Как найти плечо момента силы относительно точки

Момент силы M(F)

Моментом силы называют вращательное усилие создаваемое вектором силы относительно твердого тела, оси или точки.
Момент силы
Обозначение: M, m или M(F).

Размерность — [Н∙м] (Ньютон на метр) либо кратные значения [кН∙м]

Аналогом момента силы является момент пары сил.

Обязательным условием возникновения момента является то, что точка, относительно которой создается момент не должна лежать на линии действия силы.

Определение

Момент определяется как произведение силы F на плечо h:

M(F)=F×h

Момент как произведение силы на плечо

Плечо силы h, определяется как кратчайшее расстояние от точки до линии действия силы.

Наш короткий видеоурок про момент силы с примерами:

Другие видео

Например, сила величиной 7 кН приложенная на расстоянии 35см от рассматриваемой точки вращения создает момент M=7×0,35=2,45 кНм.

Пример момента силы

Наиболее наглядным примером момента силы может служить поворачивание гайки гаечным ключом.

Гайки заворачиваются вращением, для этого к ним прикладывается момент, но сам момент возникает при воздействии нашей силы на гаечный ключ.

Вы конечно интуитивно понимаете — для того чтобы посильнее закрутить гайку надо взяться за ключ как можно дальше от нее.

Пример момента силы - заворачивание гайки гаечным ключом

В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения её плеча (h2>h1).

Плечом при этом служит расстояние от центра гайки до точки приложения силы.

Плечо момента силы

Рассмотрим порядок определения плеча h момента:

Пусть заданы точка A и некоторая произвольная сила F, линия действия которой не проходит через эту точку. Требуется определить момент силы.

Сила и точка

Покажем линию действия силы F (штриховая линия)

Линия действия силы

Проведем из точки A перпендикуляр h к линии действия силы

Плечо момента силы

Длина отрезка h есть плечо момента силы F относительно точки A.

Момент принимается положительным, если его вращение происходит против хода часовой стрелки (как на рисунке).

Так принято для того, чтобы совпадали знаки момента и создаваемого им углового перемещения.

Примеры расчета момента силы

Сила расположена перпендикулярно оси стержня

Если сила F приложена перпендикулярно к оси бруса и известно расстояние между точками A и B.

Момент силы перпендикулярной стержню

То момент силы F относительно точки A:

МA=F×AB

Сила расположена под углом к оси стержня

В случае, если сила F приложена под углом α к оси балки
Момент силы расположенной под углом к стержню

Момент силы относительно точки B:

MB=F×cosα×AB

Известно расстояние от точки до линии действия силы

Если известно расстояние от точки где определяется момент до линии действия силы (плечо h)
Момент силы для произвольно расположенного стержня

Момент силы относительно точки B:

MB=F×h


См. также:

  • Примеры решения задач >
  • Момент силы относительно точки
  • Момент силы относительно оси

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Содержание:

Моменты силы относительно точки и оси:

Для рассмотрения различных систем сил необходимо ввести понятия алгебраического и векторного моментов силы относительно точки и момента силы относительно оси. Введем эти характеристики действия силы на твердое тело и рассмотрим их свойства.

Алгебраический момент силы относительно точки

При рассмотрении плоской системы сил, приложенных к твердому телу, используется понятие алгебраического момента силы относительно точки.

Моменты силы относительно точки и оси в теоретической механике

Рис. 19

Алгебраическим моментом силы относительно точки называют произведение модуля силы на плечо силы относительно этой точки (рис. 19), взятое со знаком плюс или минус.

Плечом Моменты силы относительно точки и оси в теоретической механикеМоменты силы относительно точки и оси в теоретической механике относительно точки называют кратчайшее расстояние между этой точкой и линией действия силы, т. е. длину отрезка перпендикуляра, опущенного из точки Моменты силы относительно точки и оси в теоретической механике на линию действия силы Моменты силы относительно точки и оси в теоретической механике.

Обозначим Моменты силы относительно точки и оси в теоретической механике или Моменты силы относительно точки и оси в теоретической механике алгебраический момент силы Моменты силы относительно точки и оси в теоретической механике относительно точки Моменты силы относительно точки и оси в теоретической механике. Тогда

Моменты силы относительно точки и оси в теоретической механике

Если сила стремится вращать тело вокруг моментной точки (точки, относительно которой вычисляют алгебраический момент силы) против часовой стрелки, то берем знак плюс, если по часовой стрелке — знак минус.

Алгебраический момент силы представляет собой произведение силы на длину (в Моменты силы относительно точки и оси в теоретической механике).

Из определения алгебраического момента силы относительно точки следует, что он не зависит от переноса силы вдоль ее линии действия. Алгебраический момент силы относительно точки равен нулю, если линия действия силы проходит через моментную точку. Сумма алгебраических моментов относительно точки двух равных по модулю, но противоположных по направлению сил, действующих вдоль одной прямой, равна нулю. Численно алгебраический момент относительно точки равен удвоенной площади треугольника, построенного на силе Моменты силы относительно точки и оси в теоретической механике и моментной точке:

Моменты силы относительно точки и оси в теоретической механике

Векторный момент силы относительно точки

При рассмотрении пространственной системы сил, приложенных к твердому телу, применяется понятие векторного момента силы относительно точки.

Векторным моментом силы относительно точки называют вектор, приложенный в этой точке и равный по модулю произведению силы на плечо силы относительно этой точки. Векторный момент силы направлен перпендикулярно плоскости, в которой лежат сила и моментная точка, таким образом, что с его конца можно видеть стремление силы вращать тело против движения часовой стрелки (рис. 20).

Плечом Моменты силы относительно точки и оси в теоретической механике силы относительно точки Моменты силы относительно точки и оси в теоретической механике называют кратчайшее расстояние от этой точки до линии действия силы.

Моменты силы относительно точки и оси в теоретической механике

Рис. 20

Условимся векторный момент  силы Моменты силы относительно точки и оси в теоретической механике относительно точки Моменты силы относительно точки и оси в теоретической механике обозначать Моменты силы относительно точки и оси в теоретической механике, а его числовую величину — Моменты силы относительно точки и оси в теоретической механике. Тогда, согласно определению,

Моменты силы относительно точки и оси в теоретической механике

Как и для алгебраического момента, векторный момент силы относительно точки равен удвоенной площади треугольника, построенного на силе и моментной точке:

Моменты силы относительно точки и оси в теоретической механике

Справедлива формула

Моменты силы относительно точки и оси в теоретической механике

где Моменты силы относительно точки и оси в теоретической механике—радиус-вектор, проведенный из моментной точки Моменты силы относительно точки и оси в теоретической механике в точку приложения силы или любую другую точку линии действия силы.

Чтобы убедиться в справедливости формулы (3), достаточно показать, чтоМоменты силы относительно точки и оси в теоретической механике по величине и направлению выражает векторный момент силы относительно точки Моменты силы относительно точки и оси в теоретической механике. По определению векторного произведения двух векторов известно, что

Моменты силы относительно точки и оси в теоретической механике

Как показано на рис. 20, Моменты силы относительно точки и оси в теоретической механике, причем это равенство справедливо для любой точки линии действия, куда проведен радиус-вектор Моменты силы относительно точки и оси в теоретической механике. Итак,

Моменты силы относительно точки и оси в теоретической механике

что совпадает с векторным моментом силы относительно точки Моменты силы относительно точки и оси в теоретической механике. Вектор Моменты силы относительно точки и оси в теоретической механике, как известно, перпендикулярен плоскости, в которой расположены векторы Моменты силы относительно точки и оси в теоретической механике и Моменты силы относительно точки и оси в теоретической механике, т. е. плоскости треугольника Моменты силы относительно точки и оси в теоретической механике, которой перпендикулярен и векторный момент Моменты силы относительно точки и оси в теоретической механике.

