Как найти площадь арки циклоиды

Из настоящей статьи Вы научитесь находить площадь фигуры в пространстве, которая задана параметрическими кривыми.
Для этого Вам нужно знать минимум формул и хорошые знания из интегрирования.
Если имеем x=x(t), y=y(t) – параметрическое уравнение кусково-гладкой простой замкнутой кривой на промежутке [0;T], что проходит против часовой стрелки и ограничивает слева от себя фигурой то ее площадь S находим за формулой
Данный цикл задач в первую очередь облегчит учебу студентам мех-мату Львовского национального университета имени Ивана Франко при прохождении практикума из математического анализа.
Студенты всех Вузов могут набираться практики на подобных интегралах, и изучать методику вычисления площади.
Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. “Практикум из математического анализа” (рядом стоит номер из сборника Б. П. Демидовича). 

Для запоминания основных моментов схема интегрирования и нахождения площадей из примера в пример будет повторяться. По возможности сами решения будут проиллюстрированы подинтегральными кривыми.

Прибор 2.100 (2413) Найти площадь фигуры, которая ограничена кривыми, заданными в параметрической форме x=a(t-sin(t)), y=a(1-cos(t)) на промежутке [0;2*Pi] и y=0.

Вычисление: Циклоида – плоская трансцендентная кривая, которая определяется кинематически как траектория фиксированной точки круга радиуса a, что катится без скольжения по прямой.
Найдем производные по переменной t заданных функций:
x’=a(1-cos(t));
y’=a*sin(t).

Пределы интегрирования известны по условию – [0;2*Pi].
Запишем подинтегральную функцию за формулой x’*y-x*y’ (поскольку кривая (циклоида) проходит за ходом часовой стрелки):
Вычислим площадь фигуры ограниченной одною аркой циклоиды:

Определенные интегралы методом интегрирования частями вычисляются достаточно быстро.
Также не забывайте, что площадь измеряется в единицах квадратных.

Пример 2.101 (2414) Вычислить площадь фигуры, которая ограничена параметрическими кривыми x=2t-t2, y=2t2-t3.

Вычисление:
Вычислим производные по переменной t функций:
x’=2-2t;
y’=4t-3t2.

Найдем пределы интегрирования – точки пересечения кривой, которая ограничивает заданную фигуру:
x=0 при t1=0, t2=2 и
y=0 при t1=0, t2=2 .
Поэтому имеем период ровный T=2.
Запишем подинтегральную функцию по формуле x’*y-x*y’ (поскольку кривая проходит против часовой стрелки):
 
Вычислим площадь фигуры, которая ограничена заданной кривой:

Здесь, как видите, интеграл найти вообще просто, подобные примеры на практических из математического анализа Вы возможно вычисляли огромное количество раз.

Пример 2.102 (2417.1) Найти площадь фигуры, которая ограничена параметрическими кривыми

Вычисление:
Продифференцируем функции по переменной t:
 
Запишем пределы интегрирования (нужно предварительно исследовать функцию):
T=[0;2*Pi].
Запишем подинтегральную функцию за формулой x’*y

Вычислим площадь фигуры по формуле для параметрических кривых:

Определенный интеграл достаточно простой в плане вычислений.

Пример 2.103 (2415) Найти площадь фигуры, ограниченной кривыми
x=a(cos(t)+t*sin(t)), y=a(sin(t)-t*cos(t)) (развертка круга) и x=a, .

Вычисление:
Найдем производные функций по переменной t:

Пределы интегрирования выписываем из начального условия – [0;2*Pi].
Выведем подинтегральную функцию за формулой x’*y-x*y’
 
Вычислим площадь фигуры, которая ограничена заданной кривой и прямыми:

Следует заметить, что при интегрировании по углу не учитывается площадь треугольника S1, что заштрихована серым.
Без построения графика функции учесть необходимость находить дополнительную площадь достаточно трудно.

