Если в условии речь идёт о единичном кубе, то это означает, что ребро этого куба равно единице; если речь идёт о единичной сфере, то это означает, что её радиус равен единице. Формулы площади и объёма шара смотрите здесь.
Площадь большого круга шара равна 17. Найдите площадь поверхности шара.
Мы знаем, что площадь поверхности шара находится по формул:
Необходимо найти радиус шара. Площадь осевого сечения (больший круг) равна 17. Из формулы площади круга можем найти его радиус.
Радиус большого круга является радиусом шара. Таким образом:
*Можно было сразу без данных вычислений сделать вывод, что площадь поверхности шара в 4 раза больше площади поверхности большого круга.
Ответ: 48
Во сколько раз увеличится площадь поверхности шара, если его радиус увеличить в три раза?
Запишем площадь поверхности исходного шара:
Площадь поверхности шара с радиусом втрое большим равна:
Таким образом, площадь поверхности шара увеличится в 9 раз.
Ответ: 9
Во сколько раз увеличится объем шара, если его радиус увеличить в шесть раз?
Объем шара находится по формуле:
При увеличении радиуса в шесть раз его объём будет:
Таким образом, объем шара увеличится в 216 раз.
Ответ: 216
Объем одного шара в 216 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
Формула объёма шара:
Формула площади поверхности шара:
Пусть объёмы шаров соответственно равны:
Из условия следует, что:
То есть, мы установили, что радиус первого больше радиуса второго в 6 раз. Если радиус шара уменьшить в 6 раз, то площадь поверхности шара изменится следующим образом:
То есть она уменьшится в 36 раз.
Ещё один вариант рассуждения.
Объемы шаров (а так же их радиусов) соотносятся как:
То есть радиус одного шара в 6 раза больше другого.
Формула площади поверхности шара:
Если радиус одного шара увеличить в 6 раз, то площадь поверхности изменится следующим образом:
То есть она увеличится в 36 раз. Таким образом, площадь поверхности первого шара больше площади поверхности второго в 36 раз.
Ответ: 36
27073. Около шара описан цилиндр, площадь поверхности которого равна 18. Найдите площадь поверхности шара.
Что необходимо отметить сразу же? Это то, что радиус цилиндра равен радиусу шара и высота цилиндра равна двум его радиусам.
Площадь поверхности шара находится по формуле:
То есть нам нужно найти радиус шара. Это можно сделать из формулы площади поверхности цилиндра:
*Как уже сказано, высота цилиндра равна двум радиусам, значит:
Как вы догадываетесь, сам радиус можно и не вычислять, и в формулу площади поверхности шара подставить лR2:
Ответ: 12
27105. Объем прямоугольного параллелепипеда, описанного около сферы, равен 216. Найдите радиус сферы.
Параллелепипед описанный около сферы является кубом. Формула объёма куба имеет вид:
Ребро данного куба равно диаметру сферы. Найдём его:
Таким образом, радиус сферы равен трём.
Ответ: 3
27126. В куб с ребром 3 вписан шар. Найдите объем этого шара, деленный на Пи.
Ребро куба равно диаметру шара. Значит радиус шара равен 1,5. Вычислим объём шара:
Результат разделим на Пи и запишем ответ.
Ответ: 4,5
27059. Площадь большого круга шара равна 3. Найдите площадь поверхности шара.
Посмотреть решение
27072. Во сколько раз увеличится площадь поверхности шара, если радиус шара увеличить в 2 раза?
Посмотреть решение
27097. Во сколько раз увеличится объем шара, если его радиус увеличить в три раза?
Посмотреть решение
27125. Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.
Посмотреть решение
27162. Объем одного шара в 27 раз больше объема другого. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
Посмотреть решение
27163. Радиусы двух шаров равны 6 и 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей их поверхностей.
Посмотреть решение
27174. Объем шара равен 288Пи. Найдите площадь его поверхности, деленную на Пи.
Посмотреть решение
27043. Прямоугольный параллелепипед описан около сферы радиуса 1. Найдите его объем.
Посмотреть решение
27067. Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.
Посмотреть решение
27127. Около куба с ребром равным корню из трёх описан шар. Найдите объем этого шара, деленный на Пи.
Посмотреть решение
Как видим, требуется знание формул и немножко логики. В будущем также будем рассматривать стереометрические задачи, не пропустите! На этом всё. Успеха Вам!
С уважением, Александр.
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 декабря 2021 года; проверки требуют 8 правок.
У этого термина существуют и другие значения, см. Сфера (значения).
Сфера (каркасная проекция)
Сфе́ра (др.-греч. σφαῖρα «мяч, шар[1]») — геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки (центра сферы).
Расстояние от точки сферы до её центра называется радиусом сферы.
Сфера радиуса 1 называется единичной сферой.
Свойства[править | править код]
Сфера является поверхностью вращения, образованной вращением полуокружности вокруг своего диаметра.
Сфера является частным случаем эллипсоида, у которого все три оси (полуоси, радиусы) равны.
Сфера является поверхностью шара.
Сфера имеет наименьшую площадь из всех поверхностей, ограничивающих данный объём, другими словами — из всех поверхностей с данной площадью сфера ограничивает наибольший объём. Именно из-за минимизации площади поверхности силой поверхностного натяжения маленькие капли воды в невесомости приобретают сферическую форму.
«Кубок Кеплера»: модель Солнечной системы из пяти правильных многогранников и их вписанных и описанных сфер.
Значение в естествознании[править | править код]
Совершенство сферической формы издавна привлекало внимание мыслителей и учёных, которые с помощью сфер пытались объяснить гармонию окружающего мира. Древнегреческий учёный Пифагор вместе с шарообразной Землёй в центре Вселенной ввёл окружающую Землю удалённую хрустальную сферу, к которой прикреплены звёзды, и семь более близких вращающихся хрустальных сфер, к которым прикреплены Солнце, Луна и пять известных к тому времени планет (исключая Землю). Эта модель впоследствии усложнялась: Евдокс Книдский рассматривал уже 27 подобных сфер, а Аристотель — 55 хрустальных сфер[2]. Представления о вращающихся небесных сферах господствовали по крайней мере до средних веков и даже вошли в гелиоцентрическую систему мира Николая Коперника, который назвал свой основной труд «О вращении небесных сфер» (лат. De revolutionibus orbium coelestium).
Небесные сферы со времён Древней Греции были частью более общей концепции гармонии сфер о музыкально-астрономическом устройстве мира, куда также входило понятие «музыка сфер». Эта концепция также существовала как минимум до средневековья. У одного из известнейших астрономов, Иоганна Кеплера, сфера занимала центральное место во всей его системе религиозно-мистических представлений, он писал: «Образ триединого бога есть сферическая поверхность, а именно: бог-отец в центре, бог-сын — на поверхности и святой дух — в симметричном отношении между центром и описанной вокруг него сферической поверхностью»[3][4]. Одно из первых значительных сочинений Кеплера, «Тайна мироздания» (лат. Mysterium Cosmographicum), было посвящено параметрам небесных сфер, Кеплер считал, что он открыл замечательную связь между правильными многогранниками, которых только пять, и небесными сферами шести известных к тому времени планет (включая Землю), являвшимися, по Кеплеру, описанными и вписанными сферами этих многогранников. Представления о гармонии сфер сыграли большую роль при открытии Кеплером третьего закона движений небесных тел (во всяком случае, могут рассматриваться как стимул к поиску астрономических соотношений)[5]. Однако у Кеплера небесные сферы являлись уже чисто математическими объектами, а не физически существующими телами. К тому времени Тихо Браге показал, что движение комет, в частности, Большой кометы 1577 года, несовместимо с существованием твердых небесных сфер[6]. Как удобная математическая модель, осталась одна небесная сфера, с помощью которой астрономы по сей день представляют видимые положения звезд и планет.