Направление Моменты силы относительно точки и оси в теоретической механике тоже совпадает с направлением Моменты силы относительно точки и оси в теоретической механике. Заметим, что векторный момент силы относительно точки считается вектором, приложенным к этой точке.

Векторный момент силы относительно точки не изменяется от переноса силы вдоль ее линии действия. Он станет равным

нулю, если линия действия силы пройдет через моментную точку.

Моменты силы относительно точки и оси в теоретической механике

Рис. 21 

Если сила Моменты силы относительно точки и оси в теоретической механике дана своими проекциями Моменты силы относительно точки и оси в теоретической механике на оси координат и даны координаты Моменты силы относительно точки и оси в теоретической механике точки приложения этой силы (рис. 21), то векторный момент относительно начала координат, согласно формуле (3), после разложения по осям координат вычисляем по формуле

Моменты силы относительно точки и оси в теоретической механике

где Моменты силы относительно точки и оси в теоретической механике — единичные векторы, направленные по осям координат.

Используя формулу (4), можно выделить проекции Моменты силы относительно точки и оси в теоретической механике на оси координат:

Моменты силы относительно точки и оси в теоретической механике

Модуль векторного момента Моменты силы относительно точки и оси в теоретической механике и косинусы углов его с осями координат определяем по формулам

Моменты силы относительно точки и оси в теоретической механике

В формулах (6) числовую величину Моменты силы относительно точки и оси в теоретической механике берем со знаком плюс.

Момент силы относительно оси

Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью (рис. 22). Момент силы относительно оси считается положительным, если проекция силы на плоскость, перпендикулярную оси (проекция силы на плоскость является вектором), стремится вращать тело вокруг положительного направления оси против часовой стрелки, и отрицательным, если она стремится вращать тело по часовой стрелке. Момент силы, например, относительно оси Моменты силы относительно точки и оси в теоретической механике обозначим Моменты силы относительно точки и оси в теоретической механике.

Моменты силы относительно точки и оси в теоретической механике

 Рис. 22

По определению,   

Моменты силы относительно точки и оси в теоретической механике

где Моменты силы относительно точки и оси в теоретической механике — вектор проекции силы Моменты силы относительно точки и оси в теоретической механике на плоскость Моменты силы относительно точки и оси в теоретической механике, перпендикулярную оси Моменты силы относительно точки и оси в теоретической механике, а точка Моменты силы относительно точки и оси в теоретической механике — точка пересечения оси Моменты силы относительно точки и оси в теоретической механике с плоскостью Моменты силы относительно точки и оси в теоретической механике.

Из определения момента силы относительно оси следует, что введенный выше алгебраический момент силы относительно точки можно считать моментом силы относительно оси, проходящей через эту точку, перпендикулярно плоскости, в которой лежат сила и моментная точка. Момент силы относительно оси можно выразить через площадь треугольника, построенного на проекции силы  Моменты силы относительно точки и оси в теоретической механике и точке пересечения Моменты силы относительно точки и оси в теоретической механике оси с плоскостью:

Моменты силы относительно точки и оси в теоретической механике

Из формулы (8) можно получить следующие важные свойства момента силы относительно оси:

  1. Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси.
  2. Момент силы относительно оси равен нулю, если линия действия силы пересекает эту ось. В этом случае линия действия проекции силы на плоскость, перпендикулярную оси, проходит через точку пересечения оси  с плоскостью и, следовательно, равно нулю плечо силы Моменты силы относительно точки и оси в теоретической механике относительно точки Моменты силы относительно точки и оси в теоретической механике.

В обоих этих случаях ось и сила лежат в одной плоскости. Объединяя их, можно сказать, что момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости.

Связь момента силы относительно оси с векторным моментом силы относительно точки на оси

Используя формулу (8), имеем (рис. 23)

Моменты силы относительно точки и оси в теоретической механике

Векторный момент силы Моменты силы относительно точки и оси в теоретической механике относительно точки Моменты силы относительно точки и оси в теоретической механике, взятой на пересечении оси Моменты силы относительно точки и оси в теоретической механике с перпендикулярной плоскостью Моменты силы относительно точки и оси в теоретической механике, выражается в виде

Моменты силы относительно точки и оси в теоретической механике

Векторный момент Моменты силы относительно точки и оси в теоретической механике направлен перпендикулярно плоскости треугольника Моменты силы относительно точки и оси в теоретической механике. Аналогично, для другой точки Моменты силы относительно точки и оси в теоретической механике оси Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

причем векторный момент Моменты силы относительно точки и оси в теоретической механике направлен перпендикулярно плоскости треугольника Моменты силы относительно точки и оси в теоретической механике. Треугольник Моменты силы относительно точки и оси в теоретической механике является проекцией треугольников Моменты силы относительно точки и оси в теоретической механике и Моменты силы относительно точки и оси в теоретической механике на плоскость Моменты силы относительно точки и оси в теоретической механике. Из геометрии известно, что площадь проекции плоской фигуры равна площади проецируемой фигуры, умноженной на косинус угла между плоскостями, в которых расположены эти фигуры. Угол между плоскостями измеряется углом между перпендикулярами к этим плоскостям. Перпендикуляром к плоскости треугольника Моменты силы относительно точки и оси в теоретической механике является ось Моменты силы относительно точки и оси в теоретической механике, а перпендикулярами к плоскостям треугольников Моменты силы относительно точки и оси в теоретической механике и Моменты силы относительно точки и оси в теоретической механике—соответственно векторные моменты Моменты силы относительно точки и оси в теоретической механике и Моменты силы относительно точки и оси в теоретической механике. Таким образом, Моменты силы относительно точки и оси в теоретической механике, где Моменты силы относительно точки и оси в теоретической механике — угол между вектором Моменты силы относительно точки и оси в теоретической механике и осью Моменты силы относительно точки и оси в теоретической механике. Отсюда по формулам (8′) и (9) имеем

Моменты силы относительно точки и оси в теоретической механике

причем знак Моменты силы относительно точки и оси в теоретической механике полностью определяется знаком Моменты силы относительно точки и оси в теоретической механике.

Аналогично,

Моменты силы относительно точки и оси в теоретической механике

т. е.

Моменты силы относительно точки и оси в теоретической механике

где Моменты силы относительно точки и оси в теоретической механике — любая точка на оси Моменты силы относительно точки и оси в теоретической механике.

Формулы (11) и (12) отражают искомую связь между моментом силы относительно оси и векторными моментами силы относительно точек, лежащих на этой оси: момент силы относительно оси равен проекции на эту ось векторного момента силы относительно любой точки на оси.

Эту зависимость между моментом силы относительно оси и векторным моментом силы относительно точки на оси можно принять за определение момента силы относительно оси.

Моменты силы относительно точки и оси в теоретической механике

Рис. 23

Формулы для моментов силы относительно осей координат

Используя связь момента силы относительно оси с векторным моментом силы относительно точки на оси, можно получить формулы для вычисления моментов относительно осей координат, если даны проекции силы на оси координат и координаты точки приложения силы. Для оси Моменты силы относительно точки и оси в теоретической механике имеем

Моменты силы относительно точки и оси в теоретической механике

Согласно (5),

Моменты силы относительно точки и оси в теоретической механике

следовательно,

Моменты силы относительно точки и оси в теоретической механике

Аналогично, для осей Моменты силы относительно точки и оси в теоретической механике и Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Окончательно

Моменты силы относительно точки и оси в теоретической механике

По формулам (13) можно вычислить моменты силы относительно прямоугольных осей координат.