Пример 2.104 (2416) Найти площадь фигуры, ограниченной кривыми
x=a(2*cos(t)-cos(2t)), y=a(2*sin(t)-sin(2t)).

Вычисление:
Вычислим производные по переменной t функций:

Запишем пределы интегрирования:   
Сложим уравнение подинтегральной функции по формуле x’*y-x*y’
  
Через определенный интеграл вычисляем площадь фигуры, которая ограничена заданной кривой:

Интеграл не сложный, а конечная формула простая для расчетов площади.

Пример 2.105 (2417) Найти площадь фигуры, ограниченной параметрическими кривыми (эволюта эллипса)

Вычисление:
Эволюта – множество точек центров кривизны кривой.
По отношению к своей эволюте любая кривая является эвольвентой (інволютою, то есть разверткой этой кривой)
.
Найдем производные функций по переменной t :

Пределы интегрирования равны:

Запишем подинтегральную функцию по формуле
x’*y-x*y’:

Интегрированием за периодом находим площадь фигуры, которая ограничена заданной кривой:

Пример 2429 Возведя уравнение к параметрическому виду, найти площади фигуры, ограниченной кривой (астроида).
Вычисление: Перепишем уравнение астроиды в виде
 
Пусть x=a*cos3(t), y=a*sin3(t).
Нетрудно подставить и убедиться, что это именно та подстановка которая будет уравнением астроиды в параметрической форме.
Далее по аналогии с примером 2.105 будем иметь

В следующих публикациях Вы найдете больше примеров на нахождение площади фигуры с помощью определенного интеграла.

Циклоида

Формула

Площадь арки циклоиды — это число, характеризующее арку (или часть арки) циклоиды в единицах измерения площади.

Арка циклоиды — это область, ограниченная циклоидой и осью абсцисс при 0 ≤ x ≤ 2π.

Рассмотрим арки циклоиды при 0 ≤ t ≤ 2π.

Содержание

  • 1 Обозначения
  • 2 Формула
  • 3 Вывод формулы
  • 4 См. также
  • 5 Другие формулы

Обозначения[править]

Введём обозначения:

x1 — абсцисса первой точки дуги;

y1 — ордината первой точки дуги;

t1 — параметр (меньший) первой точки дуги;

x2 — абсцисса второй точки дуги;

y2 — ордината второй точки дуги;

t2 — параметр (больший) второй точки дуги;

R — радиус производящей окружности;

t — параметрическая переменная;

x = R(t − sint) — параметрическое уравнение абсциссы циклоиды;

y = R(1 − cost) — параметрическое уравнение ординаты циклоиды;

Sцикл — площадь арки (или части арки) циклоиды.

Формула[править]

{displaystyle S_{text{арк.цикл.}}=R^{2}left({frac {3}{2}}t_{2}-2sin t_{2}+{frac {1}{4}}sin 2t_{2}right)-R^{2}left({frac {3}{2}}t_{1}-2sin t_{1}+{frac {1}{4}}sin 2t_{1}right),} {displaystyle 0leq t_{1}leq t_{2}leq 2pi }
  • Площадь полной (от 0 до ) арки циклоиды равна площади трёх производящих кругов, Sарк.цикл = 3πR2.

Вывод формулы[править]

{displaystyle S_{text{арк.цикл.}}=int limits _{t_{1}}^{t_{2}}R(1-cos t)[R(t-sin t)]_{t}^{'}dt=int limits _{t_{1}}^{t_{2}}R^{2}(1-cos t)^{2}dt=}
{displaystyle =R^{2}int limits _{t_{1}}^{t_{2}}(1-2cos t+cos ^{2}t)dt=R^{2}int limits _{t_{1}}^{t_{2}}left(1-2cos t+{frac {1+cos 2t}{2}}right)dt=}
{displaystyle =R^{2}int limits _{t_{1}}^{t_{2}}left({frac {3}{2}}-2cos t+{frac {1}{2}}cos 2tright)dt=left.R^{2}left({frac {3}{2}}t-2sin t+{frac {1}{4}}sin 2tright)right|_{t_{1}}^{t_{2}}=}
{displaystyle =R^{2}left({frac {3}{2}}t_{2}-2sin t_{2}+{frac {1}{4}}sin 2t_{2}right)-R^{2}left({frac {3}{2}}t_{1}-2sin t_{1}+{frac {1}{4}}sin 2t_{1}right)}
  • Для вывода используется формула «площадь плоской фигуры» в параметрической форме.

