Как найти площадь через ускорение

3.2.1. Как правильно понимать условия задачи?

Скорость тела увеличилась в n раз: nu=nnu_0.

Скорость уменьшилась в n раз: nu= дробь: числитель: nu_0, знаменатель: n конец дроби

Скорость увеличилась на 2 м/с: nu=nu_0 плюс 2.

Во сколько раз увеличилась скорость?  дробь: числитель: nu, знаменатель: nu_0 конец дроби .

Во сколько раз уменьшилась скорость?  дробь: числитель: nu_0, знаменатель: nu конец дроби .

Как изменилась скорость?  дробь: числитель: nu, знаменатель: nu_0 конец дроби .

На сколько увеличилась скорость? nu минус nu_0.

На сколько уменьшилась скорость? nu_0 минус nu.

Тело достигло наибольшей высоты: nu_y=0.

Тело прошло половину расстояния:  дробь: числитель: S, знаменатель: 2 конец дроби .

Тело бросают с земли: y_0=0, nu_0y не равно 0 (последнее условие часто ускользает из вида — если у тела скорость равна нулю, например у ручки, лежащей на столе, оно может полететь само вверх?), начальная скорость направлена вверх.

Тело бросают вниз: y_0 не равно 0, начальная скорость направлена вниз.

Тело бросают вверх: начальная скорость направлена вверх.

В момент падения на землю: y=0.

Тело выпадает из аэростата (воздушного шара): начальная скорость равна скорости аэростата (воздушного шара) и направлена в ту же самую сторону.

3.2.2. Как по графику скорости определить ускорение?

Закон изменения скорости имеет вид:

nu_x=nu_0x плюс a_x t.

Графиком этого уравнения является прямая линия. Так как a_x — коэффициент перед t, то a_x является угловым коэффициентом прямой.

Для графика 1:

a_x_1= дробь: числитель: Deltanu_x_1, знаменатель: Delta t_1 конец дроби .

То, что график 1 «поднимается вверх», означает — проекция ускорения положительна, т. е. вектор veca направлен в положительном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.

Для графика 2:

a_x_2= дробь: числитель: Deltanu_x_2, знаменатель: Delta t_2 конец дроби .

То, что график 2 «опускается вниз», означает — проекция ускорения отрицательна, т. е. вектор veca направлен в отрицательном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.

Для определения Deltanu_x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

3.2.3. Как по графику скорости определить пройденный путь и перемещение?

Как сказано в пункте 3.1.6 путь можно как площадь под графиком зависимости скорости от ускорения. Простой случай показан в пункте 3.1.6. Рассмотрим более сложный вариант, когда график скорости пересекает ось времени.

Напомним, что путь может только увеличиваться, поэтому путь, который проехало тело в примере на рисунке 9 равен:

S=S_1 плюс S_2 плюс S_3,

где S_1, S_2 и S_3 — площади фигур, закрашенных на рисунке.

Для определения перемещения нужно заметить, что в точках t_1 и t_2 тело меняет направление движения. Проезжая путь S_1, тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Проезжая путь S_2, тело движется в обратную сторону, в отрицательном направлении оси Ox так как график лежит под осью времени. Проезжая путь S_3, тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Таким образом, перемещение равно:

Delta r=|S_1 минус S_2 плюс S_3|.

Еще раз обратим внимание:

1) пересечение с осью времени означает поворот в обратную сторону;

2) площадь графика, лежащего под осью времени положительна и входит со знаком «+» в определение пройденного пути, но со знаком «−» в определении перемещения.

3.2.4. Как из графика зависимости ускорения от времени определить зависимость скорости от времени и координаты от времени?

Для того, чтобы определить требуемые зависимости необходимы начальные условия — значения скорости и координаты в момент времени t=0. Без начальных условий решить однозначно данную задачу невозможно, поэтому, как правило, в условии задачи они даны.

В данном примере постараемся привести все рассуждения в буквах, для того, чтобы частном примере (при подстановке цифр) не потерять суть действий.

Пусть в момент времени t=0, скорость тела равна нулю nu_0=0, и начальная координата x_0=0.

1) От 0 до t=t_1.

Начальные значения скорости и координаты определяем из начальных условий, а ускорение из графика:

a_x=a_1 больше 0,nu_01=0,x_01=0,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x_1=nu_01 плюс a_1 t=a_1 t,								x_1=x_01 плюс nu_01 t плюс дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби = дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби .

К концу данного промежутка времени (t=t_1) скорость (nu_k1) и координата (x_k1) будут равны (вместо времени в формулы nu_x_1=nu_01 плюс a_1 t=a_1 t и x_1=x_01 плюс nu_01 t плюс дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби = дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби нужно подставить t_1):

nu_k1=a_1 t_1,										x_k1= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби .

2) От t=t_1 до t=t_2.

Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:

a_x=0,nu_02=nu_k1,x_02=x_k1,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x_2=nu_02,										x_2=x_02 плюс nu_02 t.

К концу данного промежутка времени (t=t_2) скорость (nu_k2) и координата (x_k2) будут равны (вместо времени в формулы nu_x_2=nu_02 и x_2=x_02 плюс nu_02 t нужно подставить t_2):

nu_k2=a_1 t_1,x_k2= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби плюс a_1 t_1 t_2.

3) От t=t_2 до t=t_3.

Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:

a_x= минус a_2 меньше 0,nu_03=nu_k2,x_03=x_k2,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x3=nu_03 минус a_2 t,									x_3=x_03 плюс nu_03 t минус дробь: числитель: a_2 t в квадрате , знаменатель: 2 конец дроби .

К концу данного промежутка времени (t=t_3) скорость (nu_k3) и координата (x_k3) будут равны (вместо времени в формулы nu_x3=nu_03 минус a_2 t и x_3=x_03 плюс nu_03 t минус дробь: числитель: a_2 t в квадрате , знаменатель: 2 конец дроби нужно подставить t_3):

nu_k3=a_1 t_1 минус a_2 t_3,									x_k3= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби плюс a_1 t_1 t_2 плюс a_1 t_1 t_3 минус дробь: числитель: a_2 t_3 в квадрате , знаменатель: 2 конец дроби .

Для лучшего понимания построим полученные результаты на графике (см. рис.)

На графике скорости:

1) От 0 до t=t_1: прямая линия, «поднимающаяся вверх» (т. к. a_1 больше 0);

2) От t=t_1 до t=t_2: горизонтальная прямая линия (т. к. a=0);

3) От t=t_2 до t=t_3: прямая линия, «опускающаяся вниз» (т. к.  минус a_2 меньше 0).

На графике координаты:

1) От 0 до t=t_1: парабола, ветви которой направлены вверх (т. к. a_1 больше 0);

2) От t=t_1 до t=t_2: прямая линия, поднимающаяся вверх (т. к. a=0);

3) От t=t_2 до t=t_3: парабола, ветви которой направлены вниз (т. к.  минус a_2 меньше 0).

3.2.5. Как из графика закона движения записать аналитическую формулу закона движения?

Пусть дан график равнопеременного движения.

Закон равнопеременного движения имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

В этой формуле три неизвестные величины: x_0, nu_0x и a_x.

Для определения x_0 достаточно посмотреть на значение функции при t=0. Для определения двух других неизвестных выбираем две точки на графике, значения которых мы можем точно определить — вершины клеток. Получим систему:

 система выражений x_1=x_0 плюс nu_0x t_1 плюс дробь: числитель: a_x t_1 в квадрате , знаменатель: 2 конец дроби ,x_2=x_0 плюс nu_0x t_2 плюс дробь: числитель: a_x t_2 в квадрате , знаменатель: 2 конец дроби . конец системы .

При этом считаем, что x_0 нам уже известно. Умножим 1-ое уравнение системы на t_2, а 2-ое уравнение на t_1:

 система выражений x_1 t_2=x_0 t_2 плюс nu_0x t_1 t_2 плюс дробь: числитель: a_x t_1 в квадрате t_2, знаменатель: 2 конец дроби ,x_2 t_1=x_0 t_1 плюс nu_0x t_2 t_1 плюс дробь: числитель: a_x t_2 в квадрате t_1, знаменатель: 2 конец дроби . конец системы .

Вычтем из 1-го уравнения 2-ое, после чего получаем:

a_x= дробь: числитель: 2x_0, знаменатель: t_1 t_2 конец дроби минус дробь: числитель: 2 левая круглая скобка x_1 t_2 минус x_2 t_1 правая круглая скобка , знаменатель: t_1 t_2 левая круглая скобка t_2 минус t_1 правая круглая скобка конец дроби .

Полученное из данного выражения значение a_x подставим в любое из уравнений системы (3.67) и решим полученное уравнение относительно nu_0x:

nu_0x= дробь: числитель: левая круглая скобка x_0 минус x_2 правая круглая скобка t_1 в квадрате минус левая круглая скобка x_0 минус x_1 правая круглая скобка t_2 в квадрате , знаменатель: t_1 t_2 левая круглая скобка t_2 минус t_1 правая круглая скобка конец дроби .

3.2.6. Как по известному закону движения определить закон изменения скорости?