По этим формулам получаются необходимые знаки для  Моменты силы относительно точки и оси в теоретической механике, если проекции силы Моменты силы относительно точки и оси в теоретической механике на оси координат и координаты Моменты силы относительно точки и оси в теоретической механике точки приложения силы подставлять в них со знаками этих величин.

При решении задач момент силы относительно какой-либо оси часто получают, используя его определение, т. е. проецируя силу на плоскость, перпендикулярную оси, и вычисляя затем алгебраический момент этой проекции относительно точки пересечения оси с этой плоскостью.

Момент пары сил. Сложение пар сил. Равновесие пар сил

При изучении теоретической механики необходимо совершенно отчетливо уяснить, что в статике рассматриваются два простейших элемента: сила и пара сил. Любые две силы, кроме сил, образующих пару, всегда можно заменить одной —сложить их (найти равнодействующую). Пара сил нс поддается дальнейшему упрощению, она не имеет равнодействующей и является простейшим элементом.

Действие пары сил на тело характеризуется ее моментом — произведением одной из сил пары на ее плечо (на кратчайшее расстояние между линиями действия сил, образующих пару).

Единицей момента пары сил в Международной системе служит 1 нм (ньютон-метр = 1 н-1ж), а в системе МКГСС (технической)— 1 кГ-м.

Несколько пар сил, действующих на тело в одной плоскости, можно заменить одной парой сил (равнодействующей парой), момент которой равен алгебраической сумме моментов данных пар:

Моменты силы относительно точки и оси в теоретической механике

При равновесии пар сил

Моменты силы относительно точки и оси в теоретической механике
Если пары сил действуют в одной плоскости, то при решении задач достаточно рассматривать моменты пар как алгебраические величины. Причем знак момента определяется в зависимости от направления вращающего действия пары сил.

Дальнейшее изложение основано на правиле, т. е. считается момент положительным, если пара сил действует против хода часовой стрелки, если же пара сил действует на тело но ходу часовой стрелки, то момент считается отрицательным.

В том случае когда пары сил действуют на тело будучи расположенными в различных плоскостях, гораздо удобнее рассматривать пару сил как вектор, направленный перпендикулярно
Моменты силы относительно точки и оси в теоретической механике

к плоскости действия пары сил (рис. 62). Направление вектора в зависимости от направления вращательного действия пары определяется по направлению движения винта с правой нарезкой.

Задача 1.

Определить момент пары сил (рис. 63), если Моменты силы относительно точки и оси в теоретической механикен, АВ — 0,5 м и а = 30°.

Решение.

1.    При определении момента пары сил нужно прежде всего правильно определить плечо пары. При этом необходимо различать следующие понятия: плечо пары сил и расстояние между точками приложения сил нары.

Так как в механике твердого тела сила—скользящий вектор, то действие силы не изменяется при переносе точки ее приложения вдоль линии ее действия. Значит расстояние между точками приложения сил, образующих пару, можно изменять неограниченно. Но плечо пары при этом переносе остается неизменным.

В частном случае расстояние между точками приложения сил, образующих пару, может быть равно плечу.

Чтобы определить плечо данной пары из точки приложения одной из сил, например из точки В, восставим перпендикуляр ВС к линии действия другой силы. Расстояние ВС и есть плечо данной пары сил. Расстояние между точками приложения сил, образующих пару, АВ=0,5 м.

Легко видеть, что

Моменты силы относительно точки и оси в теоретической механике
2.    Найдем момент пары сил:

Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Задача 2.

Как изменится момент пары сил Моменты силы относительно точки и оси в теоретической механике показанной на рис. 64, а (P = 50 н, AВ=0,4 м и а=135), если

повернуть силы Моменты силы относительно точки и оси в теоретической механике так, чтобы они стали перпендикулярными АВ? Решение.

1.    Найдем момент пары при заданном положении ее сил (рис. 64, а).

Из точки В восставим перпендикуляр ВС к линиям действия сил Моменты силы относительно точки и оси в теоретической механике и найдем его длину:

Моменты силы относительно точки и оси в теоретической механике

Момент пары при заданном положении сил

Моменты силы относительно точки и оси в теоретической механике
2. Повернем силыМоменты силы относительно точки и оси в теоретической механике из заданного положения на угол Моменты силы относительно точки и оси в теоретической механике=а°— 90э в направлении против хода часовой стрелки (рис. 64, б). При таком положении сил относительно АВ плечом пары сил является расстояние между точками их приложения, поэтому

Моменты силы относительно точки и оси в теоретической механике
3.    Сравнивая полученные результаты, видим, что после поворота сил момент пары увеличивается на 20—14,5 = 5,85 н-м.

4.    Легко заметить, что силы Моменты силы относительно точки и оси в теоретической механикемогут достичь перпендикулярного положения к АВ после их поворота на угол у в направлении по ходу часовой стрелки (рис. 64, в). В том случае плечом пары является тот же отрезок АВ, но момент пары

Моменты силы относительно точки и оси в теоретической механике
Момент пары сил изменяет свой знак.

Задача 3.

К точкам А, С и В, D, образующим вершины квадрата со стороной 0,5 м (рис. 65, а), приложены равные по модулю силы (Р = 12н) таким образом, что они образуют две пары сил

Моменты силы относительно точки и оси в теоретической механике Определить момент равнодействующей пары сил

Решение 1.

Плечи у обеих пар сил равны стороне квадрата поэтому

Моменты силы относительно точки и оси в теоретической механике

Решение 2.
1.    Перенесем силы Моменты силы относительно точки и оси в теоретической механике из точек Моменты силы относительно точки и оси в теоретической механикев точки В и D (рис. 65, б). В точках В и D получаются системы сходящихся сил Моменты силы относительно точки и оси в теоретической механике иМоменты силы относительно точки и оси в теоретической механике одинаковыми модулями.

2.    Сложим попарно эти силы у каждой из точек В и D. В обоих случаях

Моменты силы относительно точки и оси в теоретической механике

3.    Силы R, модули которых теперь известны, направлены перпендикулярно к диагонали BD квадрата. Значит эта диагональ является плечом вновь образовавшейся пары сил Моменты силы относительно точки и оси в теоретической механике заменяющей собой две данные.

4.    Найдем момент пары Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

и, следовательно,

Моменты силы относительно точки и оси в теоретической механике

Эту пару в соответствии со вторым решением можно представить в виде пары Моменты силы относительно точки и оси в теоретической механике с плечом BD (диагональю данного квадрата).

Но можно равнодействующую пару представить и в любом другом виде, например в виде сил Q = 24 и, приложенных к двум любым вершинам квадрата ABCD (рис. 65, в)

Моменты силы относительно точки и оси в теоретической механике

  • Заказать решение задач по теоретической механике

Задача 4.

На прямоугольник ABCD (рис. 67) вдоль его длинных сторон действует пара сил Моменты силы относительно точки и оси в теоретической механике Какую пару сил нужно приложить к прямоугольнику, направив силы вдоль его коротких сторон, чтобы уравновесить пару Моменты силы относительно точки и оси в теоретической механике

Решение.

1.    Момент данной пары сил

Моменты силы относительно точки и оси в теоретической механике

необходимо уравновесить парой, момент которой обозначим Л1м. Тогда, согласно условию равновесия,

Моменты силы относительно точки и оси в теоретической механике

Откуда

Моменты силы относительно точки и оси в теоретической механике

2.    Обозначив силы, образующие искомую пару Моменты силы относительно точки и оси в теоретической механике замечая, что ее плечо равно ВС, получим
ОтсюдаМоменты силы относительно точки и оси в теоретической механике

•Значит к прямоугольнику необходимо приложить пару сил с положительным (направленным против хода часовой стрелки) моментом, равным 48 н м. Силы, образующие эту пару, равняются

Моменты силы относительно точки и оси в теоретической механике

20 н каждая и одна из них должна действовать вдоль стороны АВ от А к В, вторая — вдоль стороны CD от С к D.

Задача 5.

Прямолинейный стержень АВ должен находиться в равновесии в положении, показанном на рис. 68, а (угол а = Моменты силы относительно точки и оси в теоретической механике При этом в точках А и В на стержень действуют вертикальные силы Моменты силы относительно точки и оси в теоретической механикеобразующие пару Моменты силы относительно точки и оси в теоретической механикеКакие две равные силы нужно приложить к стержню в точках С и D, направив их перпендикулярно к стержню, чтобы обеспечить равновесие. АВ = 3 м, CD— 1 м, Моменты силы относительно точки и оси в теоретической механике

Решение.

1. Пару сил можно уравновесить только парой сил. Поэтому в точках С и D к стержню необходимо приложить две равные силы так, чтобы они образовали пару сил с моментом, равным моменту пары Моменты силы относительно точки и оси в теоретической механике но имеющим противоположный знак.

Так как пара Моменты силы относительно точки и оси в теоретической механике поворачивает стержень на ходу часовой стрелки, искомые силы должны поворачивать его против хода часовой стрелки (рис. 68, б).

2. Применяем условие равновесия:

Моменты силы относительно точки и оси в теоретической механике

Или, подставив значения моментов,
 гдеМоменты силы относительно точки и оси в теоретической механике

ОтсюдаМоменты силы относительно точки и оси в теоретической механике

Следовательно, в точках С и D необходимо приложить силы Моменты силы относительно точки и оси в теоретической механике по 150 н каждая, как показано на рис. 68, б.

Момент силы относительно точки

Момент силы относительно точки при решении задач по статике, а затем и по динамике имеет не менее важное значение, чем проекции сил. Поэтому нужно уметь определять эту величину безошибочно. Обычно его числовое значение находят неправильно из-за ошибок, допускаемых при определении плеча.

Чтобы не допускать ошибок при определении моментов сил относительно точки, рекомендуется придерживаться следующего порядка:

Моменты силы относительно точки и оси в теоретической механике

  1. Прежде всего нужно научиться «видеть» силу, момент которой определяем, и центр моментов – точку, относительно которой определяем момент (рис. 70 – сила Моменты силы относительно точки и оси в теоретической механике и центр моментов – точка В).
  2. Затем из центра момента проводим прямую ВЬ перпендикулярно к линии действия силы DF. Длина перпендикуляра ВС от центра момента до линии действия силы и есть плечо.
  3. Потом находим знак момента. При этом если сила стремится повернуть плечо вокруг центра момента против хода часовой стрелки, то считаем момент положительным; если по ходу часовой стрелки, то отрицательным (тоже правило, что и при определении знака момента пары сил).
  4. Находим числовое значение момента силы относительно точки, умножив модуль силы на плечо.

По рис. 70

Моменты силы относительно точки и оси в теоретической механике

В частном случае момент силы может равняться нулю. Это происходит тогда, когда центр моментов лежит на линии действия силы, при этом плечо равняется нулю. По рис. 70 момент силы Моменты силы относительно точки и оси в теоретической механике относительно точки А (или С) равен нулю.

Задача 6.

Определить моменты шести заданных сил (рис. 71) относительно точек А, В и С, еслиМоменты силы относительно точки и оси в теоретической механике Моменты силы относительно точки и оси в теоретической механике

Решение 1 — определение моментов гнести заданных сил относительно точки А (рис. 71, а).

1.    Центр моментов в точке А. Через точку А проходят линии действия трех сил Моменты силы относительно точки и оси в теоретической механикеЗначит для этих сил плечи равны нулю. Следовательно,

Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

2.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Опустив из точки А на линию действия

силы Моменты силы относительно точки и оси в теоретической механике перпендикуляр AD, получим плечо силы Моменты силы относительно точки и оси в теоретической механикеДлину AD легко найти, так как это катет треугольника ABD:

Моменты силы относительно точки и оси в теоретической механике

3.    Величина момента отрицательная (сила Моменты силы относительно точки и оси в теоретической механикеповорачивает плечо AD вокруг точки А но ходу часовой стрелки), следовательно,

Моменты силы относительно точки и оси в теоретической механике

4.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Плечом силы Моменты силы относительно точки и оси в теоретической механике является перпендикуляр АЕ к СЕ – линии действия силы Моменты силы относительно точки и оси в теоретической механикеИз треугольника АСЕ

Моменты силы относительно точки и оси в теоретической механике

Величина момента положительная (плечо АЕ поворачивается около точки А силой Моменты силы относительно точки и оси в теоретической механике против хода часовой стрелки). Следовательно,

Моменты силы относительно точки и оси в теоретической механике

5.    Находим момент силы Моменты силы относительно точки и оси в теоретической механикеПлечом силы Моменты силы относительно точки и оси в теоретической механике относительно точки А является отрезок АС, так как сила Моменты силы относительно точки и оси в теоретической механике направлена к АС перпендикулярно. Величина момента отрицательная:

Моменты силы относительно точки и оси в теоретической механике

Решение 2 — определение моментов сил относительно точки В (рис. 71, б).

1.    Центр моментов в точке В.

2.    Через точку В проходят линии действия двух сил: Моменты силы относительно точки и оси в теоретической механике Следовательно,

Моменты силы относительно точки и оси в теоретической механике

3.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Плечо силы Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Величина момента отрицательная:

Моменты силы относительно точки и оси в теоретической механике

4.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Плечо силы Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Момент отрицательный:

Моменты силы относительно точки и оси в теоретической механике

5.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Плечо силы Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Величина момента положительная:

Моменты силы относительно точки и оси в теоретической механике

6.    Находим момент силы Моменты силы относительно точки и оси в теоретической механике Плечом силыМоменты силы относительно точки и оси в теоретической механикеявляется отрезок ВС. Момент положительный:

Моменты силы относительно точки и оси в теоретической механике

Решение 3 — определение моментов сил относительно точки С (рис. 71, в) рекомендуется выполнить самостоятельно.
 

Ответ. Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

В задаче  силы расположены так, что либо их плечи определяются очень просто – как катеты прямоугольных треугольников, в которых даны гипотенузы, либо плечи заданы в условии задачи (ВС и АС).

Но иногда некоторые силы заданной системы оказываются расположенными относительно выбранного центра моментов так, что определить длину плеча трудно и требуется, например, предварительно вычислить длины еще одного-двух отрезков. В таких случаях целесообразно силу разложить на две составляющие и применить для определения ее момента теорему Вариньона.

Моменты силы относительно точки и оси в теоретической механике

Задача 7.

Определить моменты относительно точки Моменты силы относительно точки и оси в теоретической механикеМоменты силы относительно точки и оси в теоретической механикея, приложенных в точках А, В и С, как показано на рис. 72, а. УглыМоменты силы относительно точки и оси в теоретической механике ВС =1,5 м.

Решение.