См. также[править]

  • Длина дуги циклоиды

Другие формулы[править]

  • площадь плоской фигуры;
  • площадь круга;
  • площадь сегмента круга;
  • площадь сектора круга;
  • площадь серпа;
  • площадь эллипса;
  • площадь сегмента эллипса;
  • площадь сектора эллипса;
  • площадь серпа эллипса;
  • площадь сегмента параболы;
  • площадь сегмента гиперболы;
  • площадь сектора кардиоиды;
  • площадь сектора лемнискаты Бернулли;
  • площадь сегмента правильного многоугольника;
  • площадь сектора правильного многоугольника;
  • площадь арки синусоиды;
  • площадь арки косинусоиды;
  • площадь, ограниченная тангенсоидой и осью абсцисс;
  • площадь, ограниченная котангенсоидой и осью абсцисс;
  • площадь арки циклоиды;
  • площадь, ограниченная цепной линией и осью абсцисс;
  • площадь, ограниченная трактрисой и осью абсцисс.

Уравнения кривых. Циклоида.

Циклоида (от греческого – круглый). – кривая которую формирует фиксированная точка окружности радиуса r, катящейся без скольжения по неподвижной прямой. Термин “циклоида” предложил Г. Галилей.

Точки, в которых циклоида пересекается с прямой, по которой катится окружность (эту окружность обозначают как производящую, а прямую, по которой она катится, – направляющую), обозначают как точки возврата, а самые высокие точки на циклоиде, размещенные посредине между соседними точками возврата, именуют вершинами циклоиды,

Обозначим горизонтальную ось координат как прямую, по которой катится формирующая окружность радиуса r. Тогда имеем нижеследующие уравнения в прямоугольной системе координат:

.

Циклоида характеризуется параметрическими уравнениями:

Циклоиду можно получить в результате решения дифференциального уравнения:

Циклоида ⁠

совместно с Еленой Зёрнышкиной

Пом­ните оран­же­вые пластмас­со­вые ката­фоты — све­то­от­ража­тели, при­креп­ляющи­еся к спи­цам вело­сипед­ного колеса? При­крепим ката­фот к самому ободу колеса и про­сле­дим за его тра­ек­то­рией. Полу­чен­ные кри­вые при­над­лежат семейству цик­лоид.

Колесо при этом назы­ва­ется про­из­во­дящим кругом (или окруж­но­стью) цик­ло­иды.

Но давайте вер­нёмся в наш век и пере­ся­дем на более современ­ную тех­нику. На пути байка попался каму­шек, кото­рый застрял в про­тек­торе колеса. Про­вер­нувшись несколько кругов с коле­сом, куда поле­тит камень, когда выско­чит из про­тек­тора? Про­тив направ­ле­ния движе­ния мотоцикла или по направ­ле­нию?

Как известно, сво­бод­ное движе­ние тела начи­на­ется по каса­тель­ной к той тра­ек­то­рии, по кото­рой оно двига­лось. Каса­тель­ная к цик­ло­иде все­гда направ­лена по направ­ле­нию движе­ния и про­хо­дит через верх­нюю точку про­из­во­дящей окруж­но­сти. По направ­ле­нию движе­ния поле­тит и наш каму­шек.

Пом­ните, как Вы ката­лись в дет­стве по лужам на вело­сипеде без зад­него крыла? Мок­рая полоска на вашей спине явля­ется житейским под­твер­жде­нием только что полу­чен­ного результата.

Век XVII — это век цик­ло­иды. Лучшие учё­ные изу­чали её уди­ви­тель­ные свойства.