Закон равнопеременного движения имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Это его стандартный вид для данного типа движения и никак иначе он выглядеть не может, поэтому его стоит запомнить.

В данном законе коэффициент перед t — это значение начальной скорости, коэффициент пред t в квадрате — это ускорение, деленное пополам.

Например, пусть дан закон: x=5 минус 6t плюс 3t в квадрате .

Тогда

nu_0x= минус 6м/с; дробь: числитель: a_x, знаменатель: 2 конец дроби =3 Rightarrow a_x=2 умножить на 3=6.

И уравнение скорости имеет вид:

nu_x= минус 6 плюс 6t.

Таким образом, для решения подобных задач, необходимо точно помнить вид закона равнопеременного движения и смысл коэффициентов, входящих в это уравнение.

Однако можно пойти и иным путем. Вспомним формулу:

nu_x=dot x левая круглая скобка t правая круглая скобка ̇=nu_0x плюс a_x t.

В нашем примере:

 левая круглая скобка 5 минус dot6t плюс 3t в квадрате правая круглая скобка =dot левая круглая скобка 5 правая круглая скобка минус 6dot левая круглая скобка t правая круглая скобка плюс 3dot левая круглая скобка t в квадрате правая круглая скобка = минус 6 плюс 3 умножить на 2t= минус 6 плюс 6t.

3.2.7. Как определить место и время встречи?

Пусть даны законы движения двух тел:

x_1=x_01 плюс nu_x_1 t плюс дробь: числитель: a_x_1 t в квадрате , знаменатель: 2 конец дроби иx_2=x_02 плюс nu_x_2 t плюс дробь: числитель: a_x_2t в квадрате , знаменатель: 2 конец дроби .

В момент встречи тела оказываются в одной координате, то есть x_1=x_2 и необходимо решить уравнение:

x_01 плюс nu_x_1 t плюс дробь: числитель: a_x_1 t в квадрате , знаменатель: 2 конец дроби =x_02 плюс nu_x_2 t плюс a_x_2 дробь: числитель: t в квадрате , знаменатель: 2 конец дроби .

Перепишем его в виде:

 дробь: числитель: левая круглая скобка a_x_2 минус a_x_1 правая круглая скобка , знаменатель: 2 конец дроби t в квадрате плюс левая круглая скобка nu_x_2 минус nu_x_1 правая круглая скобка t плюс левая круглая скобка x_02 минус x_01 правая круглая скобка =0.

Это квадратное уравнение, общее решение которого приводить не будем, в силу его громоздкости. Квадратное уравнение либо не имеет решений, что означает — тела не встретились; либо имеет одно решение — одна единственная встреча; либо имеет два решения — две встречи тел.

Полученные решения необходимо проверять на физическую реализуемость. Самое главное условие: t_1 больше 0 и t_2 больше 0, то есть время встречи должно быть положительным.

3.2.8. Как определить путь за -ую секунду?

Пусть тело начинает движение из состояния покоя и за -ую секунду проходит путь S_m. Требуется найти, какой путь проходит тело за n-ую секунду.

Для решения этой задачи необходимо воспользоваться формулой (3.25):

S_1:S_2:S_3:…:S_N=1:3:5:…: левая круглая скобка 2N минус 1 правая круглая скобка .

Обозначим S_1=S_0. Тогда

S_m= левая круглая скобка 2m минус 1 правая круглая скобка S_0,									S_n= левая круглая скобка 2n минус 1 правая круглая скобка S_0.

Поделим уравнение S_m= левая круглая скобка 2m минус 1 правая круглая скобка S_0 на S_n= левая круглая скобка 2n минус 1 правая круглая скобка S_0 и получим:

S_n= дробь: числитель: 2n минус 1, знаменатель: 2m минус 1 конец дроби S_m.

3.2.9. Как движется тело, брошенное вверх с высоты h?

Тело, брошено вверх с высоты h со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=h плюс nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y=nu_0 минус gt.

Время подъема до наивысшей точки полета t_1 определяется из условия nu_y=0:

0=nu_0 минус gt_1 Rightarrow t_1= дробь: числитель: nu_0, знаменатель: g конец дроби .

Для нахождения максимальной высоты H необходимо в y=h плюс nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби необходимо подставить t=t_1:

H=h плюс nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби =h плюс дробь: числитель: nu_0 в квадрате , знаменатель: 2g конец дроби .

Время всего полета t_2 определяется из условия y=0. Получаем уравнение:

0=h плюс nu_0 t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_2= дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu=nu_0 минус gt_2=nu_0 минус g дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби = минус корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , nu= корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

3.2.10. Как движется тело, брошенное вниз с высоты h?

Тело, брошено вверх с высоты h со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=h минус nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y= минус nu_0 минус gt.