1.    Относительно точки А моменты силМоменты силы относительно точки и оси в теоретической механике определяются аналогично
Моменты силы относительно точки и оси в теоретической механике
2. Находим момент силы Моменты силы относительно точки и оси в теоретической механикеВариант 1-й (рис. 72, а). Плечо АЕ силы Моменты силы относительно точки и оси в теоретической механике в данном случае определяем из Моменты силы относительно точки и оси в теоретической механикев котором известен только Моменты силы относительно точки и оси в теоретической механике. Значит нужно предварительно определить одну из сторон. Найдем AF:

AF = AB – FB.
Величину FB находим из Моменты силы относительно точки и оси в теоретической механике в котором Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

следовательно,

Моменты силы относительно точки и оси в теоретической механике

И теперь можем определить плечо АЕ:

Моменты силы относительно точки и оси в теоретической механике

Раскрываем скобки и заменяем Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

Момент положительный, следовательно:

Моменты силы относительно точки и оси в теоретической механике

Вариант 2-й. Чтобы избежать определения плеча АЕ, которое в данном случае находится после предварительного вычисления двух отрезков (FB и AF), необходимо момент силы Моменты силы относительно точки и оси в теоретической механике относительно точки А найти по теореме Вариньона: момент равнодействующей плоской системы сил относительно любой точки, лежащей в той же плоскости, равен алгебраической сумме моментов составляющих сил относительно той же точки.

Разложим силу Моменты силы относительно точки и оси в теоретической механике на две составляющие: одну, направленную вдоль отрезка ВС, и другую — перпендикулярно к нему (рис. 72, б).

Модуль первой составляющей Моменты силы относительно точки и оси в теоретической механике а ее плечо — отрезок АВ, длина которого задана. Модуль второй составляющей Моменты силы относительно точки и оси в теоретической механике а ее плечо АК = ВС =1,5 м.

Применяя теорему Вариньона, получаем

Моменты силы относительно точки и оси в теоретической механике

Как видно, получено точно такое же значение момента, что и в первом варианте решения:

Моменты силы относительно точки и оси в теоретической механике

Моменты силы относительно точки и оси в теоретической механике

  • Теория пар сил
  • Приведение системы сил к простейшей системе
  • Условия равновесия системы сил
  • Плоская система сил
  • Аксиомы и теоремы статики
  • Система сходящихся сил
  • Плоское движение тела
  • Принцип виртуальных перемещений

Момент силы. Условия равновесия рычага

  1. Устройство и виды рычагов
  2. Момент силы
  3. Правило моментов для двух сил
  4. Правило моментов для нескольких сил
  5. Применение рычагов в быту и технике
  6. Задачи
  7. Лабораторная работа №9. Проверка условия равновесия рычага

п.1. Устройство и виды рычагов

Устройство и виды рычагов Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

Рычаг состоит из перекладины и опоры.
Точка опоры делит перекладину рычага на два плеча рычага.

Назначение рычага – получить выигрыш в силе или расстоянии.
Если к плечу рычага достаточно приложить меньшую силу, то переместить конец рычага придётся на бóльшее расстояние: выигрыш в силе оборачивается проигрышем в расстоянии.
И наоборот, если удаётся сократить перемещение конца рычага, придётся приложить бóльшую силу: выигрыш в расстоянии оборачивается проигрышем в силе.

В зависимости от взаимного расположения точки опоры и нагрузки различают три вида рычагов.

п.2. Момент силы

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы

На рисунке (l_1) – плечо силы (F_1, l_2) – плечо силы (F_2).

Силы вращают рычаг вокруг точки опоры – по часовой или против часовой стрелки.

Ось вращения проходит через точку опоры перпендикулярно плоскости вращения.

На рисунке сила (F_1) вращает рычаг против часовой стрелки, а сила (F_2) – по часовой стрелке.

Момент силы – это произведение силы, вращающей тело, на её плечо. $$ M=Fl $$ В системе СИ единица измерения момента силы – Н·м.

Момент силы определяется не для всего тела, а для некоторой его точки, удалённой от центра (оси) вращения. Эта величина имеет смысл только для вращающихся тел.

п.3. Правило моментов для двух сил

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил $$ F_1l_1=F_2l_2 $$

п.4. Правило моментов для нескольких сил

Правило моментов для нескольких сил
Рычаг находится в равновесии, если сумма моментов всех сил, вращающих его по ходу часовой стрелки, равен сумме моментов всех сил, вращающих его против хода часовой стрелки.

Например:

Правило моментов для нескольких сил Силы (F_1, F_2, F_3) вращают рычаг против часовой стрелки, а сила (F_4) – по часовой стрелке. Поэтому: $$ F_1l_1+F_2l_2+F_3l_3=F_4l_4 $$

п.5. Применение рычагов в быту и технике

Рычаги первого рода

Весы
Весы
Предмет, вес которого нужно измерить, — это нагрузка, а гиря создает усилие. Они равны, так как находятся на одном расстоянии от точки опоры.
Рычажные весы
Рычажные весы
Точка опоры смещена относительно центра. Грузило передвигается по основанию, пока не уравновесит взвешиваемый объект.
Гвоздодёр
Гвоздодёр
Усилие ручки увеличивается плечом и вытаскивает гвоздь. Нагрузкой здесь является сопротивление гвоздя.
Ручная тележка
Ручная тележка
Небольшое усилие, прикладываемое к ручкам тележки, позволяет поднимать тяжелый груз.
Плоскогубцы
Плоскогубцы
Составной рычаг, пара простых рычагов, соединенных в точке опоры. Нагрузка — сопротивление предмета захвату инструментом.
Ножницы
Ножницы
Составной рычаг первого рода, развивают мощное режущее действие очень близко к месту крепления. Нагрузка — сопротивление материала лезвиям.

Рычаги второго рода

Рычаги третьего рода

п.6. Задачи

Задача 1. Для каждого положения тела укажите плечо силы.
Задача 1
При необходимости достраиваем линию действия силы и опускаем на неё перпендикуляр из точки опоры. Этот перпендикуляр и есть искомое плечо.

Задача 2. Грузы уравновешены на рычаге. Отношение плеч рычага 1:5. Масса большего груза 2,5 кг. Найдите массу меньшего груза.

Дано:
(frac{l_1}{l_2}=frac 15)
(m_1=2,5 text{кг})
__________________
(m_2-?)

Задача 2
По правилу моментов begin{gather*} F_1l_1=F_2l_2 end{gather*} На обоих концах рычага действуют силы тяжести: $$ F_1=m_1g, F_2=m_2g $$ Получаем: begin{gather*} m_1gl_1=m_2gl_2\[7pt] m_2=frac{m_1l_1}{l_2} end{gather*} Подставляем: $$ m_2=2,5cdot frac 15=0,5 (text{кг}) $$ Ответ: 0,5 кг

Задача 3. На концах рычага действуют силы 15 Н и 60 Н, направленные вниз. Рычаг находится в равновесии. Расстояние между точками приложения сил 1 м. Где расположена точка опоры?

Дано:
(F_1=15 text{Н})
(F_2=60 text{Н})
(l_1+l_2=1 text{м})
__________________
(l_1, l_2-?)

Задача 3
По правилу моментов begin{gather*} F_1l_1=F_2l_2. end{gather*} Получаем систему уравнений begin{gather*} left{ begin{array}{l l} 15l_1=60l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 4l_2+l_2=1 end{array} right. Rightarrow \[7pt] Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 5l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=0,8 \ l_2=0,2 end{array} right. end{gather*} Ответ: 0,8 м от точки приложения первой силы и 0,2 м от точки приложения второй силы.

Задача 4*. К балке, расположенной на двух опорах А и В подвешен груз массой 500 кг. Расстояние от точки подвеса груза к одному из концов балки в 4 раза больше, чем к другому. С какой силой балка давит на каждую из опор? Примите (gapprox 10 text{м/с}^2). Ответ запишите в килоньютонах.

Дано:
(m=500 text{кг})
(gapprox 10 text{м/с}^2)
(OB=4OA)
__________________
(F_A, F_B-?)

Задача 4*
Сила тяжести (F_{text{т}}=mg), направленная вниз, уравновешивается силами реакции опор (F_A) и (F_B), направленными вверх. begin{gather*} F_A+F_B=mg end{gather*} По правилу моментов при равновесии begin{gather*} F_Acdot OA=F_Bcdot OB=F_Bcdot 4OARightarrow F_A=4F_B \[7pt] F_A+F_B=5F_B=mgRightarrow F_B=frac{mg}{5} end{gather*} Получаем: begin{gather*} F_B=frac{500cdot 10}{5}=1000 text{Н}=1 text{кН}, F_A=4cdot 100=4000 text{Н}=4 text{кН} end{gather*} Ответ: 4 кН и 1 кН

п.7. Лабораторная работа №9. Проверка условия равновесия рычага

Цель работы
Исследовать условия равновесия рычага под действием двух параллельных сил.

Теоретические сведения

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В работе используется рычаг 1-го рода, в котором опора располагается между точками приложения сил.

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг. Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы – это произведение силы, вращающей тело, на её плечо: (M=Fl).

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил begin{gather*} M_1=M_2\[7pt] F_1l_1=F_2l_2 end{gather*}

В работе используется лабораторный рычаг с отверстиями диаметром 4 мм, находящимися на расстоянии 5 см друг от друга. Отверстий нечетное количество; центральное отверстие (центр тяжести) используется для подвеса рычага на штативе в положении равновесия. Абсолютную погрешность определения плеча на данном рычаге принимаем равной половине диаметра отверстия $$ Delta l=frac D2=2 text{мм} $$

Для измерения веса груза используется динамометр с ценой деления $$ d=0,1 text{Н}. $$

Абсолютная погрешность определения веса $$ Delta_F=frac d2=0,05 text{Н}. $$

Относительные погрешности измерений: $$ delta_l=frac{Delta_l}{l}, delta_F=frac{Delta_F}{F}, delta_M=delta_l+delta_F $$

Абсолютная погрешность определения момента силы $$ Delta_M=Mcdot delta_M $$

Погрешности определения отношений сил и плечей: begin{gather*} r_F=frac{F_1}{F_2}, delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}, Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}\[7pt] r_l=frac{l_2}{l_1}, delta_{rF}=delta_{rl}frac{Delta_l}{l_1}+frac{Delta_l}{l_2}, Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl} end{gather*}

Приборы и материалы
Лабораторный рычаг, штатив, стержень, динамометр, набор грузов.

Ход работы

1. Закрепите стержень в штативе, наденьте на него рычаг. Если стержень проходит через центральное отверстие рычага, он находится в равновесии.
2. Подвесьте три груза на динамометре, запишите их вес (F_1).
3. Подвесьте грузы слева от оси вращения рычага на расстоянии 5 см.
4. С помощью динамометра определите, какую силу нужно приложить на расстоянии 15 см справа от оси вращения, чтобы удерживать рычаг в равновесии.
5. Как направлены в этом случае силы, действующие на рычаг? Запишите длину плеч этих сил.
6. Найдите моменты сил (M_1) и (M_2), их относительные и абсолютные погрешности.
7. Вычислите отношение сил (frac{F_1}{F_2}) и плеч (frac{l_2}{l_1}) для этого случая, погрешности их определения.
8. Сделайте выводы.

Результаты измерений и вычислений

(F_1, text{Н}) (l_1, text{см}) (F_2, text{Н}) (l_2, text{см}) (F_1/F_2) (l_2/l_1)
2,9 5 1,0 15 2,9 3,0

Погрешности прямых измерений: $$ Delta_l=2 text{мм}=0,2 text{см}, Delta_F=0,05 text{Н} $$ Найдем моменты сил и погрешности вычислений: begin{gather*} M_1=F_1cdot l_1=2,9cdot 5=14,5 (text{Н}cdot text{м})\[7pt] delta_{M1}=frac{Delta_l}{l_1}+frac{Delta_F}{F_1}=frac{0,2}{5}+frac{0,05}{2,9}approx 0,04+0,017=0,057=5,7text{%} \[7pt] Delta_{M1}=M_1cdot delta_{M1}=14,5cdot 0,057approx 0,8 (text{Н}cdot text{м})\[7pt] M_1=(14,5pm 0,8) text{Н}cdot text{м}\[7pt] \[7pt] M_2=F_2cdot l_2=1,0cdot 15=15,0 (text{Н}cdot text{м})\[7pt] delta_{M2}=frac{Delta_l}{l_2}+frac{Delta_F}{F_2}=frac{0,2}{15}+frac{0,05}{1,0}approx 0,013+0,05=0,063=6,3 text{%} \[7pt] Delta_{M2}=M_2cdot delta_{M2}=15,0cdot 0,063approx 0,9 (text{Н}cdot text{м})\[7pt] M_2=(15,0pm 0,9) text{Н}cdot text{м} end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ M_1=M_2 $$

Погрешность вычислений для (frac{F_1}{F_2}) begin{gather*} delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}=frac{0,05}{2,9}+frac{0,05}{1,0}approx 0,017+0,05=0,067=6,7text{%}\[7pt] Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}=2,9cdot 0,067approx 0,2\[7pt] frac{F_1}{F_2}=2,9pm 0,2 end{gather*}

Погрешность вычислений для (frac{l_2}{l_1}) begin{gather*} delta_{rl}=frac{Delta_l}{l_1}+frac{Delta_l}{l_2}=frac{0,2}{5}+frac{0,2}{15}approx 0,04+0,013=0,053=5,3text{%}\[7pt] Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl}=3,0cdot 0,053approx 0,2\[7pt] frac{l_2}{l_1}=3,0pm 0,2 end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ frac{F_2}{F_2}=frac{l_2}{l_1} $$

Выводы
На основании проделанной работы можно сделать следующие выводы.

Моменты сил, приложенных слева и справа от оси вращения рычага, равны $$ M_1=(14,5pm 0,8) text{Н}cdot text{м}, M_2=(15,0pm 0,9) text{Н}cdot text{м} $$ Таким образом, с учетом вычисленных погрешностей, (M_1=M_2) – правило моментов выполняется.

Отношения сил и плечей равны begin{gather*} frac{F_1}{F_2}=2,9pm 0,2, frac{l_2}{l_1}=3,0pm 0,2 end{gather*}

Таким образом, с учетом вычисленных погрешностей (frac{F_1}{F_2}=frac{l_2}{l_1}) – правило отношений выполняется.

Эксперименты подтвердили условие равновесия рычага.

Момент силы относительно точки и оси

Момент силы
относительно
точки О – это вектор, модуль которого
равен произведению модуля силы на плечо
– кратчайшее расстояние от точки О до
линии действия силы. Направление вектора
момента силы перпендикулярно плоскости,
проходящей через точку
и линию действия силы, так, что глядя по
направлению вектора момента, вращение,
совершаемое силой вокруг точки О,
происходит по часовой стрелке.

рис.1.2

Если известен
радиус-вектор
 точки
приложения силы относительно
точки О, то момент этой силы относительно
О выражается следующим образом:

.

(1.8)

Действительно,
модуль этого векторного произведения:

.
(1.9)

В соответствии
с рисунком ,
поэтому:

|.

(1.10)

Вектор ,
как и результат векторного произведения,
перпендикулярен векторами,
которые принадлежат плоскости Π.
Направление векторатаково,
что глядя по направлению этого вектора,
кратчайшее вращение откпроисходит по часовой стрелке. Другими
словами, вектордостраивает
систему векторов () до
правой тройки.

Зная координаты
точки приложения силы в системе координат,
начало которой совпадает с точкой О, и
проекцию силы на эти оси координат,
момент силы может быть определен
следующим образом:

 .
(1.11)

Момент силы
относительно оси

Проекция момента
силы относительно точки на некоторую
ось, проходящую через эту точку, называется
моментом силы относительно оси.

рис.1.3

Момент силы
относительно оси вычисляется как момент
проекции силы на плоскость Π, перпендикулярную
оси, относительно точки пересечения
оси с плоскостью Π:

(1.12)

Знак момента
определяется направлением вращения,
которое стремится придать телу сила F⃗ Π.
Если, глядя по направлению оси Oz сила
вращает тело по часовой стрелке, то
момент берется со знаком “плюс”, иначе
– “минус”.

1.2 Постановка задачи.

Определение реакций
опор и шарнира С.

P1,
кН

M,
кН*м

q,
кН/м

5,0

24,0

0,8

1.3 Алгоритм решения задачи.

Разделим конструкцию
на части и рассмотрим равновесие каждой
из конструкции.

Рассмотрим
равновесие всей конструкции в целом.
(рис.1.1)

рис. 1.1

Составим 3 уравнения
равновесия для всей конструкции в целом:

(1)

(2)

(3)

Рассмотрим
равновесие правой части конструкции.(рис
1.2)

рис.1.2

Составим 3 уравнения
равновесия для правой части конструкции:

(4)

(5)

(6)

Из уравнения 3
находим YA

кН

Найдем Q:

кН/м

Найдем угол β:

Из уравнения 2
находим YB

кН

Из уравнения 6
находим XB

кН

Из уравнения 5
находим YC

кН

Из уравнения 4
находим XC

кН

Из уравнения 1
находим XA

кН

Составим уравнение
проверки:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

iSopromat.ru

Плечо силы — кратчайшее расстояние между линией действия силы и связанной с ней точкой (полюсом или осью вращения) при создании силой момента.

Определяется длинной нормали (перпендикуляра) к линии усилия проведенной из рассматриваемой точки.

Обозначается: L, l или h. Измеряется в метрах [м].

Плечо силы – один из двух множителей определяющих момент силы.

Наш короткий видеоурок про момент и плечо силы с примерами:

О плече силы можно говорить только тогда, когда есть прямая связь между силой и точкой относительно которой возникает момент.

Порядок нахождения плеча силы

Рассмотрим порядок нахождения плеча силы F относительно точки A.

Для этого покажем прямую a, по направлению действия силы F

Из точки A опустим перпендикуляр к прямой a.

Длина этого перпендикуляра является плечом силы.

Примеры определения плеча силы

  1. Сила расположена перпендикулярно оси стержня и известно расстояние между точками A и B.

    Плечо силы относительно точки A равно длине отрезка AB.
  2. Сила расположена под определенным углом к оси стержня

    Плечо силы относительно точки B составляет AB×cos30°
  3. Известно расстояние от точки до линии действия силы

    Плечо силы относительно точки B равно 3м.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Момент силы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или замедляется, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

  • Сила — это физическая векторная величина, является мерой действия тела на другое тело.

Она измеряется в ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Плечо силы

Для начала давайте разберемся, что такое плечо силы — оно нам сегодня очень пригодится.

Представьте человека. Совершенно обычного. Если он совершенно обычный, у него точно будут плечи — без них получится уже какой-то инопланетянин. Если мы прочертим прямую вдоль линии плеча, а потом еще одну — вдоль линии руки — мы получим две пересекающиеся прямые. Угол между такими прямыми будет равен 90 градусов, а значит эти линии перпендикулярны.

Как анатомическое плечо перпендикулярно руке, так и в физике плечо перпендикулярно, только уже линии действия силы.

То есть перпендикуляр, проведенный от точки опоры до линии, вдоль которой действует сила —это плечо силы.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Рычаг

В каждом дворе есть качели, для которых нужны два качающихся (если в вашем дворе таких нет, посмотрите в соседнем). Большая доска ставится посередине на точку опоры. По сути своей, качели — это рычаг.

Рычаг — простейший механизм, представляющий собой балку, вращающуюся вокруг точки опоры.

Хорошо, теперь давайте найдем плечо этой конструкции. Возьмем правую часть качелей. На качели действует сила тяжести правого качающегося, проведем перпендикуляр от линии действия силы до точки опоры. Получилась, что плечо совпадает с рычагом, разве что рычаг — это вся конструкция, а плечо — половина.

Давайте попробуем опустить качели справа, тогда что получим: рычаг остался тем же самым по длине, но вот сместился на некоторый угол, а вот плечо осталось на том же месте. Если направление действия силы не меняется, как и точка опоры, то перпендикуляр между ними невозможно изменить.

Момент силы

При решении задач на различные силы нам обычно хватало просто сил. Сила действует всегда линейно (ну в худшем случае под углом), поэтому очень удобно пользоваться законами Ньютона, приравнивать разные силы. Это работало с материальными точками, но не будет так просто применяться к телам, у которых есть форма и размер.

Вот мы приложили силу к краю палки, но при этом не можем сказать, что на другом ее конце будут то же самое ускорение и та же самая сила. Для этого мы вводим такое понятие, как момент силы.

Момент силы — это произведение силы на плечо. Для определения физического смысла можно сказать, что момент — это вращательное действие.

Момент силы

M = Fl

M — момент силы [Н*м]
F — сила [Н]
l — плечо [м]

Вернемся к примеру с дверями. Вот мы приложили силу к краю двери — туда, где самый длинный рычаг. Получаем некоторое значение момента силы.

Теперь ту же силу приложим ближе к креплению двери, там, где плечо намного короче. По формуле получим момент меньшей величины.

На себе мы это ощущаем таким образом: нам легче толкать дверь там, где момент больше. То есть, чем больше момент, тем легче идет вращение.

То же самое можно сказать про гаечный ключ. Чтобы закрутить гайку, нужно взяться за ручку дальше гайки.

В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения плеча.

Расчет момента силы

Сейчас рассмотрим несколько вариантов того, как момент может рассчитываться. По идее просто нужно умножить силу на плечо, но поскольку мы имеем дело с векторами, все не так просто.

Если сила расположена перпендикулярно оси стержня, мы просто умножаем модуль силы на плечо.

Расстояние между точками A и B — 3 метра.

Момент силы относительно точки A:

Если сила расположена под углом к оси стержня, умножаем проекцию силы на плечо.

Обратите внимание, что такие задания могут встретиться только у учеников не раньше 9 класса!

Момент силы относительно точки B:

Если известно самое короткое расстояние от точки до линии действия силы, момент рассчитывается как произведение силы на это расстояние (плечо).

Момент силы относительно точки B:

Правило моментов

Вернемся к нашим баранам качелям. Мы умудряемся на них качаться, потому что существует вращательное действие — момент. Силы, с которыми мы действуем на разные стороны этих качелей могут быть разными, но вот моменты должны быть одинаковыми.

Правило моментов говорит о том, что если рычаг не вращается, то сумма моментов сил, поворачивающих рычаг против часовой стрелки, равна сумме моментов сил, поворачивающих рычаг по часовой стрелке.

Это условие выполняется относительно любой точки.

Правило моментов

M1 + M2 +. + Mn = M’1 + M’2 +. + M’n

M1 + M2 +. + Mn — сумма моментов сил, поворачивающих рычаг по часовой стрелке [Н*м]

Давайте рассмотрим этот закон на примере задач.

Задача 1

К левому концу невесомого стержня прикреплен груз массой 3 кг.

Стержень расположили на опоре, отстоящей от его левого конца на 0,2 длины стержня. Чему равна масса груза, который надо подвесить к правому концу стержня, чтобы он находился в равновесии?

Решение:

Одним из условий равновесия стержня является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно точки опоры. Момент, создаваемый левым грузом равен mgL5 он вращает стержень против часовой стрелки. Момент, создаваемый правым грузом:Mg4L5 — он вращает по часовой.

Приравнивая моменты, получаем, что для равновесия к правому концу стержня необходимо подвесить груз массой
M = m : 4 = 3 : 4 = 0,75 кг

Ответ: для равновесия к правому концу стержня необходимо подвесить груз массой 0,75 кг

Задача 2

Путешественник несёт мешок с вещами на лёгкой палке. Чтобы удержать в равновесии груз весом 80 Н, он прикладывает к концу B палки вертикальную силу 30 Н. OB = 80 см. Чему равно OA?

Решение:

По правилу рычага: FB/FA=|OA|/|OB| где FA и FB — силы, приложенные соответственно к точкам A и B. Выразим длину OA:

Ответ: расстояние ОА равно 30 см

Задача 3

Тело массой 0,2 кг подвешено к правому плечу невесомого рычага (см. рисунок). Груз какой массы надо подвесить ко второму делению левого плеча рычага для достижения равновесия?

Решение:

По правилу рычага m1g*l1=m2g*l2

Отсюда m2=l1/l2*m1=3/2*0,2 = 0,3 кг

Ответ: Масса груза равна 0,3 кг

Задача 4

На железной дороге для натяжения проводов используется показанная на рисунке система, состоящая из легких блоков и тросов, натягиваемых тяжелым грузом. Чему равна сила натяжения провода?

Решение:

Система на рисунке состоит из трех блоков: двух подвижных и одного неподвижного. Назначение неподвижного блока заключается только в том, что он меняет направление действия силы, однако никакого выигрыша в силе при этом не возникает. Каждый подвижный блок, напротив, дает выигрыш в силе.

Определим силу, с которой натянута первая нить. Груз растягивает ее с силой:
T = mg = 10*10 = 100 Н

Рассмотрим теперь первый подвижный блок. Так как вся система статична, полная сила, действующая на этот блок, должна быть равна нулю. Первая нить тянет его направо с суммарной силой 2T, значит, натяжение второй нити тоже должно быть равно 2T (вот он — выигрыш в силе). Аналогичное рассмотрение для второго подвижного блока показывает, что натяжение провода должно быть равно

Ответ: натяжение провода равно 400 Н

Задача 5 — a.k.a самая сложная задачка

Под действием силы тяжести mg груза и силы F рычаг, представленный на рисунке, находится в равновесии. Вектор силы F перпендикулярен рычагу, груз на плоскость не давит. Расстояния между точками приложения сил и точкой опоры, а также проекции этих расстояний на вертикальную и горизонтальную оси указаны на рисунке.

Если модуль силы F равен 120 Н, то каков модуль силы тяжести, действующей на груз?

Решение:

Одним из условий равновесия рычага является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно опоры рычага. Момент, создаваемый силой F, равен F*5 м и он вращает рычаг по часовой стрелке. Момент, создаваемый грузом относительно этой точки — mg*0,8 м, он вращает против часовой. Приравнивая моменты, получаем выражение для модуля силы тяжести

Ответ: модуль силы тяжести, действующей на груз равен 750 Н

Формула плеча силы

Определение и формула плеча силы

Рассмотрим рычаг с осью вращения находящийся в точке О. (рис.1). Силы $<overline>_1$ и $<overline>_2$, действующие на рычаг направлены в одну сторону.

Минимальное расстояние между точкой опоры (точка О) и прямой, вдоль которой действует на рычаг сила, называют плечом силы.

Для нахождения плеча силы следует из точки опоры опустить перпендикуляр к линии действия силы. Длинна данного перпендикуляра и станет плечом рассматриваемой силы. Так, на рис.1 расстояние $left|OAright|=d_1$- плечо силы $F_1$; $left|OAright|=d_2$- плечо силы $F_2$.

Рычаг находится в состоянии равновесия, если выполняется равенство:

Предположим, что материальная точка движется по окружности (рис.2) под действием силы $overline$ (сила действует в плоскости движения точки). В таком случае угловое ускорение ($varepsilon $) точки определяется тангенциальной составляющей ($F_<tau >$) силы $overline$:

где $m$ – масса материальной точки; $R$ – радиус траектории движения точки; $F_<tau >$ – проекция силы на направление скорости движения точки.

Если угол $alpha $ – это угол между вектором силы $overline$ и радиус – вектором $overline$, определяющим положение рассматриваемой материальной точки (Этот радиус- вектор проведен из точки О в точку А на рис.2), тогда:

Расстояние $d$ между центром O и линией действия силы $overline$ называют плечом силы. Из рис.2 следует, что:

Если на точку будет действовать сила ($overline$), направленная по касательной к траектории ее движения, то плечо силы будет равно $d=R$, так как угол $alpha $ станет равен $frac<pi ><2>$.

Момент силы и плечо

Понятие плечо силы иногда используют, для записи величины момента силы ($overline$), который равен:

где $overline$ – радиус – вектор проведенный к точке продолжения силы$ overline$. Модуль вектора момента силы равен:

Построение плеча силы

И так, плечом силы называют длину перпендикуляра, который проводят из некоторой выбранной точки, иногда ее называют полюсом (выбираемой произвольно, но при рассмотрении одной задачи один раз). При рассмотрении задач точку О выбирают обычно на пересечении нескольких сил) к силе (рис.3 (а)). Если точка О будет лежать на одной прямой с силами или на самой силе, то плечи сил будут равны нулю.

Если перпендикуляр не получается построить, то вектор силы продлевают в нужном направлении, после этого строят перпендикуляр (рис.3 (б)).

Примеры задач с решением

Задание. Какова масса меньшего тела ($m_1$), если его уравновешивает тело массой $m_2=<rm 2 >$кг? Тела находятся на невесомом рычаге (рис.3) отношение плеч рычага 1:4?

Решение. Основой решения задачи является правило равновесия рычага:

где силы, действующие на концы рычага равны по модулю силам тяжести, которые действуют на тела, следовательно, формулу (1.1) перепишем в виде:

Из выражения (1.2) получим искомую массу $m_1$:

Вычислим искомую массу:

Ответ. $m_1=0,5 кг$

Задание. Однородный стержень длинной $l $и массой $M$ расположен горизонтально. Один конец стержня в точке А закреплён так, что может вращаться вокруг этой точки, другой конец опирается на наклонную плоскость, угол наклона которой к горизонту равен $alpha $. На стержне на расстоянии $b $от точки А лежит небольшой груз. Каковы плечи сил, действующих на стержень?

Решение. Изобразим на рис.4 силы, действующие на стержень. Это: сила тяжести: $Moverline$, вес груза, расположенного на нем $overline

=m_1overline$, сила реакции наклонной плоскости: $overline$; сила реакции опоры в точке A: $overline’$.

Плечи сил будем искать относительно точки A. Плечо силы $overline$ будет равно нулю, так как сила приложена к стержню в точке А:

Плечо другой силы реакции опоры ($overline$) равно длине перпендикуляра AC:

Плечо силы $Moverline$ из рис.4 , так как сила тяжести приложена к центру масс стержня, который для однородного стержня находится на его середине:

Плечо силы $m_1overline,$ учитывая, что груз маленький и принимая его за материальную точку, равно:

[spoiler title=”источники:”]

http://skysmart.ru/articles/physics/moment-sily

http://www.webmath.ru/poleznoe/fizika/fizika_137_formula_plecha_sily.php

[/spoiler]

Добавить комментарий