Какая тра­ек­то­рия при­ве­дёт тело, движуще­еся под действием силы тяже­сти, из одной точки в другую за крат­чайшее время? Это была одна из пер­вых задач той науки, кото­рая сей­час носит назва­ние вари­аци­он­ное исчис­ле­ние.

Мини­ми­зи­ро­вать (или мак­си­ми­зи­ро­вать) можно раз­ные вещи — длину пути, ско­рость, время. В задаче о бра­хи­сто­хроне мини­ми­зи­ру­ется именно время (что под­чёр­ки­ва­ется самим назва­нием: греч. βράχιστος — наименьший, χρόνος — время).

Пер­вое, что при­хо­дит на ум, — это прямо­ли­ней­ная тра­ек­то­рия. Давайте также рас­смот­рим пере­вёр­ну­тую цик­ло­иду с точ­кой воз­врата в верх­ней из задан­ных точек. И, сле­дуя за Гали­лео Гали­леем, — чет­вер­тинку окруж­но­сти, соеди­няющую наши точки.

Сде­лаем боб­слей­ные трассы с рас­смот­рен­ными профи­лями и про­сле­дим, какой из бобов при­е­дет пер­вым.

Исто­рия боб­слея берёт своё начало в Швейца­рии. В 1924 году во фран­цуз­ском городе Шамони про­хо­дят пер­вые зим­ние Олимпийские игры. На них уже про­во­дятся сорев­но­ва­ния по боб­слею для экипажей двоек и чет­вё­рок. Един­ствен­ный год, когда на Олимпийских играх экипаж боба состоял из пяти чело­век, был 1928. С тех пор в боб­слее все­гда сорев­нуются муж­ские экипажи двойки и чет­вёрки. В пра­ви­лах боб­слея много инте­рес­ного. Конечно же, суще­ствует огра­ни­че­ния на вес боба и команды, но суще­ствуют даже огра­ни­че­ния на мате­ри­алы, кото­рые можно исполь­зо­вать в конь­ках боба (перед­няя пара их подвижна и свя­зана с рулём, зад­няя закреп­лена жёстко). Напри­мер, радий не может исполь­зо­ваться при изго­тов­ле­нии конь­ков.

Дадим старт нашим чет­вёр­кам. Какой же боб пер­вым при­е­дет к финишу? Боб зелё­ного цвета, выступающий за команду Матема­ти­че­ских этю­дов и катившийся по цик­ло­и­даль­ной горке, при­хо­дит пер­вым!

Почему же Гали­лео Гали­лей рас­смат­ри­вал чет­вер­тинку окруж­но­сти и счи­тал, что это наи­лучшая в смысле времени тра­ек­то­рия спуска? Он впи­сы­вал в неё лома­ные и заме­тил, что при уве­ли­че­нии числа зве­ньев время спуска уменьша­ется. Отсюда Гали­лей есте­ствен­ным обра­зом перешёл к окруж­но­сти, но сде­лал невер­ный вывод, что эта тра­ек­то­рия наи­лучшая среди всех возмож­ных. Как мы видели, наи­лучшей тра­ек­то­рией явля­ется цик­ло­ида.

Через две дан­ные точки можно про­ве­сти един­ствен­ную цик­ло­иду с усло­вием, что в верх­ней точке нахо­дится точка воз­врата цик­ло­иды. И даже когда цик­ло­иде при­хо­дится под­ниматься, чтобы пройти через вто­рую точку, она всё равно будет кри­вой наи­ско­рейшего спуска!

Ещё одна кра­си­вая задача, свя­зан­ная с цик­ло­и­дой, — задача о тау­то­хроне. В пере­воде с гре­че­ского ταύτίς озна­чает «тот же самый», χρόνος, как мы уже знаем — «время».