Сфера в трёхмерном пространстве[править | править код]
Уравнение сферы в прямоугольной системе координат:
где — координаты центра сферы, — её радиус.
Параметрическое уравнение сферы с центром в точке :
где и
Гауссова кривизна сферы постоянна и равна 1/R².
Координаты сферы, проходящей через заданные точки[править | править код]
Через четыре точки пространства может проходить единственная сфера с центром
где:
Радиус данной сферы:
Основные геометрические формулы[править | править код]
- Площадь поверхности сферы
- Полный телесный угол сферы
- стерадиан кв. градусов.
- Объём шара, ограниченного сферой
- Площадь сегмента сферы высоты
- .
Геометрия на сфере[править | править код]
Окружность, лежащая на сфере, центр которой совпадает с центром сферы, называется большим кругом (большой окружностью) сферы. Большие окружности являются геодезическими линиями на сфере; любые две из них пересекаются в двух точках. Иными словами, большие круги сферы являются аналогами прямых на плоскости, расстояние между точками на сфере — длина дуги проходящего через них большого круга. Углу же между прямыми на плоскости соответствует двугранный угол между плоскостями больших кругов. Многие теоремы геометрии на плоскости справедливы и в сферической геометрии, существуют аналоги теоремы синусов, теоремы косинусов для сферических треугольников. В то же время, существует немало отличий, например, в сферическом треугольнике сумма углов всегда больше 180 градусов, к трём признакам равенства треугольников добавляется их равенство по трём углам, у сферического треугольника может быть два и даже три прямых угла — например, у сферического треугольника, образованного экватором и меридианами 0° и 90°.
Расстояние между двумя точками на сфере[править | править код]
Если даны сферические координаты двух точек, то расстояние между ними можно найти так:
Однако, если угол задан не между осью Z и вектором на точку сферы, а между этим вектором и плоскостью XY (как это принято в земных координатах, заданных широтой и долготой), то формула будет такая:
В этом случае и называются широтами, а и долготами.
n-мерная сфера[править | править код]
В общем случае уравнение (n−1)-мерной сферы (в n-мерном евклидовом пространстве) имеет вид:
где — центр сферы, а — радиус.
Пересечением двух n-мерных сфер является (n−1)-мерная сфера, лежащая на радикальной гиперплоскости этих сфер.
В n-мерном пространстве могут попарно касаться друг друга (в разных точках) не более n+1
сфер.
n-мерная инверсия переводит (n−1)-мерную сферу в (n−1)-мерную сферу или гиперплоскость.
С трёхмерной сферой связана одна из задач тысячелетия — гипотеза Пуанкаре, в которой утверждается, что всякое односвязное компактное трёхмерное многообразие без края гомеоморфно такой сфере. Эта гипотеза была доказана Г. Я. Перельманом в начале 2000-х годов на основе результатов Ричарда Гамильтона.
См. также[править | править код]
- Сфера Римана
- Псевдосфера
- Дикая сфера
- Гиперсфера
- Парадокс Смейла
- Сферическая система координат
- Сферический слой
- Геосфера
Примечания[править | править код]
- ↑ Древнегреческо-русский словарь Дворецкого „σφαῖρα“. Дата обращения: 17 июня 2019. Архивировано из оригинала 25 марта 2016 года.
- ↑ Климишин И. А. Астрономия наших дней. — 3-е изд. — М.: Наука, 1986. — С. 30—33. — 55 400 экз.
- ↑ Паули В. Влияние архетипических представлений на формирование естественнонаучных теорий у Кеплера // Физические очерки. — М.: Наука, 1975.
- ↑ Оригинальный латинский текст цитаты: «Dei trinuni imago in Sphærica superficie, Patris scilicet in centro, Filij in superficie, Spiritus in æqualitate σχέσεως inter punctum & ambitum». См.: Kepler J. Mysterium Cosmographicum (неопр.). — 1596. — С. 19. Архивная копия от 30 мая 2014 на Wayback Machine
- ↑ Шевченко В.В. Небесная музыка // Земля и Вселенная. — 1973. — № 4. — С. 56—58.
- ↑ Тихо Браге. Автобиография // Историко-астрономические исследования / Отв. ред. Л.Е. Майстров. — М.: Наука, 1984. — Т. XVII. — С. 393—394.
Ссылки[править | править код]
Большая окружность в геометрии
БОЛЬШАЯ ОКРУЖНОСТЬ сферы — окружность, являющаяся пересечением сферы с плоскостью, проходящей через центр сферы. Радиус Б. о. с. конгруэнтен радиусу сферы, на которой расположена Б. о. с. Любые две Б. о. с. пересекаются в двух диаметрально противоположных точках сферы. Через любые две точки сферы, не являющиеся диаметрально противоположными, проходит только одна Б. о. с. Дуги больших окружностей на сфере являются кратчайшими (геодезическими) линиями на ней. Б. о. с. играют большую роль в сферической геометрии.
Сфера в геометрии – элементы, формулы, свойства с примерами
Сферой называется поверхность, полученная вращением окружности вокруг какого-либо ее диаметра (рис. 180). Центр этой окружности называется центром сферы.
Отрезок, соединяющий центр сферы с любой ее точкой, называется радиусом сферы, отрезок, соединяющий две точки сферы, — хордой сферы, а хорда, которой принадлежит центр сферы, — диаметром сферы (рис. 181).
Из определения сферы следует, что все ее точки равноудалены от центра сферы. Поэтому все радиусы сферы равны друг другу.
Теоремы
Теорема 1.
Сечение сферы плоскостью есть окружность, центр которой совпадает с основанием перпендикуляра, опущенного из центра сферы на секущую плоскость.
Доказательство:
Пусть сфера с центром
Пусть и — произвольные точки линии пересечения сферы с плоскостью . Треугольники и оба прямоугольные, так как отрезок перпендикулярен плоскости , а значит, и отрезкам и лежащим в этой плоскости.
Отрезок является общим катетом, а гипотенузы этих треугольников равны как радиусы сферы. Поэтому треугольники и равны друг другу, а значит, Получили, что любые две точки линии пересечения сферы плоскостью равноудалены от основания перпендикуляра, опущенного из центра сферы на эту плоскость. Значит, эта линия является окружностью с центром .
Следствие. Радиус сечения сферы плоскостью удовлетворяет условию где — радиус сферы.
Сечение имеет наибольший радиус если секущая плоскость проходит через центр сферы, это сечение называют большой окружностью, а ограниченный ею круг — большим кругом.
Плоскость, имеющая со сферой единственную общую точку, называется касательной плоскостью сферы. Общая точка сферы и касательной плоскости называется точкой касания.
Прямая касательной плоскости сферы, проходящая через точку касания, имеет со сферой единственную общую точку. Такая прямая называется касательной прямой сферы.
Теорема 2.
Касательная плоскость сферы перпендикулярна радиусу, проведенному в точку касания.
