Как найти площадь боковой стороны цилиндра

В данной публикации мы рассмотрим, как можно найти площадь поверхности цилиндра и разберем примеры решения задач для закрепления материала.

  • Формула вычисления площади цилиндра

    • 1. Боковая поверхность

    • 2. Основание

    • 3. Полная площадь

  • Примеры задач

Формула вычисления площади цилиндра

1. Боковая поверхность

Площадь (S) боковой поверхности цилиндра равна произведению длины окружности, являющейся основанием фигуры, на его высоту.

Длина окружности, в свою очередь, рассчитывается так: C = 2 π R. Следовательно, рассчитать площадь можно следующим образом:

S = 2 π R h

Площадь поверхности цилиндра

Примечание: в вычислениях значение числа π округляется до 3,14.

2. Основание

В качестве оснований цилиндра (равны между собой), выступает круг, площадь которого равна:

S = π R2

Т.к. диаметр круга равен двум его радиусам (d = 2R), выражение можно преобразовать таким образом:

S = π (d/2)2

3. Полная площадь

Для нахождения данной величины необходимо просуммировать площади боковой поверхности и двух равных оснований цилиндра, т.е.:

S = 2 π R h + 2 π R2 или S = 2 π R (h + R)

Примеры задач

Задание 1
Найдите площадь боковой поверхности цилиндра, если его радиус равен 11 см, а высота – 8 см.

Решение:
Воспользуемся первой формулой, подставив в нее данные по условиям задачи значения:
S = 2 ⋅ 3,14 ⋅ 11 см ⋅ 8 см = 552,64 см2.

Задание 2
Высота цилиндра равна 9 см, а его диаметр – 8 см. Найдите суммарную площадь поверхности фигуры.

Решение:
Если диаметр цилиндра равен 8 см, значит его радиус составляет 4 см (8 см / 2). Применив соответствующую формулу для нахождения площади получаем:
S = 2 ⋅ 3,14 ⋅ 4 см ⋅ (9 см + 4 см)  = 326,56 см2.

Как рассчитать площадь цилиндра

На данной странице калькулятор поможет рассчитать площадь поверхности цилиндра онлайн. Для расчета задайте высоту и радиус.

Цилиндр – геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.

Боковая поверхность


Боковая площадь цилиндра


Формула площадь боковой поверхности цилиндра через высоту и радиус:

π – константа равная (3.14); r – радиус основания; h – высота цилиндра.


Полная поверхность


Полная площадь цилиндра


Формула площадь полной поверхности цилиндра через высоту и радиус:

π – константа равная (3.14); r – радиус основания; h – высота цилиндра.

При помощи нашего калькулятора вы легко сможете узнать площадь цилиндра. Так же если вам необходимо узнать площадь бочки, круглой цистерны, круглого бака и т.д., то это калькулятор то, что Вам нужно.

цилиндр

Вычислить площадь цилиндра через:
Вычислить:
Длина радиуса R:
Высота цилиндра h:

Для того что бы вычислить площадь цилиндра необходимо знать его высоту и радиус или диаметр. Если нам известны указанные величины, для нас не составит труда вычислить площадь.
Полная площадь цилиндра рассчитывается по следующим формулам:

  1. Если нам известен радиус:

    S=2πR(h+R)

  2. Если нам известен диаметр:

    S=πD(h+D/2)

Площадь боковой поверхности цилиндра рассчитывается по следующим формулам:

  1. Если нам известен радиус:

    S=2πRh

  2. Если нам известен диаметр:

    S=πDh

Где S – площадь, R – радиус, D – диаметр, h – высота, π – число Пи которое всегда примерно равно 3,14.

Площадь поверхности цилиндра

Рассчитайте онлайн площадь поверхности любого цилиндрического объекта.

Что известно

Размерность

Радиус основания

см

Диаметр основания

см

Высота

см

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🧮 Что такое калькулятор площади цилиндра?

Калькулятор площади цилиндра — это онлайн-инструмент, который помогает рассчитать площадь поверхности цилиндра, исходя из его параметров.

Площадь поверхности цилиндра состоит из двух частей: площади боковой поверхности и площади оснований.

Для чего может быть использован такой калькулятор?

калькулятор площади поверхности цилиндра

Калькулятор площади цилиндра может быть использован в различных областях, где требуется расчет площади поверхности цилиндрических объектов. Некоторые из возможных применений калькулятора площади цилиндра включают:

  1. Проектирование трубопроводов: при проектировании трубопроводов важно рассчитать не только объем жидкости или газа, но и площадь поверхности трубы, чтобы определить необходимое количество материала и затраты на изготовление трубопровода.
  2. Производство бочек и цистерн: при производстве бочек и цистерн необходимо рассчитать площадь поверхности, чтобы правильно распределить материалы и обеспечить надежность конструкции.
  3. Архитектура и строительство: при проектировании зданий, которые имеют цилиндрическую форму (например, башни, купола), необходимо рассчитать площадь поверхности, чтобы определить необходимое количество материалов для отделки или облицовки.
  4. Образование: калькулятор площади цилиндра может быть полезен для студентов и учителей при изучении геометрии и тела вращения.

В целом, калькулятор площади цилиндра может использоваться в любой сфере, где требуется подсчет площади цилиндрических объектов.

🛢️ Как и по какой формуле онлайн калькулятор рассчитывает площадь цилиндра?

Для расчета площади цилиндра онлайн калькулятор использует формулу:

S=2πR(h+R)

где:

  • S – площадь цилиндра
  • R – радиус основания цилиндра
  • h – высота цилиндра
  • π (Пи) – математическая константа, примерное значение которой равно 3.14159265359

Формула вычисляет площадь боковой поверхности цилиндра (2πrh) и площадь двух оснований цилиндра (2πr²), а затем складывает их для получения общей площади.

Онлайн калькулятор просто запрашивает у пользователя значения радиуса и высоты цилиндра, затем подставляет их в формулу и выводит результат площади цилиндра.

Широкое применение цилиндров в повседневной жизни

Цилиндр – это геометрическое тело, которое может использоваться в различных областях. Ниже приведены некоторые примеры использования цилиндра:

  1. Создание двигателей внутреннего сгорания: таких как двигатель автомобиля или мотоцикла.
  2. Механика: например в гидравлических цилиндрах, которые используются для перемещения или прессования тяжелых предметов.
  3. Создание емкостей: таких как баки для хранения газа или жидкости.
  4. Столярное дело: для создания столбов, колонн или других элементов архитектуры.
  5. Математика: для решения геометрических задач и для вычисления объемов и площадей тел.
  6. Кулинария: для формирования булочек, пирогов, кексов и других блюд.
  7. Сосуды для хранения и транспортировки жидкостей: таких как газы, масла, смазки и прочее.
  8. Научные исследования: например для измерения давления, температуры и других параметров.

❓Вопросы и ответы

Обратите внимание на ответы на некоторые часто задаваемые вопросы.

Какова формула для вычисления площади цилиндра?

Формула для вычисления площади цилиндра зависит от того, какую площадь вы хотите найти. Обычно вычисляют площадь боковой поверхности и площадь полной поверхности цилиндра. Для нахождения площади боковой поверхности цилиндра используйте формулу 2πrh, где r – радиус цилиндра, а h – его высота. Для нахождения площади полной поверхности цилиндра нужно прибавить к площади боковой поверхности удвоенную площадь оснований, т.е. используйте формулу 2πrh + 2πr^2.

Как использовать онлайн калькулятор для вычисления площади цилиндра?

Чтобы использовать онлайн калькулятор для вычисления площади цилиндра, вам нужно ввести значения радиуса и высоты цилиндра в соответствующие поля. Затем онлайн калькулятор автоматически рассчитает площадь цилиндра.