Сде­лаем три оди­на­ко­вые горки с профи­лем в виде цик­ло­иды, так, чтобы концы горок совпа­дали и рас­по­лага­лись в вершине цик­ло­иды. Поста­вим три боба на раз­ные высоты и дадим отмашку. Уди­ви­тель­нейший факт — все бобы при­едут вниз одно­временно!

Зимой Вы можете постро­ить во дворе горку изо льда и про­ве­рить это свойство вжи­вую.

Задача о тау­то­хроне состоит в нахож­де­нии такой кри­вой, что, начи­ная с любого началь­ного положе­ния, время спуска в задан­ную точку будет оди­на­ко­вым.

Хри­стиан Гюйгенс дока­зал, что един­ствен­ной тау­то­хро­ной явля­ется цик­ло­ида.

Конечно же, Гюйгенса не инте­ре­со­вал спуск по ледя­ным гор­кам. В то время учё­ные не имели такой рос­коши заниматься нау­ками из любви к искус­ству. Задачи, кото­рые изу­ча­лись, исхо­дили из жизни и запро­сов тех­ники того времени. В XVII веке совершаются уже даль­ние мор­ские пла­ва­ния. Широту моряки умели опре­де­лять уже доста­точно точно, но уди­ви­тельно, что долготу не умели опре­де­лять совсем. И один из пред­лагавшихся спо­со­бов изме­ре­ния широты был осно­ван на нали­чии точ­ных хро­номет­ров.

Пер­вым, кто задумал делать маят­ни­ко­вые часы, кото­рые были бы точны, был Гали­лео Гали­лей. Однако в тот момент, когда он начи­нает их реа­ли­зо­вы­вать, он уже стар, он слеп, и за оставшийся год своей жизни учё­ный не успе­вает сде­лать часы. Он завещает это сыну, однако тот мед­лит и начи­нает заниматься маят­ни­ком тоже лишь перед смер­тью и не успе­вает реа­ли­зо­вать замы­сел. Сле­дующей зна­ко­вой фигу­рой был Хри­стиан Гюйгенс.

Он заме­тил, что период коле­ба­ния обыч­ного маят­ника, рас­смат­ри­вавшегося Гали­леем, зави­сит от изна­чаль­ного положе­ния, т.е. от ампли­туды. Задумавшись о том, какова должна быть тра­ек­то­рия движе­ния груза, чтобы время каче­ния по ней не зави­село от ампли­туды, он решает задачу о тау­то­хроне. Но как заста­вить груз двигаться по цик­ло­иде? Пере­водя тео­ре­ти­че­ские иссле­до­ва­ния в прак­ти­че­скую плос­кость, Гюйгенс делает «щёчки», на кото­рые нама­ты­ва­ется веревка маят­ника, и решает ещё несколько матема­ти­че­ских задач. Он дока­зы­вает, что «щёчки» должны иметь профиль той же самой цик­ло­иды, тем самым пока­зы­вая, что эво­лю­той цик­ло­иды явля­ется цик­ло­ида с теми же парамет­рами.

Параметрическое уравнение циклоиды и уравнение в декартовых координатах

5. Параметрическое уравнение циклоиды и уравнение в декартовых координатах

Допустим, что у нас дана циклоида, образованная окружностью радиуса а с центром в точке А.

Если выбрать в качестве параметра, определяющего положение точки, угол t=∟NDM на который успел повернуться радиус, имевший в начале качения вертикально е положение АО, то координаты х и у точки М выразятся следующим образом:

х= OF = ON – NF = NM – MG = at-a sin t,

y= FM = NG = ND – GD = a – a cos t

Итак параметрические уравнения циклоиды имеют вид:

(0

При изменении t от -∞ до +∞ получится кривая, состоящая из бесчисленного множества таких ветвей, какая изображена на данном рисунке.

Так же, помимо параметрического уравнения циклоиды, существует и ее уравнение в декартовых координатах:

, где r – радиус окружности, образующей циклоиду.

