Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.
Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты[1]. Первая космическая скорость для орбиты, расположенной вблизи поверхности Земли, составляет 7,91 км/с[2]. Впервые первая космическая скорость была достигнута космическим аппаратом СССР «Спутник-1» 4 октября 1957 года[3].
Вычисление и понимание[править | править код]
В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли, будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять своё направление. Поэтому в инерциальной системе отсчёта такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».
Уравнение второго закона Ньютона для тела, принимаемого за материальную точку, движущегося по орбите вокруг планеты c радиальным распределением плотности, можно записать в виде[4]
где — масса объекта, — его ускорение, — гравитационная постоянная, — масса планеты, — радиус орбиты.
В общем случае при движении тела по окружности с постоянной по модулю скоростью его ускорение равно центростремительному ускорению С учётом этого уравнение движения с первой космической скоростью приобретает вид[5]:
Отсюда для первой космической скорости следует
Радиус орбиты складывается из радиуса планеты и высоты над её поверхностью . Соответственно, последнее равенство можно представить в виде
Подставляя численные значения для орбиты, расположенной вблизи поверхности Земли (h ≈ 0, M = 5,97·1024 кг, R0 = 6 371 000 м (радиус указывается в метрах), G=6.67·10^-11 м³·кг⁻¹·с⁻²), получаем
- 7900 м/с.
Период обращения спутника по круговой орбите равен:
При удалении спутника от центра Земли на расстояние 42 200 км период обращения становится равным 24 часа, то есть времени обращения Земли вокруг своей оси. Если запустить на круговую орбиту спутник на такой высоте в сторону вращения Земли в плоскости экватора, то он будет висеть над одним и тем же местом поверхности Земли на высоте 35 800 км (геостационарная орбита)[4].
С увеличением высоты орбиты первая космическая скорость уменьшается. Так, на высоте 100 км над поверхностью Земли она равна 7 844 м/с, а на высоте 300 км — 7 726 м/с[6].
Другое выражение первой космической скорости имеет вид: , где — ускорение свободного падения на расстоянии от центра Земли[4][3].
Если скорость тела направлена горизонтально и при этом больше первой космической скорости, но меньше второй космической, то орбита представляет собой эллипс[6].
См. также[править | править код]
- Космическая скорость
- Вторая космическая скорость
- Третья космическая скорость
- Четвёртая космическая скорость
Примечания[править | править код]
- ↑ Космические скорости // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 474—475. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Кононович Э. В., Мороз В. И. Общий курс астрономии: учебное пособие / Под ред. В. В. Иванова. — 2-е изд., испр. — М.: Едиториал УРСС, 2004. — С. 91. — 544 с. — (Классический университетский учебник). — ISBN 5-354-00866-2.
- ↑ 1 2 Билимович Б. Ф. Законы механики в технике. — М., Просвещение, 1975. — Тираж 80000 экз. — с. 37-39
- ↑ 1 2 3 Ишлинский А. Ю. Классическая механика и силы инерции. — М.: Наука, 1987. — c. 47-48
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — c. 178
- ↑ 1 2 Рябов Ю. А. Движение небесных тел. — 3-е изд., перераб. — М.: «Наука», 1977. — С. 146.
Ссылки[править | править код]
- Roger R. Bate; Donald D. Mueller; Jerry E. White. Fundamentals of astrodynamics. — New York: Dover Publications, 1971. — ISBN 978-0-486-60061-1.
Чтобы внести ясность в то, какие необходимы условия для того, чтобы тело стало искусственным спутником Земли, предложен рисунок 1. Это копия ньютоновского чертежа. Изображение земного шара дополнено высокой горой, с вершины которой производят бросание камней, придавая им различные по модулю и горизонтально направленные скорости. Действие силы тяжести способствует отклонению движущихся камней от прямолинейного пути. После описания кривой траектории он падает на Землю.
Рисунок 1
Если прилагать больше сил при бросании, то он упадет дальше. Отсюда следует, что при отсутствии сопротивления воздуха и при наличии большой скорости тело может даже не приземляться на поверхность. Это говорит о его дальнейшем описывании круговых траекторий, не изменяя высоты относительно земной поверхности.
Первая космическая скорость
Чтобы движение вокруг Земли проходило по круговой орбите с радиусом, схожим с земным Rз, тело должно обладать определенной скоростью υ1, которую можно определить из условия равенства произведения массы тела на ускорение силы тяжести, действующей на тело.
Для того, чтобы какое-либо тело могло стать спутником Земли, ему должна быть сообщена скорость υ1, называемая первой космической. При подстановке значений g и Rз в формулу, получаем, что
υ1=gRз=8 км/с.
Вторая космическая скорость
Если тело обладает скоростью υ1, то впоследствии при движении не упадет. Но значения
υ1 недостаточно для выхода из сферы земного притяжения, то есть удалиться от Земли на расстояние, при котором оно теряет свою силу. Для этого нужна скорость υx, которая получила название второй космической или скорость убегания.