Доказательство:
Пусть плоскость касается сферы с центром в точке (рис. 183). Пусть — произвольная точка плоскости , отличная от точки . Через точки , , проведем плоскость , она по теореме 1 пересекает сферу по окружности. По отношению к этой окружности прямая является касательной, так как точка — их единственная общая точка. По свойству касательной к окружности радиус перпендикулярен прямой . Таким образом, радиус перпендикулярен любой прямой , проведенной в плоскости а через ее точку . Значит, радиус перпендикулярен плоскости .
Теорема 3.
Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведенному в эту точку, то она является касательной плоскостью сферы.
Доказательство:
Пусть плоскость проходит через точку сферы и перпендикулярна радиусу (рис. 184). Пусть — произвольная точка плоскости , отличная от точки . Треугольник прямоугольный с гипотенузой , и она длиннее катета. Поэтому точка расположена вне сферы. Получается, что любая точка плоскости , кроме точки , не принадлежит сфере. Значит, точка — единственная общая точка плоскости и сферы, а поэтому плоскость является касательной плоскостью сферы.
Теоремы 2 и 3 выражают соответственно свойство и признак касательной плоскости сферы.
Теорема 4.
Две сферы пересекаются по окружности, плоскость которой перпендикулярна прямой, проходящей через центры сфер.
Доказательство:
Пусть имеются две пересекающиеся сферы с центрами и , и — какая-либо их общая точка (рис. 185). Через точку проведем плоскость , перпендикулярную прямой . Пусть эта плоскость пересекает прямую в точке . В соответствии с теоремой 1 плоскость пересекает одну и другую сферы по окружности с центром . Получили, что окружность с центром является общей окружностью данных сфер.
Других общих точек данные окружности не имеют. Допустим, что это не так. Пусть — какая-либо общая точка сфер, не принадлежащая окружности с центром . Через точки , и проведем плоскость, которая пересечет сферы по окружностям с центрами и . Эти окружности пересекаются в двух точках, которые принадлежат окружности с центром , и вместе с этим им обеим принадлежит точка .
Но это противоречит утверждению о том, что две окружности имеют не более двух общих точек.
Прежде чем доказывать утверждение о поверхности сферы, обобщим утверждения о боковых поверхностях конуса, усеченного конуса и цилиндра.
Теорема 5.
Боковая поверхность конуса, усеченного конуса, цилиндра равна боковой поверхности цилиндра с той же высотой и радиусом основания, равным длине перпендикуляра, соединяющего середину образующей с точкой на оси этого тела.
Доказательство:
Пусть есть конус с вершиной , основанием которого является круг с центром . Пусть — осевое сечение конуса (рис. 186). В плоскости к образующей из ее середины возведем перпендикуляр, который пересечет ось в некоторой точке . Прямоугольные треугольники и подобны, так как у них угол при вершине общий. Поэтому или или
Отсюда
С учетом этого для боковой поверхности конуса будем иметь:
Пусть есть усеченный конус, полученный вращением прямоугольной трапеции со средней линией вокруг боковой стороны которая перпендикулярна основаниям и , отрезок — проекция на основание (рис. 187).
В плоскости к образующей усеченного конуса из ее середины возведем перпендикуляр, который пересечет ось в некоторой точке . Прямоугольные треугольники и подобны, так как их стороны попарно перпендикулярны. Поэтому
Отсюда
С учетом этого для боковой поверхности усеченного конуса будем иметь:
Для цилиндра утверждение очевидно (рис. 188).
Теорема 6.
Поверхность сферы равна учетверенной площади большого круга:
Доказательство:
Пусть есть сфера, образованная вращением полуокружности вокруг своего диаметра (рис. 189). Впишем в эту дугу ломаную с равными звеньями и из точек опустим перпендикуляры на диаметр . Пусть — середины звеньев ломаной. Тогда — серединные перпендикуляры к этим звеньям. При вращении вокруг звенья ломаной будут описывать или конусы, или усеченные конусы, или цилиндр. Поэтому, в соответствии с теоремой 5, для образовавшейся поверхности получим
Учтем, что отрезки все равны друг другу:
Пусть радиус сферы равен . Тогда . Будем неограниченно увеличивать количество звеньев ломаной. Тогда отрезок будет стремиться к радиусу сферы, а выражение — к выражению т. е. к выражению Этот предел и принимается в качестве площади поверхности сферы.
Учитывая, что выражает площадь большого круга, получим, что поверхность сферы равна учетверенной площади большого круга.
Уравнение сферы
Определение: Сферой радиуса R называется множество всех точек пространства, расстояние от каждой из которых до данной точки (центра) равно R.
Выведем уравнение сферы. Пусть — центр сферы радиуса — произвольная точка, лежащая на этой сфере (рис. 204). Тогда СМ = R. По формуле расстояния между двумя точками имеем
Приравнивая это выражение R, получим уравнение сферы
Если центр сферы совпадает с началом координат, то х0 = 0, у0 = 0, = 0 и уравнение сферы принимает вид
Пример:
Определить координаты центра и радиус сферы
Решение:
Объединяя члены, содержащие одноименные текущие координаты, и дополняя их до полных квадратов, будем иметь
Следовательно, центр сферы находится в точке и радиус ее
Заметим, что совокупность
уравнений сферы и плоскости определяет окружность, по которой пересекаются плоскость и сфера (если это множество не пусто). В частности, если , то совокупность этих уравнений изображает окружность большого круга.
Уравнение окружности можно также писать в параметрическом виде.
Пример:
Написать параметрические уравнения меридиана сферы
проходящего через полюсы и , если плоскость меридиана образует угол а с координатной плоскостью Охг (рис. 205).
Решение:
За параметр текущей точки меридиана примем угол — широту этой точки, где — проекция точки М на координатную плоскость Оху . Так как , то из рис. 205 имеем
где
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
- Окружность
- Призма в геометрии
- Цилиндр в геометрии
- Пирамида в геометрии
- Конус в геометрии
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Большая окружность в геометрии
19.1. Определения шара, сферы и их элементов
С шаром и сферой мы уже знакомы. Напомним их определения.
Определение. Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R ( R > 0). Данная точка называется центром шара, а данное расстояние R — радиусом шара .
Определение. Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно центром и радиусом сферы.
На рисунке 193 изображён шар с центром О и радиусом R = OА.
Из определений шара и сферы следует, что шар с центром О и радиусом R является объединением двух множеств точек: 1) множества точек M пространства, для которых OM (они называются внутренними точками шара и образуют его внутренность); 2) множества всех М, для которых ОМ = R (эти точки являются граничными точками шара, а их объединение составляет границу шара, которая называется шаровой поверхностью и является сферой c центром О и радиусом R ) .
Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара . Концы любого диаметра шара называются диаметрально nротивоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара ( сферы ) . На рисунке 193 отрезки ОА, ОВ, ON, OS — радиусы шара; отрезки АВ , NS — диаметры шара; A и B — диаметрально противоположные точки шара. Из определения диаметра шара следует, что он равен удвоенному радиусу шара.
Покажем, что шар — тело вращения. Для этого рассмотрим полукруг F с центром О и радиусом R (рис. 194, а ). При вращении полукруга F вокруг прямой, содержащей его диаметр NS, образуется некоторое тело F 1 (рис. 194, б ). Так как вращение вокруг прямой — движение и точка О принадлежит оси l вращения, то каждая точка тела F 1 удалена от точки O на расстояние, не большее R (движение сохраняет расстояния между точками). Это означает, что тело F 1 есть шар с центром О и радиусом R. Кроме того, при вращении границы полукруга — полуокружности — вокруг прямой l образуется сфера. Прямая, содержащая любой диаметр шара, может быть рассмотрена как ось вращения. Следовательно, сечением шара плоскостью, перпендикулярной его оси вращения l и пересекающей шар, является круг, а сечением сферы такой плоскостью — окружность этого круга; центр круга (окружности) есть точка пересечения секущей плоскости с осью l.
Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара ( сферы ) . Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность — большой окружностью ; большая окружность является пересечением сферы и её диаметральной плоскости.
19.2. Изображение сферы
Рассмотрим сферу, диаметр NS которой проведён вертикально (рис. 195, а ). Большая окружность, по которой сферу пересекает диаметральная плоскость, перпендикулярная диаметру (оси) NS, называется экватором , а точки N и S — полюсами сферы . Окружность, ограничивающая круг — изображение сферы, — называется абрисом или очерковой линией .
Типичная ошибка (!) при изображении сферы (рис. 195, б ) в том, что, изображая её экватор эллипсом, полюсы изображают расположенными на абрисе.
Для верного и наглядного изображения сферы вспомним, как в курсе черчения изображают фигуру на комплексном двухкартинном чертеже (эпюре) посредством ортогонального её проектирования на две взаимно перпендикулярные плоскости, одну из которых называют фронтальной (обозначают V ) , а другую — профильной (обозначают W ) плоскостями проекций.
Сферу расположим так, чтобы её ось N ′ S ′ была параллельна профильной ( W ), но не параллельна фронтальной ( V ) плоскостям проекций. Тогда ортогональные проекции сферы на плоскости V и W имеют вид, изображённый на рисунке 196. На нём: равные круги — проекции сферы на плоскости V и W ; отрезки A 1 B 1 и N 1 S 1 — профильные проекции соответственно экватора и оси сферы; точки N, S — фронтальные проекции полюсов (строятся с помощью линий связи); точки А, В — фронтальные проекции концов диаметра экватора, параллельного фронтальной плоскости (строятся с помощью линий связи); отрезок CD — фронтальная проекция диаметра C ′ D ′ сферы, перпендикулярного профильной плоскости; эллипс с осями АВ и CD — фронтальная проекция экватора. При таком расположении относительно плоскостей проекций сфера изображается так, как показано на рисунках 195, a ; 196, a.
Обратите внимание! Полюсы N и S не лежат на абрисе, и экватор изображается эллипсом. При этом положение полюсов N и S и положение вершин А и В эллипса-экватора взаимосвязаны.
Действительно, из равенства △ ОBF = △ ЕNО (см. рис. 196, а ) следует: OВ = EN, BF = NO. Это означает: а) если изображены полюсы N и S сферы, то вершины А и В эллипса — изображения экватора определяются из равенств OВ = ОА = NE, где NE || OD ; б) если изображён экватор (т. е. дана малая ось AB эллипса-экватора), то положение полюсов N и S определяется из равенств ON = OS = BF, где BF || OD.
На рисунке 197, а — верное и наглядное изображение сферы, на рисунке 197, б — изображение сферы верное (почему?), но не наглядное; на рисунке 197, в — неверное изображение (почему?).
ЗАДАЧА (3.106). Найти в пространстве множество вершин всех прямых углов, опирающихся на данный отрезок АВ.
Решени е. Если ∠ АМВ = 90 ° , то точка М принадлежит окружности с диаметром АВ (рис. 198, a ).
Проведём произвольную плоскость α , содержащую отрезок АВ. В этой плоскости множество всех точек М, из которых отрезок AB виден под прямым углом, есть окружность, для которой отрезок AB — диаметр. Точки А и В этому множеству точек не принадлежат. (Почему?) Таким образом, искомое множество вершин прямых углов, опирающихся на отрезок AB , есть сфера с диаметром AB . Точки А и В этому множеству точек-вершин не принадлежат.
19.3. Уравнение сферы
Составим уравнение сферы с центром А ( a ; b ; с ) и радиусом R в декартовой прямоугольной системе координат Oxyz.
Пусть М ( x ; у ; z ) — любая точка этой сферы (рис. 199). Тогда MA = R или MA 2 = R 2 . Учитывая, что MA 2 = ( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 , получаем искомое уравнение cферы
( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 .
Если начало системы координат совпадает с центром A сферы, то a = b = c = 0 , а сфера в такой системе координат имеет уравнение
x 2 + y 2 + z 2 = R 2 .
Из полученных уравнений следует, что сфера — поверхность второго порядка.
Так как для любой точки М ( х ; у ; z ) шара с центром А ( a ; b ; с ) и радиусом R выполняется МА ⩽ R, то этот шар может быть задан неравенством
( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 ⩽ R 2 .
При этом для всех внутренних точек М шара выполняется условие МА 2 R 2 , т. е.
( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 R 2 ,
для точек М шаровой поверхности — условие
т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 ,
для точек М вне шара — условие
т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 > R 2 .
19.4. Пересечение шара и сферы с плоскостью
Рассмотрим подробнее вопрос о пересечении шара и сферы с плоскостью. Имеет место следующая теорема.
Теорема 30 (о пересечении шара и сферы с плоскостью ) . 1) Если расстояние от центра шара до данной плоскости меньше радиуса шара, то пересечением шара с плоскостью является круг. Центром этого круга является основание перпендикуляра, проведённого из центра шара на плоскость, или сам центр шара, если плоскость проходит через этот центр. Пересечением сферы с плоскостью является окружность указанного круга. Радиус r сечения в этом случае равен r = , где R — радиус шара, a d — расстояние от центра шара до плоскости сечения. 2) Если расстояние от центра шара до данной плоскости равно радиусу шара, то плоскость имеет с шаром и ограничивающей его сферой только одну общую точку. 3) Если расстояние от центра шара до данной плоскости больше радиуса, то плоскость не имеет с шаром общих точек.
Доказательств о. Пусть точка О — центр шара, R — его радиус; α — данная плоскость, точка A — основание перпендикуляра, проведённого из центра O на плоскость α . Обозначим ρ ( О ; α ) = | ОА | = d — расстояние от центра шара до плоскости α .
Рассмотрим каждый из случаев взаимного расположения шара и данной плоскости α .
1) ρ ( O ; α ) = d R и плоскость α не проходит через центр О шара (рис. 200). Докажем, что пересечение шара и плоскости есть круг с центром А и радиусом r = . Для этого достаточно убедиться, что любая точка пересечения шара и плоскости α есть точка круга с центром А и радиусом r = и, обратно, любая точка этого круга есть точка указанного пересечения.
Действительно, пусть М — произвольная точка шара, принадлежащая плоскости α (см. рис. 200). В прямоугольном треугольнике AOM по теореме Пифагора ОM 2 = ОА 2 + АМ 2 , откуда AM = . Так как точка М принадлежит шару, то ОМ ⩽ R, тогда OM 2 – OA 2 ⩽ R 2 – d 2 , поэтому АМ ⩽ . Это означает, что точка М сечения шара плоскостью α находится от точки А на расстоянии, не большем , следовательно, она принадлежит кругу с центром А и радиусом .
Обратно, пусть М — произвольная точка плоскости α , принадлежащая кругу с центром А и радиусом r = . В прямоугольном треугольнике AOM по теореме Пифагора OM 2 = ОA 2 + AM 2 . Так как AM ⩽ r , то OM 2 ⩽ OA 2 + r 2 = d 2 + R 2 – d 2 = R 2 , откуда OM ⩽ R . Значит, точка М принадлежит данному шару. Учитывая, что точка М принадлежит и плоскости α , приходим к выводу: точка M принадлежит пересечению данного шара и плоскости α .