6. Задачи на нахождение частей циклоиды и фигур, образованных циклоидой

Задача №1. Найти площадь фигуры, ограниченной одной аркой циклоиды, уравнение которой задано параметрически

Решение. Для решения данной задачи, воспользуемся известными нам фактами из теории интегралов, а именно:

Площадь криволинейного сектора.

Рассмотрим некоторую функцию r = r(ϕ), определенную на [α, β].

Будем считать, что r и ϕ — полярные координаты точки. Тогда любому

r0 — полярные координаты точки. Если ϕ будет меняться, «пробегая» весь[α, β], то переменная точка M опишет некоторую кривую AB, заданную

уравнением r = r(ϕ).

Определение 7.4. Криволинейным сектором называется фигура, ограниченная двумя лучами ϕ = α, ϕ = β и кривой AB, заданной в полярных

координатах уравнением r = r(ϕ), α ≤ ϕ ≤ β.

Теорема. Если функция r(ϕ) > 0 и непрерывна на [α, β], то площадь

криволинейного сектора вычисляется по формуле:

Эта теорема была доказана ранее в теме определенного интеграла.

Исходя из приведенной выше теоремы, наша задача о нахождении площади фигуры, ограниченной одной аркой циклоиды, уравнение которой задано параметрические x= a (t – sin t) , y= a (1 – cos t) , и осью Ох, сводится к следующему решению.

Решение. Из уравнения кривой dx = a(1−cos t) dt. Первая арка циклоиды соответствует изменению параметра t от 0 до 2π. Следовательно,

Задача №2. Найти длину одной арки циклоиды

Так же в интегральном исчислении изучалась следующая теорема и следствие из нее.

Теорема. Если кривая AB задана уравнением y = f(x), где f(x) и f ’ (x) непрерывны на [a, b], то AB является спрямляемой и

Следствие. Пусть AB задана параметрически

LAB = (1)

Пусть функции x(t), y(t) непрерывно-дифференцируемые на [α, β]. Тогда

формулу (1) можно записать так

Сделаем замену переменных в этом интеграле x = x(t), тогда y’(x)= ;

dx= x’(t)dt и, следовательно:

А теперь вернемся к решении нашей задачи.

Решение. Имеем , а поэтому

= 8a

Задача №3. Надо найти площадь поверхности S, образованной от вращения одной арки циклоиды

В интегральном исчислении существует следующая формула для нахождения площади поверхности тела вращения вокруг оси х кривой, заданной на отрезке [a,b] параметрически: x=φ(t), y=ψ(t) (t0 ≤t ≤t1)

|S|=

Применяя эту формулу для нашего уравнения циклоиды получаем:

Задача №4. Найти объем тела, полученного при вращении арки циклоиды

В интегральном исчислении при изучении объемов есть следующее замечание:

Если кривая, ограничивающая криволинейную трапецию задана параметрическими уравнениями и функции в этих уравнениях удовлетворяют условиям теоремы о замене переменной в определенном интеграле, то объем тела вращения трапеции вокруг оси Ох, будет вычисляться по формуле

Воспользуемся этой формулой для нахождения нужного нам объема.

Итак, в ходе выполнения данной работы были выяснены основные свойства циклоиды. Так же научились строить циклоиду, выяснила геометрический смысл циклоиды. Как оказалось циклоида имеет огромное практическое применение не только в математике, но и в технологических расчетах, в физике. Но у циклоиды есть и другие заслуги. Ею пользовались ученые XVII века при разработке приемов исследования кривых линий, — тех приемов, которые привели в конце концов к изобретению дифференциального и интегрального исчислений. Она же была одним из «пробных камней», на которых Ньютон, Лейбниц и их первые исследователи испытывали силу новых мощных математических методов. Наконец, задача о брахистохроне привела к изобретению вариационного исчисления, столь нужного физикам сегодняшнего дня. Таким образом, циклоида оказалась неразрывно связанной с одним из самых интересных периодов в истории математики.

1. Берман Г.Н. Циклоида. – М., 1980

2. Веров С.Г. Брахистохрона, или еще одна тайна циклоиды // Квант. – 1975. – №5

3. Веров С.Г. Тайны циклоиды// Квант. – 1975. – №8.