Для ее нахождения следует произвести вычисление работы, потраченную против сил земного притяжения для соударения с поверхности Земли на бесконечность. При удалении такого тела получаем:
mυ222-GmMR=0,R=h+r
где m – масса брошенного тела, М – масса планеты, r – радиус планеты, h – длина от основания до его центра масс, G – гравитационная постоянная, υ2 – вторая космическая скорость.
Решив уравнение относительно υ2, получим:
υ2=2GMR.
Существует связь между первой и второй скоростями
υ2=2υ1.
Квадрат скорости убегания равняется ньютоновскому потенциалу в заданной точке, то есть:
υ22=-2Φ=2GMR.
Скорость υ2 считается за вторую космическую. Из сравнений видно, что она в 2 раза больше первой. Если умножить 8 км/с на 2, то получим значение для υ2, приблизительно равняющееся 11 км/с.
Нужная величина скорости не зависит от направления движения тела. На это влияет вид траектории, по которой происходит удаление от земной поверхности.
Чтобы тело смогло стартовать с поверхности планеты, оно должно обладать второй космической скоростью при малом значении h и большом значении гравитационной силы. Как только ракета начнет удаляться от Земли, гравитационная постоянная будет уменьшаться вместе со значением, необходимым для убегания кинетической энергии.
Третья космическая скорость
Для выхода за пределы Солнечной системы телу следует преодолеть как силу притяжения к Земле, так и к Солнцу. Для этого применяется третья космическая скорость υ3, позволяющая запускать тело с земной поверхности.
Значение υ3 зависит от направления. Если запуск производится в направлении орбитального движения Земли, тогда ее значение минимально и составит около 17 км/с. Когда тело запущено противоположно направлению движения Земли, тогда значение скорости υ3≈73.
Еще в СССР были достигнуты космические скорости.
- Первый запуск искусственного спутника был осуществлен 4 октября 1957 года.
- Уже 2 января 1959 ученым удалось найти решения для преодоления сферы земного притяжения. Поэтому запущенная ракета стала первой космической планетой Солнечной системы.
- Дата 12 апреля 1961 года известна, так как был осуществлен полет человека в космическое пространство. Юрий Алексеевич Гагарин был первым советским космонавтом, совершившим один оборот вокруг Земли, после чего благополучно приземлился.
Определить первую космическую скорость для спутника Юпитера, летающего на небольшой высоте, если дана масса планеты, равная 1,9·1027 кг, а ее радиус R=7,13·107 м.
Дано:
B=1,9·1027 кг,
R=7,13·107 м.
Найти: υ1 – ?
Решение
Для начала запишем формулу для нахождения первой космической скорости: υ1=gR3 (1).
Значение g принимает ускорение свободного падения на Юпитере.
Из закона всемирного тяготения получаем, что mg=GMmr2 (2).
Значение m определено как масса спутника, а М – масса самой планеты.
Если высота спутника над поверхностью Юпитера сравнительно мала относительно его радиуса, тогда ею разрешено пренебречь: r=R.
Получаем, что из уравнения (2) найдем ускорение свободного падения для планеты из
g=GMR2.
После подстановки в уравнение (1), сможем найти первую космическую скорость.
υ1=GMR=42159,45 м/с.
Ответ: υ1=42159,45 м/с.
Здесь приведены формулы и примеры расчета первой и второй космической скорости для небесных тел произвольной массы и радиуса.
Для быстрого расчета можно воспользоваться онлайн-калькулятором.
Первая космическая скорость
Первая космическая скорость – это скорость, которую нужно придать телу, масса которого пренебрежительно мала по сравнению с массой планеты,
чтобы это тело стало спутником планеты и вращалось вокруг нее по круговой траектории. Примечание: если скорость будет выше заданной (но меньше второй космической), то траектория орбиты будет
не круговой, а эллипсоидной.
Формула первой космической скорости:
где
G – гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10-11 м3/(кг*с2), или Н*м2/кг2
R – радиус небесного тела
M – масса небесного тела
Вторая космическая скорость
Вторая космическая скорость – это минимальная скорость, которой должно обладать тело, чтобы преодолеть гравитационное притяжение планеты и покинуть замкнутую орбиту вокруг нее.
Формула второй космической скорости:
где
G – гравитационная постоянная
R – радиус небесного тела
M – масса небесного тела
Пример:
Масса планеты Земля составляет 5,9726*1024 кг, средний радиус – 6371 км (или 6371000 м). Подставив эти значения в формулы первой и второй
космических скоростей, мы получим значение соответственно 7 910 м/с и 11 187 м/с.
Теперь рассчитаем значение космических скоростей для планеты Нептун. Масса Нептуна – 1,0243*1026 кг. средний радиус – 24 622 км (24 622 000 м).
В итоге получим значения – 16 663 м/с и 23 565 м/с.
Значения для Марса (6,4171*1023 кг и 3389,5 км) будет 3 555 м/с и 5 027 м/с.
Для Венеры (4,8675*1024 кг и 6051,8 км) – 7 327 м/с и 10 362 м/с соответственно.
Калькулятор космических скоростей
Другие формулы
Первая космическая скорость
Первая космическая скорость – это скорость, с которой спутник движется вокруг планеты по круговой орбите, не удаляясь от планеты и не падая на нее.
То есть, для первой космической скорости орбита — это окружность. Расстояние от центра планеты до спутника равно ( R = left( r + h right) ). Это представлено на рисунке 1.
Рис. 1. Спутник (черная точка), вращается вокруг планеты (центральная окружность) по круговой орбите (пунктир).
Формула для вычисления первой космической скорости
Первую космическую скорость можно посчитать по формуле:
[ large boxed { |v| = sqrt{G cdot frac{M}{r + h}} }]
( v left( frac{text{м}}{text{c}} right) ) (метры в секунду) – первая космическая скорость
( M left( text{кг} right) ) (килограммы) — масса планеты, вокруг которой движется спутник
( r left( text{м} right) ) (метры) – радиус планеты
( h left( text{м} right) ) (метры) — расстояние от поверхности планеты до спутника
(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная
Первая космическая скорость в цифрах для некоторых небесных тел
первая космическая скорость у поверхности Земли ( v = 8000 left( frac{text{м}}{text{c}} right) )
первая космическая скорость у поверхности Солнца ( v = 437000 left( frac{text{м}}{text{c}} right) )
первая космическая скорость у поверхности Луны ( v = 1680 left( frac{text{м}}{text{c}} right) )
первая космическая скорость у поверхности Марса ( v = 3530 left( frac{text{м}}{text{c}} right) )
Как выводится формула первой космической скорости
Рассмотрим движение спутника вокруг Земли.
Земля и спутник притягиваются, запишем закон притяжения между планетой и спутником
[ F = G cdot frac{mcdot M}{left( r + h right)^{2}} ]
При круговом движении на спутник действует центростремительная сила (как и на любое тело при таком движении).
[ F_{text{ц}} = m cdot frac{v^{2} }{left( r + h right)} ]
Мы можем записать эти уравнения в виде системы.
[ begin{cases} displaystyle F = Gcdot frac {m cdot M}{(r+h)^{2}} \ displaystyle F_{text{ц}} = m cdot frac {v^{2}}{(r+h)} \ end{cases} ]
Земля и спутник притягиваются, благодаря этому спутник движется вокруг Земли по круговой орбите. Значит, притяжение между спутником и Землей – это центростремительная сила. Именно она заставляет спутник двигаться вокруг планеты по окружности. На языке математики это запишется так:
[ F = F_{text{ц}} ]
А если равны левые части уравнений, то будут равны и правые:
[ G cdot frac{mcdot M}{left( r + h right)^{2}} = m cdot frac{v^{2} }{left( r + h right)} ]
Масса ( m ) спутника и расстояние ( R ) между телами встречается в обеих частях уравнения. Поделим обе части уравнения на массу спутника.
[ G cdot frac{M}{ left( r + h right)^{2}} = frac{v^{2} }{left( r + h right)} ]
Теперь умножим обе части уравнения на расстояние (left( r + h right) ). Получим:
[ G cdot frac{M}{left( r + h right)} = v^{2} ]
Извлечем корень квадратный из обеих частей уравнения, чтобы получить скорость:
[ sqrt{G cdot frac{M}{left( r + h right)}} = |v| ]
Все)
Вам будет интересно почитать:
Закон всемирного тяготения
Движение по окружности, центростремительная сила и центростремительное ускорение
Ускорение свободного падения
Вторая космическая скорость
Оценка статьи:
Загрузка…
Содержание
- Первая космическая скорость
- Вторая космическая скорость
- Третья космическая скорость
- Четвёртая и пятая космическая скорости
Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?
На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.
Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.
Траектория полета космических кораблей
Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:
- v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
- v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
- v3 — покинуть при запуске планету, преодолев притяжение Звезды;
- v4 — при запуске из планетной системы объект покинул Галактику.
Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.
Первая космическая скорость
Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.
Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Формула
где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения —
Вторая космическая скорость
Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.
Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).
Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:
- для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
- для Солнца вторая космическая скорость составляет 617,7 км/с.
- для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.
Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.
Формула
Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .
Третья космическая скорость
Третья космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.
Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.
Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.
Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.
При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.
Четвёртая и пятая космическая скорости
Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.
Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.
Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.
По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.
Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.
Видео
Источники
- https://ru.wikipedia.org/wiki/Космическая_скорость
https://mirznanii.com/a/9233/kosmicheskie-skorosti
http://www.astronet.ru/db/msg/1162252
https://fb.ru/article/54389/kosmicheskaya-skorost