламная. Но, только до 01 апреля 2017 года – после захотят денег, о чем честно и предупреждают. Сколько – еще не решили, не менее честно признаются на сайте. Обещают выпустить и версию бесплатную, чем будет отличаться – тоже еще не придумали.

Настроек в программе нет – поставил и пользуйся.

Для работы, из требований, – только автофокус в камере, интернет не нужен – даже распознавание идет в офлайне. Хотя, процессор нужен довольно производительный, я думаю. Так, на моем стареньком Sony ZL после пары часов игрушек в программу, аккумулятор сел процентов на 70, как и во время игры в нормальную ездилкобегалку, а это прямое следствие нагрузки на “железо” же.

Если чего не так с работой – можно писать разработчикам, они даже настаивают на этом, форму сделали, опять же, только вот на английском. А как написать, что Photomath не выделяет в отдельное действие поиск дискриминанта при решении уравнения, на английском языке я не могу (да, действительно не выделяет, корни считает правильно, но все увязывает в одно действие).

В общем и целом, программа мне понравилась – это вот действительно один из новых сценариев использования телефона, как полезного приспособления. Поможет или нет в учебе – вопрос крайне спорный, но вот поставить программку и посмотреть, что из этого получится лично для вас, я считаю, стоит.

olegdn (Гординский Олег)

Используемое автором устройство: Sony ZL

[spoiler title=”источники:”]

http://mathdf.com/dif/ru/

http://helpix.ru/appinion/201701/1849-photomath_-_camera_calculator-matematika_eto_prosto.html

[/spoiler]

Помогите решить интегралы (фотомач и другое калькуляторы не катят)

Макс Пелгонен



Ученик

(100),
на голосовании



11 месяцев назад

Помогите решить интегралы (фотомач и другое калькуляторы не катят)

Голосование за лучший ответ

Александр Федоров

Искусственный Интеллект

(188480)


1 год назад

1) =(1/4)*x^4 |(1;2)=((1/4)*2^4) – ((1/4)*1^4=4-(1/4)=15/4

Тугеус Владимир

Искусственный Интеллект

(174848)


1 год назад

2) -1/3cos3x от 0 до 1 равно -1/3cos3 + 1/3

Никита Корольков

Мастер

(2332)


1 год назад

Кстати почему фотоматч не катит? Там есть неопределённый интегралл, а если зажать его, то вылазит определённый

Похожие вопросы

Решаем математические уравнения с помощью PhotoMath

Сколько бы ни было приложений в App Store, как бы ни варьировалось их качество, время от времени там появляются совсем неординарные проекты. Вспомнить хотя бы переводчик с дополненной реальностью Word Lens или CamFind, которая распознает предметы на фото. На днях в магазине приложений Apple появилась еще одна интересная разработка: PhotoMath — приложение, которое решает математические задачи, используя камеру вашего смартфона.

Принцип работы приложения предельно прост: вы берете в руки смартфон с запущенным PhotoMath, наводите камеру на какую-либо математическую формулу, а затем смотрите результат вычислений на дисплее. Эх, такую бы штуку мне, когда я в школе учился…

Однако приложение пригодится не только тем, кто не хочет думать и решать самостоятельно. Помимо полученного результата, PhotoMath также распишет весь процесс решения уравнения по шагам. Это может помочь не только ученику, но и, например, родителям, которые решат проверить его домашнее задание.

На данный момент в приложении конечно же есть и свои ограничения: так, к примеру, PhotoMath умеет решать только не сложные дроби, десятичные числа, линейные уравнения и стандартную арифметику. Тем не менее разработчики обещают улучшать приложение и дальше, что в теории позволит совершать сложные расчеты всего за несколько секунд. К сожалению, распознавание текста (в данном случае формул) тоже нельзя назвать идеальным, но очень хорошим — запросто. PhotoMath умеет распознавать лишь печатный текст, написанные уравнения “от руки” ему даются крайне тяжело (конечно, если они не написаны типографским шрифтом). Но и этот недостаток разработчики обещают довести до рабочего состояния.

На данный момент приложение абсолютно бесплатно и доступно для смартфонов на iOS, а также Windows Phone. Версия для Android обещает появиться в скором будущем. Как заверяют разработчики, приложение было создано все же не в образовательных целях, а как пример доступности технологии. Поэтому пока еще рано совсем “отключать” мозг и решать все с помощью смартфона. Тем не менее демонстрация, я считаю, получилась хорошей. Остается только пожелать разработчикам удачи в их нелегком деле.

А как вам подобное решение? Пригодилось бы такое приложение, когда вы еще учились в школе? Делитесь мнением в комментариях!

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • int xln(x)dx

  • int sin (2x)dx

  • int frac{x}{x^2+1}dx

  • int cos (sqrt{x})dx

  • int sin ^2(x)+cos ^2(x)dx

  • int :xe^xdx

  • Показать больше

Описание

Поэтапное решение первообразной функции

antiderivative-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Advanced Math Solutions – Integral Calculator, trigonometric substitution

    In the previous posts we covered substitution, but standard substitution is not always enough. Integrals involving…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Добавить комментарий