4. Гаврилова Р.М., Говорухина А.А., Карташева Л.В., Костецкая Г.С.,Радченко Т.Н. Приложения определенного интеграла. Методические указания и индивидуальные задания для студентов 1 курса физического факультета. — Ростов н/Д: УПЛ РГУ, 1994.

5. Гиндикин С.Г. Звездный век циклоиды // Квант. – 1985. – №6.

6. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т.1. – М.,1969

[1] Такая линия и называется «огибающей». Всякая кривая линия есть огибающая своих касательных.

[spoiler title=”источники:”]

http://etudes.ru/etudes/cycloid/

http://kazedu.com/referat/187764/3

[/spoiler]

Пример 3.  Найти площадь фигуры, ограниченной осью  0x  и одной аркой циклоиды

            .

Рис. 2. Первая арка циклоиды. Циклоида представляет собой линию, которую описывает точка на ободе катящегося без проскальзывания колеса.

Решение.  Представим интеграл в терминах переменной  t.

Учитывая, что  x(0)=0,   и  , получаем

Вычисление площади фигуры, ограниченной кривой, заданной в параметрическом виде.

Пусть x=x(t), y=y(t),
где 
 
параметрические уравнения кусочно-гладкой
кривой. Если данные уравнения определяют
некоторую функцию y=f(x)
на отрезке [a,b]
(без ограничения общности будем считать,
что 
 на
отрезке [a,b]),
то площадь криволинейной трапеции,
ограниченной осью OX,
кривой y=f(x)
и прямыми x=a и x=b,
может быть найдена по формуле 
 .

Вводя
замену переменной y=y(t), x=x(t), dx= x’(t)dt,
получим формулу для вычисления площади
фигуры при параметрическом задании
границы:

  
 .

Аналогично
может быть получена формула


 .

Таким
образом, вычисление площади фигуры,
ограниченной кривой в параметрической
форме, может быть рассмотрено как замена
переменной при вычислении площади в
декартовых координатах.

Если x=x(t), y=y(t), 
 
параметрические уравнения кусочно-гладкой
замкнутой кривой, пробегаемой в
положительном направлении (то есть
таким образом, что фигура, ограниченная
заданным контуром остается слева), то
площадь S этой
фигуры равна:


 ,

где 
 
значения параметра, соответствующие
началу и концу обхода контура фигуры в
положительном направлении.

Пример
1. Найти площадь фигуры, ограниченной
кривой, заданной параметрически: 
 .

Решение.
Выясним, какую фигуру ограничивает
заданная кривая. Функции x=x(t)
и y=y(t)
определены, непрерывны и дифференцируемы
при любом действительном значении
параметра 
 .
Если 
 ,
то 
 ,
а если 
 ,
то 
 .

Наибольшее
значение x принимает
при x’(t)=0,
2-2t=0; t=1, x(1)=1; y(1)=1.
Если x=0,
то t=2
или t=0.
При этих же значениях параметра y=0.
Таким образом, точка с координатами
(0;0) является точкой самопересечения.
Следовательно, искомая площадь ограничена
петлей кривой, расположенной в первом
квадранте, и соответствует изменению
параметра от t=0
до t=2
при положительном направлении обхода
(рисунок 7).

Рисунок
7.

Площадь
искомой фигуры можно вычислить по
формуле


 ,


 .

Поскольку
некоторые кривые могут быть заданы
простыми параметрическими уравнениями,
то вычисление площади фигуры, ограниченной
замкнутой кривой, в декартовых координатах
зачастую удобнее проводить, перейдя к
параметрической форме записи.

Пример
2. Вычислить площадь фигуры ограниченной
эллипсом 
 .

Решение.
Запишем уравнение эллипса в параметрической
форме: x=a×cost, y=b×sint, 
 .
Возрастание параметра от 0 до
2p соответствует
положительному направлению обхода.
Наиболее простой вид подынтегральное
выражение примет, если воспользоваться
формулой


 ;


 ;


 .