Время всего полета t_1 определяется из уравнения:

0=h минус nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_1= дробь: числитель: минус nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu= минус nu_0 минус gt_1= минус nu_0 минус g дробь: числитель: минус nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби = минус корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента . nu= корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

3.2.11. Как движется тело брошенное вверх с поверхности земли?

Тело брошено вверх с поверхности земли со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y=nu_0 минус gt.

Время подъема до наивысшей точки полета t_1 определяется из условия nu_y=0:

0=nu_0 минус gt_1 Rightarrow t_1= дробь: числитель: nu_0, знаменатель: g конец дроби .

Для нахождения максимальной высоты H необходимо в (3.89) необходимо подставить t=t_1:

H=nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби = дробь: числитель: nu_0 в квадрате , знаменатель: 2g конец дроби .

Время всего полета t_2 определяется из условия y=0. Получаем уравнение:

0=nu_0 t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби Rightarrow t_2= дробь: числитель: 2nu_0, знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu=nu_0 минус gt_2=nu_0.nu= минус nu_0.

Заметьте, что t_2=2t_1, что означает — время подъема равно времени падения на ту же высоту.

Также получили: |nu|=nu_0, то есть — с какой скоростью бросили, с такой же скоростью тело упало. Знак «−» в формуле nu= минус nu_0 указывает, что скорость в момент падения направлена вниз, то есть против оси Oy.

3.2.12. Тело побывало на одной высоте дважды…

При бросании тела оно может дважды оказаться на одной высоте — первый раз при движении вверх, второй — при падении вниз.

1) Когда тело оказывается на высоте h?

Для тела, брошенного вверх с поверхности земли справедлив закон движения:

y=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Когда тело окажется на высоте h его координата будет равна y=h. Получаем уравнение:

h=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби ,

решение которого имеет вид:

t_1= дробь: числитель: nu_0 минус корень из: начало аргумента: nu_0 в квадрате минус 2gh конец аргумента , знаменатель: g конец дроби ,									 t_2= дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате минус 2gh конец аргумента , знаменатель: g конец дроби ,

2) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Когда тело окажется на максимальной высоте?

Время полета с высоты h назад до высоты h равно t_2 минус t_1. Как уже было показано, время подъема равно времени падения до той же высоты, поэтому время полета от высоты h до максимальной высоты равно:

t_h= дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби .

Тогда время полета от начала движения до максимальной высоты:

t_под=t_1 плюс дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби = дробь: числитель: t_1 плюс t_2, знаменатель: 2 конец дроби .

3) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Чему равно время полета тела?

Все время полета равно:

t_0=2t_под=t_1 плюс t_2.

4) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Чему равна максимальная высота подъема?

H= дробь: числитель: gt_под в квадрате , знаменатель: 2 конец дроби = дробь: числитель: g левая круглая скобка t_1 плюс t_2 правая круглая скобка в квадрате , знаменатель: 8 конец дроби .

3.2.13. Как движется тело, брошенное горизонтально с высоты h?

Тело, брошено горизонтально с высоты h со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0;nu_0y=0,

Проекции ускорения:

a_x=0;a_y= минус g .

Проекции скорости в произвольный момент времени t:

nu_x=nu_0;nu_y= минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 t,y=h минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета t_1 определяется из условия y=0:

0=h минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби Rightarrow t_1= корень из: начало аргумента: дробь: числитель: 2h, знаменатель: g конец дроби конец аргумента .

Для определения дальности полета необходимо в уравнение для координаты x вместо t подставить t_1:

L=nu_0 t_1= дробь: числитель: 2hnu_0, знаменатель: g конец дроби .

Для определения скорости тела в момент падения необходимо в уравнение t_h= дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби вместо t подставить t_1:

nu= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_1 правая круглая скобка в квадрате конец аргумента = корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

Угол, под которым падает тело на землю:

 тангенс альфа = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: корень из: начало аргумента: 2gh конец аргумента , знаменатель: nu_0 конец дроби .

3.2.14. Как движется тело, брошенное под углом α к горизонту с высоты h?

Тело, брошено под углом α к горизонту с высоты h со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0 косинус альфа ;nu_0y=nu_0 синус ⁡ альфа ,

Проекции ускорения:

a_x=0;a_y= минус g.

Проекции скорости в произвольный момент времени t:

nu_x=nu_0 косинус ⁡ альфа ;nu_y=nu_0 синус альфа минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: левая круглая скобка nu_0 косинус ⁡ альфа правая круглая скобка в квадрате плюс левая круглая скобка nu_0 синус ⁡ альфа минус gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 косинус ⁡ альфа t,y=h плюс nu_0 синус альфа t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета до наивысшей точки t_1 определяется из условия nu_y=0:

0=nu_0 синус ⁡ альфа минус gt_1 Rightarrow t_1= дробь: числитель: nu_0 синус альфа , знаменатель: g конец дроби .