Как найти радиус цилиндра, если известна его площадь?

Для нахождения радиуса цилиндра по известной площади необходимо использовать формулу S = 2πrh + 2πr^2, где S – площадь цилиндра, r – радиус цилиндра, h – его высота. После подстановки известных значений в формулу можно найти радиус цилиндра.

Можно ли использовать онлайн калькулятор площади цилиндра для вычисления площади других геометрических фигур, таких как конус или сфера?

Нет, онлайн калькулятор площади цилиндра предназначен только для вычисления площади цилиндра. Для вычисления площади других геометрических фигур необходимо использовать соответствующие калькуляторы.

Каковы ограничения на значения радиуса и высоты, которые можно ввести в онлайн калькулятор площади цилиндра?

Онлайн калькулятор площади цилиндра не имеет ограничений на значения радиуса и высоты, которые можно ввести. Однако, для более точных результатов, рекомендуется использовать реалистичные значения.

Как мне использовать результаты вычислений, полученные с помощью онлайн калькулятора площади цилиндра?

Результаты вычислений, полученные с помощью онлайн калькулятора площади цилиндра, можно использовать для решения различных задач, связанных с геометрией, например, для расчета объема цилиндра, для определения необходимого количества материала для изготовления цилиндрического объекта или для определения количества жидкости, которая может поместиться в цилиндрический резервуар.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор длины дуги. Рассчитайте онлайн длину дуги окружности по радиусу и углу или по формуле Гюйгенса.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Площадь поверхности цилиндра

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь поверхности цилиндра

Чтобы посчитать площадь поверхности цилиндра воспользуйтесь нашим очень удобным онлайн калькулятором:

Площадь боковой поверхности

Площадь боковой поверхности цилиндра
Высота цилиндра h =

=

Площадь боковой поверхности цилиндра Sбпц =

0

Округление ответа: Округление числа π:

Площадь полной поверхности

Площадь полной поверхности цилиндра
Высота цилиндра h =

=

Площадь полной поверхности цилиндра Sппц =

0

Округление ответа: Округление числа π:

Просто введите данные и получите ответ.

Теория

Площадь боковой поверхности цилиндра

Как вычислить площадь боковой поверхности цилиндра Sбпц, зная высоту цилиндра h и его радиус r (или диаметр d)?

Формулы

Через радиус:

Sбпц = 2⋅π⋅r⋅h

Через диаметр:

Sбпц = π⋅d⋅h

Пример #1

К примеру, посчитаем площадь боковой поверхности цилиндра с высотой 5 см и радиусом 1.5 см:

Sбпц = 2 ⋅ 3.14 ⋅ 1.5 ⋅ 5 = 6.28 ⋅ 7.5 = 47.1 см²

Пример #2

Посчитаем площадь боковой поверхности цилиндра с высотой 10 см и диаметром 4 см:

Sбпц = 3.14 ⋅ 4 ⋅ 10 = 125.6 см²

Площадь полной поверхности цилиндра

Как вычислить площадь полной поверхности цилиндра Sппц, зная высоту цилиндра h и его радиус r (или диаметр d)?

Формулы

Через радиус:

Sппц = 2⋅π⋅r⋅(h+r)

Через диаметр:

Sппц = π⋅d²2 + π⋅d⋅h

Пример #1

К примеру, посчитаем площадь полной поверхности цилиндра с высотой 8 см и радиусом 2 см:

Sппц = 2 ⋅ 3.14 ⋅ 2 ⋅ (8+2) = 6.28 ⋅ 2 ⋅ 10 = 125.6 см²

Пример #2

Посчитаем площадь полной поверхности цилиндра с высотой 2 м и диаметром 0.5 м:

Sппц = 3.14⋅0.5²2 + 3.14⋅0.5⋅2 = 0.3925 + 3.14 = 3.5325 м²

См. также

Добавить комментарий