Вычисление длины дуги кривой.

Пусть
в декартовой системе координат на
плоскости дана кривая, являющаяся
графиком непрерывной дифференцируемой
функции y=f(x)
с непрерывной производной на отрезке
[a,b].
Разобьем отрезок [a,b]
произвольным образом на n частей
точками 
 .
Найдем значения функции f(x)
в точках разбиения. Тогда дуга кривой f(x)
на [a,b]
разобьется на n частей
точками


 .
Проведем хорды 
 и
обозначим их длины 
 соответственно.
Полученная ломаная
 имеет
длину 
 .

Определение. Длиной
дуги кривой y=f(x)
на отрезке [a,b]
называется предел, к которому стремится
длина вписанной ломаной при стремлении
к нулю длины ее наибольшего звена (или,
что то же самое, при неограниченном
увеличении числа точек деления)


 .

Длина
отдельного звена ломаной может быть
найдена как длина отрезка 
 :


 .

Поскольку
функция f(x)
непрерывна и дифференцируема на всем
промежутке [a,b],
то, по теореме Лагранжа о дифференцируемых
функциях, найдется такая точка 
 на
отрезке
 ,
что


 .

Если
обозначить 
 ,
то формулу для 
 можно
переписать в виде

Таким
образом, длина дуги y=f(x)
на отрезке [a,b]
определяется формулой

в
силу непрерывности f’(x)
и определения интегральной суммы.
Выражение  
 называется
дифференциалом  дуги.

Если
кривая задана уравнением x=f(y), yÎ[a,b],
то, рассуждая аналогично, можно получить
формулу


 
 .

Если
кривая на плоскости задана
параметрически: x=x(t), y=y(t), 
 
 ,
где x(t), y(t)
– дифференцируемые функции, имеющие
на отрезке  
непрерывную
производную, то, выполнив замену
переменной в предыдущих формулах,
получим:


  
 .

Если
задана пространственная кривая
параметрическими
уравнениями x=x(t), y=y(t), z=z(t), 
 ,
где x(t), y(t), z(t)
– дифференцируемые на отрезке 
 функции
с непрерывной производной, то длина
кривой вычисляется по формуле


 
 .

Пусть
в полярных координатах кривая задана
уравнением 
 ,
где 
 
дифференцируемая функция с непрерывной
на 
 производной 
 .
Запишем формулы перехода от декартовой
системы координат к полярной: 
 .
Если в эти формулы подставить 
 ,
то получится параметрическое задание
кривой, где параметр 
 
полярный угол. Тогда по формуле для
параметрически заданной функции можно
найти длину дуги кривой:


 .


 
 .

Рассмотрим
некоторые примеры вычисления длины
дуги кривой.

Пример
1. Вычислить длину дуги кривой 
 от
точки 
 до
точки 
 ,
(b>a).

Решение.
Воспользуемся формулой


 :


 ;


 ;


 .

Пример
2. На циклоиде x=a(t-sint), y=a(1-cost), a>0,
найти точку, которая делит первую арку
циклоиды по длине в отношении 1:3.

Решение.
Первая арка циклоиды соответствует
изменению параметра t от t=0
до t=2p.
Вычислим длину первой арки циклоиды.


 ;

Таким
образом, искомая точка, соответствующая
значению параметра 
 ,
определяет часть кривой, имеющую длину
2а, то есть


 .

Найдем
из этого равенства значение 
 :

Исходя
из условий задачи, следует выбрать
значение 
 .

Если 
 ,
то


 .

Искомая
точка имеет координаты:


 .

Пример
3. Найти длину дуги кривой, заданной в
полярных координатах уравнением 
 , a>0.

Решение.
Уравнение 
 , a>0,
определяет замкнутую кривую, соответствующую
изменению j от
0 до 3p (рисунок
8).

Рисунок
8.

Воспользуемся
формулой 
 :


 .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий