Как найти ph раствора электролита

Расчет рН растворов сильных и слабых электролитов

Сильные
кислоты и основания

(табл.2.1) в растворах диссоциируют пол-

ностью,
поэтому концентрация ионов водорода и
ионов гидроксила равна

общей
концентрации сильного электролита.

Для
сильных оснований:
[
OH]
= См;
для
сильных
кислот:
[
H+]
=
См.

Таблица
2.1

Сильные электролиты

Класс

Формулы
электролитов

Кислота

HNO3,
H2SO4,
HCl, HBr, HI, HMnO4,
HClO4

Основание

LiOH ,
KOH, RbOH, CsOH, NaOH, Ba(OH)2,
Ca(OH)2,
Sr(OH)2

Соль

Растворимые
соли

Слабым
электролитом

принято считать химические соединения,
молекулы которых даже в сильно разбавленных
растворах не полностью диссоциируют
на ионы. Степень диссоциации слабых
электролитов для децимолярных растворов
(0,1М) меньше 3%. Примеры слабых электролитов:
все органические кислоты, некоторые
неорганические кислоты (например, H2S,
HCN), большинство гидроксидов (например,
Zn(OH)2,
Cu(OH)2).

Для
растворов слабых
кислот

концентрация ионов водорода [H+]
в растворе рассчитывается по формуле:

где:
Кк –
константа диссоциации слабой кислоты;
Ск –
концентрация кислоты, моль/дм3.

Для
растворов слабых
оснований

концентрация гидроксильных ионов
рассчитывается по формуле:

где:
Ко –
константа диссоциации слабого основания;
Сосн. –
концентрация основания, моль/дм3.

Таблица
2.2

Константы диссоциации слабых кислот и оснований при 25 оС

Формула

Константа
диссоциации, Кд

СH3COOH

1,86
• 10–5

HCN

7,2
• 10-10

HOCl

5,0
• 10-8

HBO2

7,5
• 10-10

HOBr

2,5
• 10-9

HF

6,2
• 10-4

HNO2

5,1
• 10-4

HIO

2,3
• 10-11

HOCN

2,7
• 10-4

NH4OH

1,79
• 10-5

AgOH

5,0
• 10-3

2.2.
Примеры решения индивидуального задания

Пример
№1.

Условие
задания:
Определить
концентрацию
водородных и гидроксильных ионов в
растворе, если
рН =5,5.

Решение

Концентрация
ионов водорода рассчитывается по
формуле:

+]
= 10-рН

+]
= 10-5,5
=
3,16 •10-6
моль/дм3

Концентрация
гидроксильных ионов рассчитывается по
формуле:

[OН]
= 10-рOН

рОН
= 14 – рН = 14 – 5,5 = 8,5

[OН]
= 10 -8,5
=
3 • 10-9
моль/дм3

Пример
№ 2.

Условие
задания:
Вычислить
рН 0,001 М раствора HС1.

Решение

Кислота
HС1 является сильным электролитом
(табл.2.1) и в разбавленных растворах
практически полностью диссоциирует на
ионы:

HС1⇄
Н+
+
С1

Поэтому
концентрация ионов [Н+]
равна общей концентрации кислоты:
+]
= См = 0,001 М.

+]
= 0,001= 1·10-3
моль/дм3

Тогда:

рН
= – lg[H+]
= – lg 1 • 10-3
= 3

Пример
№ 3.

Условие
задания:

Вычислить
рН 0,002 М раствора NaOH.

Решение

Основание
NaOH является сильным электролитом
(табл.2.1) и в разбавленных растворах
практически полностью диссоциирует на
ионы:

NaOH
⇄Na++OH

Поэтому
концентрация гидроксильных ионов равна
общей концентрации основания: [ОH]=
См
=
0,002
М.

Тогда:

рОН
= – lg[ОН]
= – lgСм = – lg 2 •10-3
= 2,7

Исходя
из формулы: рН + рОН = 14, находим рН
раствора:

рН
= 14 – 2,7 = 11,3

Пример
№4.

Условие
задания:
Вычислить
рН 0,04 М раствора NH
4OH,
если
константа диссоциации Кд(NH4OH)
= 1,79·10-5
(табл.2.2).

Решение

Основание
NH
4OH
является слабым электролитом и в
разбавленных растворах очень незначительно
диссоциирует на ионы.

Концентрация
гидроксильных ионов [ОH]
в растворе слабого основания рассчитывается
по формуле:

моль/дм3

рОН
= – lg[ОH]
= – lg 8,5·10-2
= 1,1

Исходя
из формулы: рН + рОН = 14, находим рН
раствора:

рН
= 14 – рOН = 14 – 1,1 = 12,9

Пример
№5.

Условие
задания:
Вычислить
рН

0,17
М раствора
уксусной
кислоты (CH3COOH),
если константа диссоциации Кд(CH3COOH)
= 1,86 • 10-5
(табл.2.2).

Решение

Кислота
CH3COOH
является слабым электролитом и в
разбавленных растворах очень незначительно
диссоциирует на ионы.

Концентрация
ионов водорода [H+]
в растворе слабой кислоты рассчитывается
по формуле:

Тогда:

моль/дм3

Вычисляем
pH

раствора по формуле: рН = – lg [H+]

pH
= – lg 1,78 • 10-3
=
2,75

2.3.
Индивидуальные задания

Условия
заданий

(табл.
2.3):

Задание
№ 1.

Вычислить концентрацию водородных и
гидроксильных ионов в растворе при
определенном значении рН (см. пример №
1);

Задание
№ 2.

Вычислить рН раствора сильного электролита
(кислоты, основания) при заданной
концентрации (см. пример № 2, 3);

Задание
№ 3.

Вычислить рН раствора слабого электролита
(кислоты, основания) при заданной
концентрации (см. пример № 4, 5).

Таблица
2.3

Состав
исследуемой воды

задания

Условия
заданий:

Задание № 1

Задание
№ 2

Задание
№ 3

рН

Сильный
электролит

Концентрация,
См

Слабый

электролит

Концентрация,
См

1

6,05

НСl

0,033

NH4OH

0,01

2

8,5

HNO3

0,091

HCN

0,09

3

5,5

HI

0,032

HOCl

0,05

4

7,7

NaOH

0,054

HBO2

0,36

5

6,3

HBr

0,076

HOBr

0,22

6

6,5

KOH

0,045

HF

0,63

7

8,9

HClO4

0,027

HNO2

0,55

8

8,5

HMnO4

0,005

HOI

0,03

9

6,5

CsOH

0,008

HOCN

0,19

10

6,1

HNO3

0,004

NH4OH

0,082

11

6,5

HI

0,001

AgOH

0,04

12

6,9

LiOH

0,009

СH3COOH

0,26

13

8,8

HBr

0,005

HCN

0,075

14

6,9

RbOH

0,036

HOCl

0,07

15

7,3

HClO4

0,0022

HBO2

0,15

16

6,3

HMnO4

0,063

HOBr

0,23

17

7,4

KOH

0,055

HF

0,34

18

6,7

HNO3

0,003

HNO2

0,18

19

8,2

HI

0,019

HOI

0,39

20

8,3

HNO3

0,082

HOCN

0,15

21

6,1

CsOH

0,004

NH4OH

0,33

22

6,9

HCl

0,026

AgOH

0,091

23

8,2

HClO4

0,075

HBO2

0,32

24

8,6

HMnO4

0,007

HOBr

0,054

25

8,5

LiOH

0,015

HF

0,076

26

8,2

HNO3

0,0023

HNO2

0,045

27

8,0

HI

0,034

HOI

0,27

Продолжение
табл. 2.3

28

7,9

NaOH

0,018

HOCN

0,35

29

7,9

HBr

0,039

NH4OH

0,08

30

8,1

HCl

0,015

AgOH

0,4

31

6,1

HNO3

0,003

NH4OH

0,032

32

6,5

HI

0,002

AgOH

0,02

33

6,9

LiOH

0,008

СH3COOH

0,24

34

8,8

HBr

0,003

HCN

0,073

35

6,9

RbOH

0,033

HOCl

0,072

36

7,3

HClO4

0,0012

HBO2

0,16

37

6,3

HMnO4

0,033

HOBr

0,24

38

7,4

KOH

0,045

HF

0,35

39

6,7

HNO3

0,004

HNO2

0,28

40

8,2

HI

0,029

HOI

0,29

41

8,3

HNO3

0,081

HOCN

0,05

42

6,1

CsOH

0,006

NH4OH

0,033

43

6,9

HCl

0,023

AgOH

0,29

44

8,2

HClO4

0,078

HBO2

0,62

45

8,6

HMnO4

0,006

HOBr

0,024

46

8,5

LiOH

0,012

HF

0,036

47

8,2

HNO3

0,0021

HNO2

0,025

48

8,0

HI

0,037

HOI

0,027

49

7,9

NaOH

0,013

HOCN

0,015

50

7,9

HBr

0,034

NH4OH

0,08

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #

    10.02.20161.72 Mб14referat_turbaza.docx

  • #
  • #
  • #
  • #
  • #
  • #

Перейти к содержанию

Помощь по химии: решение задач, химия онлайн

Автор Владислав Панарин На чтение 2 мин Просмотров 19к. Опубликовано 26.02.2021 Обновлено 18.07.2022

Вам также может понравиться

Таблица электроотрицательности химических элементов

015.7к.

Константы нестойкости комплексных соединений.

019.1к.

Константы устойчивости комплексных соединений.

127.6к.

Электрохимический ряд напряжений (активности) металлов —

016.7к.

Таблица растворимости — это наглядная таблица со списком

018.3к.

Длиннопериодная периодическая таблица (система) химических

010.6к.

Короткопериодная периодическая таблица (система) химических

012к.

Стандартные окислительно-восстановительные потенциалы

072.7к.

Как правильно рассчитать рН растворов сильных и слабых электролитов

Задача 40. 
Вычислите рН 0,025 М раствора КОН.
Решение:
КОН – сильный электролит, который диссциирует по схеме: КОН = К+  + ОН;  

[ОН] = СМ(КОН) = 0,025 моль/дм3

рОН = – lg[OH] = – lg2,5 · 10–2 = 2 – lg2,5 = 2 – 0,6 = 1,4; 

pOH + pH = 14; 

pH = 14 – pOH = 14 – 1,4 = 12,6. 

Ответ: рН = 12,6.
 


Задача 41.
Вычислите концентрацию ионов [H+] и рН 0,3 М раствора пропионовой кислоты С2Н5СООН, если КD = 1,4 · 10–5
Решение:
С2Н5СООН – слабая кислота. Для слабых кислот [H+] вычисляется по формуле:

рн

рН = –lg[H+] = –lg2,05 · 10–3 = 3 – lg2,605 = 2,7.  

Ответ: [H+] = 2,05 · 10–3 моль/л; рН = 2,7.
 


Задача 42.
Вычислите рН 0,02 М раствора аммиака, если  КD = 1,76·10–5
Решение:
В водном растворе аммиака имеет место равновесие: 

NH3 + H2O ⇔ NН4+ + OH

Поскольку КО < 1 · 10–2, полагаем, что равновесная концентрация недиссоциированного основания равна его общей концентрации:  CО(NH4OH) = 0,02 моль/дм3. Для слабых оснований [H+] вычисляют по формуле:

рн

рН = –lg[H+] = –lg1,7 · 10–11 = 11 – lg1,7 = 10,77.  

Ответ: [H+] = 1,7 · 10–11 моль/дм3; рН = 10,77.  
 


Задача 43.
К 80 см3 0,2 Н. раствора СН3СООН прибавили 20 см3  0,2 н. раствора СН3СООNa. Рассчитайте рН полученного раствора, если Кк = 1,78 · 10–5.  
Решение:
Объём раствора, полученного после сливания исходных растворов, равен 80 + 20 = 100 см3.

Рассчитаем нормальность веществ в полученном растворе смеси, получим:

Сн(СН3СООН) =  [Сн(СН3СООН) . V(СН3СООН)]/V(p-pa) = (0,2 . 80)/100 = 0,16 моль/дм3;
Сн(СН3СООNa) = [Сн(СН3СООNa) . V(СН3СООNa)]/V(p-pa) = (0,2 . 20)/100 = 0,04 моль/дм3.

Для буферных растворов, образованных слабой кислотой и солью этой кислоты, [Н+] находят по формуле:

[H+] = Кк . (Ск/Cc);

Тогда

[H+] =  1,78 · 10–5 . (0,16/0,04) = 7,12 · 10–5 моль/дм3.

рН = –lg[H+]; pH = –lg7,12 · 10–5 = 5 – lg7,12 = 4,15.

Ответ: [H+] = 7,12 · 10–5 моль/дм3; рН = 4,15.
 


Задача 44.
Вычислите и сравните рН растворов: а) 0,1 М HCl и 0,1 М CH3COOH; б) растворов, содержащих 7 г/дм3 HCl и 7 г/дм3 CH3COOH. 
Решение:

а) Расчет рН растворов: 0,1 М HCl, 0,1 М CH3COOH

1. рассчитаем рН раствора 0,1 М HCl

HCl – сильная кислота, которая диссциирует полностью, поэтому [H+] = СМ(HCl) = 0,1 моль/дм3.

Тогда 

рН = –lg[H+]; pH = –lg1 · 10–1 = 1 – lg1 = 1.

2. рассчитаем рН раствора 0,1 М CH3COOH

CH3COOH (Кк = 1,78 · 10–5) – слабая кислота. Для слабых кислот [H+] вычисляется по формуле:

рн

рН = –lg[H+] = –lg1,33 · 10–3 = 3 – lg1,33 = 2,88.  

б) Расчет рН растворов, содержащих 7 г/дм3 HCl и 7 г/дм3 CH3COOH

1. Рассчитаем рН раствора HCl

Определим концентрацию HCl, получим:

СМ(HCl) = m(HCl)/M(HCl) = 7/36,5 = 0,19 = 1,9 · 10–1

Так как HCl сильный электролит, то [H+] = См(HCl) = 0,19 = 1,9 · 10–1 моль/дм3.

рН = –lg[H+]; pH = –lg1,9 · 10–1 = 1 – lg1,9 = 0,72.

2. Рассчитаем рН раствора CH3COOH

Определим концентрацию CH3COOH, получим:

СМ(CH3COOH) = m(CH3COOH)/M(CH3COOH) = 7/60 = 0,117.

 
CH3COOH – слабая кислота. Для слабых кислот [H+] вычисляется по формуле:

рн

рН = –lg[H+]; pH = –lg1,44 · 10–3 = 3 – lg1,44 = 2,85.

Ответ: а) 1 и 2,88; б) 0,72 и 2,85. 


УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10
КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47,
48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47/2003;
1, 2, 3/2004

§ 7.2. Слабые кислоты и основания

Если вы будете заниматься исследовательской
работой, вам понадобится знание среды раствора и
его рН. Сейчас вы познакомитесь с растворами
слабых электролитов, узнаете, как рассчитать рН
раствора, зная концентрацию соли и константу
равновесия диссоциации слабого электролита.

Расчет концентрации ионов водорода и
гидроксид-ионов в растворах слабых кислот и
слабых оснований несколько сложнее, чем расчет
для сильных кислот и оснований (щелочей), и
проводится с использованием констант их
диссоциации.
Уксусная кислота – слабый электролит и в очень
незначительной степени диссоциирует по
уравнению:

СН3СООН = СН3СОО + Н+.

Константа диссоциации (равновесия) К
уксусной кислоты:

Ккисл = [СН3СОО]
+]/[СН3СООН].

Учитывая, что в растворе уксусной кислоты
концентрации ионов водорода и ацетат-ионов
равны, т.е. [СН3СОО] = [Н+], а сама
она – слабый электролит и поэтому в состоянии
диссоциации находится лишь малая часть ее
молекул, концентрацию непродиссоциировавших
молекул СН3СООН можно считать равной
концентрации кислоты скисл. Тогда
получаем:

Ккисл = [Н+]2/скисл,

откуда

Пример. Константа диссоциации
уксусной кислоты (данные справочника) равна:
Ккисл = 1,86•10–5. Требуется
рассчитать концентрацию ионов водорода и рН в 0,1М
и 0,01М растворах уксусной кислоты.
Для 0,1М раствора имеем:

рН = –lg (1,36•10–3) = 2,87.