Если неравенства, которые использовались в предыдущем доказательстве, заменить равенствами, то, рассуждая аналогично, можно доказать, что при d R пересечением сферы и плоскости является окружность с центром А и радиусом r = . Проделайте это самостоятельно.
Если плоскость α проходит через центр O шара, то d = 0, значит, r = R, т. е. сечением шара такой плоскостью является большой круг, а сечением сферы — большая окружность (см. рис. 200).
2) ρ ( O ; α ) = d = OA = R (рис. 201).
Так как ОА = ρ ( O ; α ) = R, то точка А, являющаяся основанием перпендикуляра из центра О шара на плоскость α , принадлежит шаровой поверхности, ограничивающей данный шар.
Пусть M — произвольная точка плоскости α , отличная от точки A (см. рис. 201). Тогда длины наклонной ОМ и перпендикуляра OA, проведённых из точки О к плоскости α , удовлетворяют неравенству OM > ОА = R. Значит, точка М не принадлежит шару. Следовательно, плоскость α имеет только одну общую точку с шаром — точку А.
3) ρ ( О ; α ) = ОА = d > R (рис. 202). Для любой точки М плоскости α выполняется (почему?) ОМ ⩾ d > R. Это означает, что на плоскости α нет точек шара. Теорема доказана. ▼
ЗАДАЧА (3.161). Через середину радиуса шара проведена перпендикулярная к нему плоскость. Радиус шара равен R. Найти: а) площадь получившегося сечения; б) площади боковой и полной поверхностей конуса, основанием которого служит получившееся сечение шара, а вершиной — центр шара; в) площади боковой и полной поверхностей правильной треугольной пирамиды, вписанной в этот конус.
Решени е. а) Пусть точка O — центр шара, OD — его радиус, точка С — середина радиуса OD ; α — секущая плоскость, проходящая через точку С перпендикулярно OD.
Рассмотрим сечение шара диаметральной плоскостью, проходящей через его радиус OD. Этим сечением является большой круг с центром О и радиусом R (рис. 203); АВ — диаметр круга — сечения данного шара плоскостью α .
Так как АВ ⟂ OD и точка С — середина радиуса OD, то отрезок AB равен стороне правильного треугольника, вписанного в окружность радиуса R, значит, АВ = R , откуда
АС = r = , где r — радиус сечения шара плоскостью α . Тогда площадь этого сечения равна π r 2 = .
б) Найдём площадь поверхности конуса с вершиной О и радиусом основания r = .
Образующая ОЕ конуса (рис. 204) равна радиусу R данного шара. Поэтому площадь боковой поверхности этого конуса равна
π r • R = π • • R = ,
а площадь его полной поверхности — + = π R 2 • (2 + ).
в) Найдём площадь поверхности правильной треугольной пирамиды OEFK, вписанной в конус, радиус основания которого СK = r = , боковое ребро OE пирамиды равно радиусу R данного шара (см. рис. 204).
Так как △ ЕFK — правильный, вписанный в окружность радиуса r = , то сторона этого треугольника равна r , т. е. EF = . Тогда S △ EFK = = .
Площадь боковой поверхности пирамиды равна 3 S △ EOF = EF • ОН, где OH — апофема пирамиды. В прямоугольном треугольнике OHF находим
ОН = = = .
Тогда EF • OH = — площадь боковой поверхности пирамиды.
Следовательно, площадь полной поверхности пирамиды равна
+ = R 2 ( + ).
Ответ: a) ; б) π R 2 (2 + ); в) ; R 2 ( + ).
19.5. Плоскость, касательная к сфере и шару
Из теоремы 30 следует, что плоскость может иметь со сферой (с шаром) только одну общую точку.
Определение. Плоскость, имеющая только одну общую точку со сферой (с шаром), называется касательной плоскостью к сфере (шару), а их единственная общая точка называется точкой касания (рис. 205).
Также говорят, что плоскость касается сферы (шара) .
Любая прямая, лежащая в касательной плоскости к сфере и проходящая через точку их касания, называется касательной прямой к сфере ; эта прямая имеет со сферой единственную общую точку — точку касания, и радиус сферы, проведённый в точку касания, перпендикулярен касательной прямой.
Заметим, что если прямая a касается сферы в точке М , то эта прямая касается в точке М той окружности большого круга, которая является сечением сферы и диаметральной плоскости, проходящей через прямую a.
Справедливо и обратное: если прямая a касается окружности большого круга сферы в точке М , то эта прямая касается в точке М самой сферы.
Более того, так как прямая a, касающаяся сферы в точке М , имеет со сферой лишь одну общую точку — точку М , то эта прямая касается любой окружности, по которой пересекаются данная сфера и любая (не только диаметральная) плоскость, проходящая через прямую a. А поскольку радиус, проведённый в точку касания прямой и окружности, перпендикулярен касательной прямой, то центры всех этих окружностей — полученных сечений сферы — лежат в плоскости, проходящей через точку М перпендикулярно касательной прямой a. При этом, если точка О — центр данной сферы радиуса R , точка А — центр окружности радиуса r , по которой пересекает сферу одна (любая) из плоскостей, проходящих через касательную в точке М прямую к данной сфере, ϕ — величина угла между этой секущей плоскостью и проходящей через точку М диаметральной плоскостью данной сферы, то справедливо равенство r = R • cos ϕ ( △ ОАМ — прямоугольный, так как отрезок ОА перпендикулярен секущей плоскости (почему?)).
Для плоскости, касательной к сфере, справедливы теоремы, аналогичные теоремам о прямой, касательной к окружности на плоскости.
Теорема 31. Если плоскость касается сферы, то она перпендикулярна радиусу, проведённому в точку касания.
Доказательств о. Пусть дана сфера с центром O и радиусом R. Рассмотрим плоскость α , касающуюся данной сферы в точке M (см. рис. 205) и докажем, что ОM ⟂ α .
Предположим, что радиус ОM — не перпендикуляр, а наклонная к плоскости α . Значит, расстояние от центра сферы до плоскости α , равное длине перпендикуляра, проведённого из центра О на плоскость α , меньше радиуса. Тогда по теореме 30 плоскость α пересекает сферу по окружности. Но по условию теоремы плоскость α касается сферы и имеет с ней единственную общую точку M. Пришли к противоречию, которое и доказывает, что OM ⟂ α . Теорема доказана. ▼
Справедлива обратная теорема.
Теорема 32. Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведённому в эту точку, то она касается сферы.
Доказательств о. Пусть плоскость α проходит через точку M сферы и перпендикулярна радиусу ОM (см. рис. 205). Значит, расстояние от центра сферы до плоскости равно радиусу ОM. Тогда по теореме 30 плоскость α и сфера имеют единственную общую точку M, следовательно, плоскость α касается сферы (в точке M ). Теорема доказана. ▼
Так как сечение шара плоскостью есть круг, то можно доказать, что для шара выполняются следующие метрические соотношения:
— диаметр шара, делящий его хорду пополам, перпендикулярен этой хорде;
— отрезки всех касательных прямых, проведённых к шару из одной расположенной вне шара точки, равны между собой (они образуют поверхность конуса с вершиной в данной точке, а точки касания этих прямых — окружность основания этого конуса);
— произведение длин отрезков хорд шара, проходящих через одну и ту же внутреннюю точку шара, есть величина постоянная (равная R 2 – a 2 , где R — радиус шара, a — расстояние от центра шара до данной точки);
— если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно a 2 – R 2 , где R — радиус шара, a — расстояние от центра шара до данной точки).