Посмотрим, как скажется на концентрации ионов
водорода и рН раствора разбавление в 10 раз.
Для 0,01М раствора имеем:

рН = –lg (4,31•10–4) = 3,37.

Разбавление уксусной кислоты в 10 раз привело к
понижению концентрации ионов водорода в 1,36•10–3/4,31•10–4
= 3,1 раза, при этом рН повысился на 3,37 – 2,87 = 0,5
единицы рН.
Вспомните, как изменится концентрация ионов
водорода и
рН при разбавлении в 10 раз 0,1М
раствора соляной кислоты
.
Аналогично определяют
концентрацию ионов водорода и рН раствора
гидроксида аммония:

NH4OH = + OH,

константа диссоциации которого равна Косн
= 1,79•10–5. Сначала рассчитывают
концентрацию гидроксид-ионов:

и рОН. затем – концентрацию ионов водорода:

+] = Кв/[ОН] = 10–14/[ОН]

и определяют рН = 14 – рОН. В 0,01М растворе
гидроксида аммония рН = 10,6. Проверьте.

Если в растворе сильной кислоты или сильного
основания увеличить концентрацию одноименного
иона введением соответствующей соли, например в
раствор НСl или NаОН добавить хлорид натрия NаCl, то
концентрации ионов водорода или гидроксид-ионов
практически не изменяются. Если же такую
операцию, т. е. увеличение концентрации
одноименного иона, провести с раствором слабой
кислоты или слабого основания, то наблюдается
резкое изменение рН раствора.
Рассмотрим, как изменится рН раствора уксусной
кислоты при введении в раствор ацетата натрия
NаСН3СОО, т. е. одноименного
ацетат-иона СН3СОО.
Согласно принципу Ле Шателье равновесие реакции
диссоциации

сместится влево в результате увеличения
концентрации ацетат-ионов СН3СОО,
образующихся при полной диссоциации ацетата
натрия как сильного электролита. Такое смещение
равновесия диссоциации уксусной кислоты
означает уменьшение концентрации ионов
водорода, т. е. увеличение рН раствора.

Пример. Рассчитать рН 0,01М
раствора уксусной кислоты, содержащей 0,01 моль/л
ацетата натрия NаСН3СОО.
В выражении константы равновесия

Ккисл = [СН3СОО][Н+]/[СН3СООН]
= 1,86•10–5

концентрация ацетат-ионов определяется в
основном концентрацией хорошо диссоциирующей
соли NаСН3СОО. Поэтому можно записать:

Из этого соотношения находим концентрацию
ионов водорода:

Откуда рН = 4,73.

Таким образом, в результате введения в 1 л 0,01М
раствора уксусной кислоты 0,01 моль
NаСН3СОО концентрация ионов водорода
уменьшилась в 23 раза (4,31•10–4/1,86•10–5 =
23), а значение рН возросло на 1,36 (4,73 – 3,37 = 1,36)
единицы (значение рН = 3,37 из предыдущего примера).
Аналогично при введении в раствор
слабого основания NН4ОН хлорида аммония NH4Cl
положение равновесия диссоциации гидроксида
аммония смещается в менее основную область и
среда раствора становится более кислотной:

Следовательно, одноименный ион (за исключением
иона водорода и гидроксид-иона), введенный в
раствор слабой кислоты или слабого основания,
изменяет рН таким образом, что среда раствора
приближается к нейтральной. Одноименные ионы в
такого типа системах ведут себя как
нейтрализующие агенты: анион нейтрализует
слабую кислоту, выполняя роль основания, а катион
нейтрализует слабое основание, выполняя роль
кислоты. Такое необычное, с нашей точки зрения,
поведение веществ характерно для многих явлений
природы, показывая нам всеобщую связь и
взаимозависимость объектов окружающего нас мира
и нас самих от него.

О.С.ЗАЙЦЕВ

Добавить комментарий