19.6. Вписанные и описанные шары и сферы
Определение. Шар называется вписанным в цилиндр, если основания и каждая образующая цилиндра касаются шара (рис. 206).
Цилиндр в таком случае называется описанным около шара. В цилиндр можно вписать шар тогда и только тогда, когда он равносторонний.
Определение. Шар называется описанным около цилиндра, если основания цилиндра служат сечениями шара (рис. 207).
Цилиндр при этом называют вписанным в шар. Около любого цилиндра можно описать шар. Центром шара служит середина оси цилиндра, а радиус шара равен радиусу круга, описанного около осевого сечения цилиндра.
Определение. Шар называется описанным около конуса, если основание конуса — сечение шара, а вершина конуса принадлежит поверхности шара (рис. 208).
Конус при этом называют вписанным в шар.
Центр шара, описанного около конуса, совпадает с центром круга, описанного около осевого сечения конуса, а радиус шара равен радиусу этого круга.
Определение. Шар называется вписанным в конус, если основание и все образующие конуса касаются шара.
Конус при этом называют описанным около шара (рис. 209). Центр вписанного в конус шара совпадает с центром круга, вписанного в осевое сечение конуса, а радиус шара равен радиусу этого круга.
Определение. Шар называется вписанным в многогранник, если он касается всех граней многогранника.
Многогранник в таком случае называют описанным около шара (рис. 210).
Не во всякий многогранник можно вписать шар. Например, вписать шар можно в любую треугольную или правильную пирамиду. А в прямую призму, в основании которой лежит прямоугольник, не являющийся квадратом, шар вписать нельзя.
При нахождении радиуса r вписанного в многогранник шара (если таковой существует) удобно пользоваться соотношением
V многогр = • r • S полн. поверх .
Шар называется вписанным в двугранный угол, если он касается его граней. Центр вписанного в двугранный угол шара лежит на биссекторной плоскости этого двугранного угла. При этом для радиуса r шара, вписанного в двугранный угол, величины α этого угла и расстояния m от центра шара до ребра двугранного угла справедлива формула: r = m • sin . Этой формулой часто пользуются при решении задач.
Шар называется вписанным в многогранный угол, если он касается всех граней многогранного угла. При решении задач, в которых рассматриваются вписанные в многогранный угол шары, удобно пользоваться соотношением: r = m • sin , где r — радиус шара, вписанного в многогранный угол, m — расстояние от центра шара до ребра многогранного угла, α — величина двугранного угла при этом ребре.
Если все плоские углы трёхгранного угла равны по 60 ° , то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно 3 r ; если все плоские углы трёхгранного угла прямые, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно r . Эти соотношения часто используют при решении задач, в которых рассматриваются те или иные комбинации шаров с правильными тетраэдрами или прямоугольными параллелепипедами.
Определение. Шар называется описанным около многогранника, если все вершины многогранника принадлежат поверхности шара (рис. 211) . Многогранник при этом называют вписанным в шар.
Не около всякого многогранника можно описать шар. Например, около любой правильной или любой треугольной пирамиды шар описать можно, а около четырёхугольной пирамиды, в основании которой лежит ромб, не являющийся квадратом, шар описать нельзя (около ромба нельзя описать окружность). Более того, нельзя описать шар около любой наклонной призмы.
Вообще, для того чтобы около многогранника можно было описать шар, необходимо, чтобы около любой его грани можно было описать круг. При этом центр описанного шара может лежать как внутри многогранника, так и вне его или на его поверхности (даже на ребре многогранника), и проектируется в центр описанного около любой грани круга. Кроме того, перпендикуляр, опущенный из центра описанного около многогранника шара на ребро многогранника, делит это ребро (как хорду шара) пополам.
Мы уже говорили о пирамидах, все рёбра которых одинаково наклонены к основанию. Около таких пирамид всегда можно описать шар, центр которого лежит на луче, содержащем высоту пирамиды.
Высота h пирамиды, радиус R к описанного около основания пирамиды круга и радиус R описанного около этой пирамиды шара связаны соотношением:
( R – h ) 2 + = R 2 .
Приведём формулы для вычисления радиусов вписанных и описанных шаров для правильных многогранников с ребром a.
В задачах иногда ещё рассматривают шары, касающиеся всех рёбер данного многогранника. Для куба, например, такой шар существует и его радиус равен , где a — ребро куба.
19.7. Площади поверхностей шара и его частей
Часть шара, заключённая между секущей плоскостью и одной из двух частей его сферической поверхности, называется шаровым сегментом (рис. 212 и 214). Поверхность шарового сегмента называется сегментной поверхностью : она представляет собой часть шаровой поверхности, отсекаемую какой-нибудь плоскостью. Круг АВ, по которому плоскость пересекает шар, называется основанием шарового сегмента, а окружность этого круга — основанием сегментной поверхности. Отрезок ОС радиуса, перпендикулярного секущей плоскости, называется высотой шарового сегмента ( сегментной поверхности ) .
Часть шара, заключённая между двумя параллельными секущими плоскостями, называется шаровым слоем (см. рис. 212, 214). Поверхность шарового слоя называется шаровым поясом. Шаровой пояс — часть шаровой поверхности, заключённая между двумя параллельными секущими плоскостями. Перпендикуляр, проведённый из точки одного основания к плоскости другого, называется высотой шарового слоя ( шарового пояса ).
Сегментную поверхность и шаровой пояс можно рассматривать как поверхности вращения: в то время, как при вращении полуокружности CAA 1 D (см. рис. 212) вокруг диаметра CD образуется шаровая поверхность (сфера), при вращении дуги СА этой полуокружности вокруг того же диаметра образуется сегментная поверхность, а при вращении дуги AA 1 — шаровой пояс.
Тело, образованное при вращении кругового сектора с углом ϕ ( ϕ ° ) вокруг прямой, которая содержит диаметр круга, не имеющий с круговым сектором общих внутренних точек, называется шаровым сектором .
Из этого определения следует, что поверхность шарового сектора состоит из сегментной поверхности и боковой поверхности конуса (рис. 213, а , б ) или из поверхности шарового пояса и боковых поверхностей двух конусов (рис. 213, в, г ).
На рисунке 214 изображены различные элементы шара и сферы (шаровой сектор имеет простейший вид).
Рассмотрим вопрос о вычислении площадей сферы, сегментной поверхности, шарового пояса и шарового сектора.
а) Площадь сферы. Пусть ABCDEF — правильная ломаная линия, вписанная в данную полуокружность; a — длина её апофемы (рис. 215). При вращении полуокружности вокруг её диаметра AF образуется сфера, а при вращении ломаной ABCDEF вокруг этого же диаметра AF образуется некоторая поверхность Ф .
За площадь сферы, образованной вращением полуокружности вокруг её диаметра, принимают предел, к которому стремится площадь поверхности Ф, образованной вращением вокруг того же диаметра правильной n- звенной ломаной линии, вписанной в полуокружность, при n → + ∞ ( число сторон неограниченно возрастает ).
Поверхность Ф является объединением поверхностей, образованных вращением звеньев ломаной линии, вписанной в полуокружность, вокруг её диаметра. Этими поверхностями являются боковые поверхности либо конуса (для первого и последнего звеньев ломаной), либо цилиндра (для звеньев, параллельных оси вращения; их может и не быть), либо усечённого конуса (для всех остальных звеньев ломаной).
При вычислении площадей получившихся поверхностей воспользуемся следствиями из теорем 26, 27, 29. Площадь S i ( i = 1, 2, . n ) поверхности, образованной вращением любого звена, равна произведению 2 π , расстояния b i от середины звена до центра сферы и длины m i проекции этого звена на ось вращения, т. е. S i вращ = 2 π • b i • m i .
Так как ломаная — правильная, то все b i равны апофеме a n данной n- звенной ломаной, а m 1 + m 2 + m 3 + . + m n = 2 R и S 1 + S 2 + S 3 + . + S n = 4 π • a n • R . Причём a n = , где p n — периметр данной ломаной. Поскольку ограниченная переменная величина при n → + ∞ становится бесконечно малой, то при n → ∞ апофема a n стремится к радиусу R полуокружности.
Следовательно, предел площади поверхности Ф при n → ∞ равен 4 π R • R = 4 π R 2 . Этот предел и принимается за величину площади сферы радиуса R :
S сферы = 4 π R 2 .
б) Площади сегментной поверхности и шарового пояса. Если правильная ломаная вписана не в полуокружность, а в некоторую её часть, например в дугу AD (см. рис. 215), при вращении которой образуется сегментная поверхность, то рассуждения, аналогичные предыдущим, приводят к выводу:
S сегм. поверх = 2 π Rh ,
где h — высота сферического сегмента.
Если же ломаная вписана в дугу ВЕ (см. рис. 215), при вращении которой образуется шаровой пояс, то получим:
S шар. пояса = 2 π Rh ,
где h — высота шарового пояса.
Проделайте эти рассуждения самостоятельно.
в) Площадь поверхности шарового сектора. Эта площадь может быть получена как сумма площадей поверхности сферического сегмента и боковой поверхности одного конуса (см. рис. 213, а, б ) или как сумма площадей поверхности сферического слоя и боковых поверхностей двух конусов (см. рис. 213, в, г ).
Рассмотрим частный случай (см. рис. 213, а, б ). Если R — радиус сферы, h — высота шарового сегмента, то площадь боковой поверхности конуса с вершиной в центре сферы, образующей R , и радиусом основания (докажите это) равна π R , а площадь сегментной поверхности равна 2 π Rh. Значит, для площади шарового сектора справедлива формула
S шар. сект = π R (2 h + ) .
ЗАДАЧА (3.418). Основанием треугольной пирамиды SABC является равносторонний треугольник АВС , сторона которого равна 4. Известно также, что AS = BS = , a SC = 3. Найти площадь сферы, описанной около этой пирамиды.
Решени е. Решим эту задачу двумя методами.
Первый метод ( геометрич е ски й). Пусть точка О — центр сферы, описанной около данной пирамиды; D — точка пересечения медиан правильного △ АВС ; точка Е — середина отрезка АВ (рис. 216).
Центр О сферы равноудалён от всех вершин △ АBС, поэтому принадлежит прямой, проходящей через точку D перпендикулярно плоскости АВС.
Так как точка Е — середина отрезка АВ, то SE ⟂ АВ ( AS = BS ) и СЕ ⟂ АВ ( △ АВС — правильный). Значит, по признаку перпендикулярности прямой и плоскости AB ⟂ ( CSE ) , поэтому ( CSE ) ⟂ ( ABC ) (по признаку перпендикулярности двух плоскостей). Это означает, что прямая OD, а следовательно, и точка О — центр сферы — лежат в плоскости CSE.
Точка D является центром окружности, описанной около △ АВС. (По этой окружности плоскость АВС пересекает сферу, описанную около данной пирамиды.) Если L — точка пересечения прямой СЕ и упомянутой окружности, то CL — её диаметр. Найдём длину диаметра CL.
В правильном △ AВС имеем: CE = = 2 ; CD = СЕ = . Тогда CL = 2 CD = .
Далее △ BSE ( ∠ BES = 90 ° ): SE 2 = SB 2 – BE 2 = 19 – 4 = 15 (по теореме Пифагора); △ SEC (по теореме косинусов):
cos C = = = ;
△ SLC (по теореме косинусов):
SL 2 = SC 2 + CL 2 – 2 SC • CL • cos C = ⇒ SL = .
Плоскость CSL проходит через центр О сферы, следовательно, пересекает сферу по большой окружности, которая описана около △ CSL. Значит, радиус R этой окружности равен радиусу сферы, описанной около данной пирамиды. Найдём длину радиуса R.
В треугольнике CSL имеем = 2 R. Так как в этом треугольнике cos C = , то sin C = = . Тогда R = = : = .
Находим площадь Q сферы:
Q = 4 π R 2 = 4 π • = π .
Второй метод ( коо р динатны й). Введём в пространстве декартову прямоугольную систему координат так, чтобы её начало совпадало с вершиной А данной пирамиды, направление оси абсцисс — с направлением луча АС, ось аппликат была перпендикулярна плоскости основания АВС пирамиды (рис. 217).
В этой системе координат вершины основания пирамиды имеют координаты: А (0; 0; 0), B (2; 2 ; 0), C (4; 0; 0).
Обозначив через х, у, z координаты вершины S пирамиды, найдём их из условий: AS = BS = , CS = 3 .
AS 2 = x 2 + y 2 + z 2 = 19,
ВS 2 = ( x – 2) 2 + ( y – 2 ) 2 + z 2 = 19,
C S 2 = ( x – 4) 2 + y 2 + z 2 = 9.
Решая систему уравнений
x 2 + y 2 + z 2 = 19, ( x – 2) 2 + ( y – 2 ) 2 + z 2 = 19, ( x – 4) 2 + y 2 + z 2 = 9,
находим: х = , у = , z = .
Таким образом, вершина S имеет следующие координаты:
S .
Пусть центр O сферы имеет координаты a, b, с, а её радиус равен R. Так как сфера описана около пирамиды SABC, то OA 2 = OB 2 = OC 2 = OS 2 = R 2 . Это соотношение в координатном виде равносильно системе уравнений
a 2 + b 2 + c 2 = R 2 , ( a – 2) 2 + ( b – 2 ) 2 + c 2 = R 2 , + + = R 2 , ( a – 4) 2 + b 2 + c 2 = R 2 .
Вычитая из первого уравнения четвёртое, получаем a = 2, после чего, вычитая из первого уравнения второе, получаем b = .
После вычитания третьего уравнения системы из первого её уравнения получаем:
= 0.
Подставив в это уравнение вместо a и b найденные их значения, получаем с = . Отсюда: R 2 = a 2 + b 2 + c 2 = 4 + + = . Тогда искомая площадь Q сферы равна:
Q = 4 π R 2 = π .
Ответ: π (кв. ед.).
19.8. Объёмы шара и его частей
Рассмотрим фигуру, образованную вращением равнобедренного прямоугольного треугольника с гипотенузой 2 R вокруг прямой, проходящей через вершину прямого угла параллельно гипотенузе (рис. 218, а ). Объём этой фигуры равен разности объёма цилиндра с высотой 2 R , радиусом основания R и удвоенного объёма конуса высоты R , радиуса основания R :
V = π • R 2 • 2 R – 2 • π • R 2 • R = π • R 3 . (*)
Шар радиуса R (рис. 218, б ) и образованную выше фигуру вращения расположим между двумя параллельными плоскостями, расстояние между которыми равно 2 R . Шар при этом будет касаться каждой из данных плоскостей, а фигуру вращения расположим так, чтобы её ось вращения была перпендикулярна этим плоскостям (см. рис. 218). (Плоскость, которая содержит верхнее основание цилиндра и касается сферы в точке N , на рисунке не изображена.)
Будем пересекать наши фигуры плоскостями, параллельными данным плоскостям и удалёнными от центра шара на расстояние x (0 ⩽ x ⩽ R ).
При х = 0 площади сечений обеих фигур равны π • R 2 ; при х = R площади сечений равны нулю. В остальных случаях площадь сечения шара равна π • ( ) 2 = π • ( R 2 – x 2 ), а площадь сечения другой фигуры (ею является кольцо) равна π • R 2 – π • x 2 . Следовательно, площади равноудалённых от центра шара сечений рассматриваемых фигур равны (относятся, как 1 : 1). Поэтому на основании принципа Кавальери равны и объёмы этих тел. Тогда на основании (*):
V шара = • π • R 3 ,
гдe R — радиус шара.
Для получения объёма шарового сегмента высоты h рассмотрим предыдущую ситуацию для R – h ⩽ x ⩽ R (при h R ) (рис. 218, 219). Применяя принцип Кавальери, получим: объём шарового сегмента равен разности объёма цилиндра высоты h и радиуса основания R и объёма усечённого конуса высоты h и радиусов оснований R и R – h , т. е.
V = π • h • R 2 – π • h • ( R 2 + R • ( R – h ) + ( R – h ) 2 ) =
= π • h 2 • (3 R – h ) .
При h > R объём шарового сегмента можно найти как разность объёма шара и объёма шарового сегмента высоты 2 R – h (рис. 220): V = π • R 3 – • π • (2 R – h ) 2 • (3 R – (2 R – h )) = π • h 2 (3 R – h ) , т. е. получаем ту же самую формулу. Подставляя в эту формулу h = R , получим V = π • R 2 (3 R – R ) = π • R 3 , что соответствует объёму полушара.
Мы показали, что в шаре радиуса R объём любого шарового сегмента высоты h может быть вычислен по формуле:
V шар. сегм = π • h 2 • (3 R – h ) ,
или в другом виде
V шар. сегм = π • h 2 • .
[spoiler title=”источники:”]
http://www.evkova.org/sfera
http://reader.lecta.rosuchebnik.ru/demo/8285/data/chapter20.xhtml
[/spoiler]
как найти площадь круга или сферы?
Lord_Vader
Профи
(567),
закрыт
15 лет назад
stels
Гуру
(4505)
15 лет назад
Для расчёта площади есть много способов один из них:
Вырезаешь квадратики со стороной 1 см. Накладываешь их на круг. Сколько квадратиков войдёт, такая площадь круга в квадратных сантиметрах.
Download Article
Download Article
The surface area of a sphere is the number of square units (cm2, square inches, square feet — whatever your measurement) that are covering the outside of a spherical object.[1]
Discovered by the Greek philosopher and mathematician Aristotle thousands of years ago, the equation is relatively simple, even if its origins are not. To find the surface area of a sphere, use the formula (4πr2), where r = the radius of the circle.
-
1
Know the parts of the equation, Surface Area = 4πr2. This nearly ancient formula is still the easiest way to determine the surface area of a sphere.[2]
Using almost any calculator, you can plug in the radius to get the surface area of your sphere.- r, or “radius: The radius is the distance from the center of the sphere to the edge of that sphere.
-
π, or “pi:” This incredible number (equalling roughly 3.14) represents the ratio between a circle’s circumference and diameter, and is useful in all equations with circles and spheres. It is commonly shortened as π = 3.1416, but there are an infinite number of decimals.[3]
- 4: For somewhat complex reasons, the surface area of a sphere is always 4 times as large as the area of a circle with the same radius.
-
2
Find the radius of the sphere. Sometimes your problem will supply you the radius, and other times you will have to find it yourself. If you are given the diameter of a circle, simply divide the diameter by 2 to get the radius.[4]
For example, a sphere of diameter 10 inches has a radius of 5 inches.-
Advanced Tip:If you only know the volume of a sphere, you need to do a little more work to get the radius. Divide the volume by 4π, then multiply that answer by 3. Finally, take the cube root of this answer.[5]
Advertisement
-
Advanced Tip:If you only know the volume of a sphere, you need to do a little more work to get the radius. Divide the volume by 4π, then multiply that answer by 3. Finally, take the cube root of this answer.[5]
-
3
Square the radius by multiplying it by itself. You can either do this by manually multiplying (52 = 5 * 5 = 25) or by using your calculator’s “square” function (sometimes labeled as “x2“).[6]
-
4
Multiply this result by 4. While you can multiply either 4 or pi first, it is generally easier to start with 4 since there are no decimals to multiply yet.[7]
- If our radius is 5, like above, you would be left with 4 * 25 * π, or 100π.
-
5
Multiply the results by pi (π). If your problem says “exact value”, write the symbol π after your number and call it done. Otherwise, use the approximation π=3.14 or your calculator’s π button.[8]
- 100 * π = 100 * 3.14
- 100π = 314
-
6
Remember to add you units to the final answer. Is your sphere’s surface area 314 inches big, or 314 miles (505 km) big? The units need to be written as “units2,” because this denotes area, otherwise known as “square units”.[9]
- The full answer to the sphere in the pictures is: Surface Area = 314 units2.
- The units you use are always the same ones used to measure the radius. If the radius is in meters, the answer will be in meters.
- Advanced Tip: We square the units because area measures how many flat squares we could fit on the surface of the sphere. Say we measure the practice problem in inches. This means on a sphere where r=5, we could fit 314 squares on the surface of the sphere if the sides of every square are 1 inch long.
-
7
Practice with an example. If the radius of a sphere is 7 centimeters, what is the surface area of that sphere?
- 4πr2
- r = 7
- 4 * π * 72
- 49 * 4 * π
- 196π
- Answer: Surface Area = 615.75 centimeters2, or 615.75 square centimeters.
-
8
Understand surface area. The surface area of a sphere is the area covering the outside of the sphere — think of it as the rubber covering a kickball or the surface of the earth. Because it is curved, it is much harder to measure the surface area of a sphere than a box, so we need an equation to determine the area.[10]
- Rotating a circle around its axis (the center point) will produce a sphere. Think of spinning a coin on the table and how it appears to form a sphere. While it won’t be explained here, this is where our equation comes from.
- Advanced Tip: Spheres have a smaller surface area per volume than any other shape — that means it can hold more things in a smaller area than any other shape.
Advertisement
Add New Question
-
Question
How do I find the volume of a sphere?
Volume = (4/3) π r³.
-
Question
What is the circumference of a sphere?
Pi multiplied by the diameter.
-
Question
How do I find the area of half a sphere?
Divide total area by 2.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
If your radius includes a square root, like 3 √ 5, remember to square coefficient squares and the radical. (3 √ 5)2 becomes 9×5 which gives 45.
Thanks for submitting a tip for review!
Advertisement
References
About This Article
Article SummaryX
To find the surface area of a sphere, use the equation 4πr2, where r stands for the radius, which you will multiply by itself to square it. Then, multiply the squared radius by 4. For example, if the radius is 5, it would be 25 times 4, which equals 100. If the problem calls for an exact answer, then leave the answer as 100π. If the answer doesn’t need to be exact, multiply by 3.14 to get the surface area. Be sure to label your answer as the appropriate units squared. If you want to learn how to find the radius of a sphere, keep reading the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 329,766 times.