Скорость в наивысшей точке полета nu_2:

nu_2=nu_0 косинус ⁡ альфа .

Максимальная высота H определяется при подстановке в закон изменения координаты y времени t_1:

H=h плюс nu_0 синус ⁡ альфа t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби =h плюс дробь: числитель: nu_0 в квадрате левая круглая скобка синус ⁡ альфа правая круглая скобка в квадрате , знаменатель: 2g конец дроби .

Все время полета t_2 находится из условия y=0, получаем уравнение:

0=h плюс nu_0 синус ⁡ альфа t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_2= дробь: числитель: nu_0 синус ⁡ альфа плюс корень из: начало аргумента: левая круглая скобка nu_0 синус ⁡ альфа правая круглая скобка в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Если подставим в закон изменения координаты x время t_2, то получим дальность полета L:

L=nu_0 косинус альфа t_2.

Скорость в момент падения t_2:

nu_2= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_2 правая круглая скобка в квадрате конец аргумента .

Угол, который образует вектор скорости с горизонталью в произвольный момент времени:

 тангенс фи = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt, знаменатель: nu_0 косинус альфа конец дроби .

Угол падения:

 тангенс бета = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt_2, знаменатель: nu_0 косинус альфа nu_0 конец дроби .

3.2.15. Как движется тело, брошенное под углом α к горизонту земли?

Тело, брошено под углом α к горизонту с поверхности земли со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0 косинус альфа ;nu_0y=nu_0 синус альфа ,

Проекции ускорения:

a_x=0; a_y= минус g.

Проекции скорости в произвольный момент времени t:

nu_x=nu_0 косинус ⁡ альфа ; nu_y=nu_0 синус альфа минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: левая круглая скобка nu_0 косинус альфа правая круглая скобка в квадрате плюс левая круглая скобка nu_0 синус ⁡ альфа минус gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 косинус ⁡ альфа t,y=nu_0 синус альфа ⁡ t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета до наивысшей точки t_1 определяется из условия nu_y=0:

0=nu_0 синус ⁡ альфа минус gt_1 Rightarrow t_1= дробь: числитель: nu_0 синус ⁡ альфа , знаменатель: g конец дроби .

Скорость в наивысшей точке полета nu_2:

nu_2=nu_0 косинус ⁡ альфа .

Максимальная высота H определяется при подстановке в закон изменения координаты y времени t_1:

H= дробь: числитель: nu_0 в квадрате левая круглая скобка синус ⁡ альфа правая круглая скобка в квадрате , знаменатель: 2g конец дроби .

Все время полета t_2 находится из условия y=0, получаем уравнение:

0=nu_0 синус ⁡ альфа t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Получаем

t_2= дробь: числитель: 2nu_0 синус ⁡ альфа , знаменатель: g конец дроби .

Снова получили, что t_2=2t_1, то есть еще раз показали, что время подъема равно времени падения.

Если подставим в закон изменения координаты x время t_2, то получим дальность полета L:

L= дробь: числитель: 2nu_0 в квадрате косинус ⁡ альфа синус ⁡ альфа , знаменатель: g конец дроби = дробь: числитель: nu_0 в квадрате синус ⁡2 альфа , знаменатель: g конец дроби .

Скорость в момент падения t_2:

nu_3= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_2 правая круглая скобка в квадрате конец аргумента =nu_0.

Угол, который образует вектор скорости с горизонталью в произвольный момент времени:

 тангенс фи = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt, знаменатель: nu_0 косинус ⁡ альфа конец дроби .

Угол падения:

 тангенс бета = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt_2, знаменатель: nu_0 косинус ⁡ альфа nu_0 конец дроби = минус тангенс альфа .

то есть  альфа = бета .

3.2.16. Что такое настильная и навесная траектории?

Решим следующую задачу: под каким углом нужно бросить тело с поверхности земли, чтобы тело упало на расстоянии L от точки броска?

Дальность полета определяется формулой:

L= дробь: числитель: nu_0 в квадрате синус ⁡ 2 альфа , знаменатель: g конец дроби .

Отсюда

 синус ⁡2 альфа = дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби .

Из физических соображений ясно, что угол α не может быть больше 90°, поэтому, из серии решений уравнения  синус ⁡2 альфа = дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби подходят два корня:

 альфа _1= дробь: числитель: 1, знаменатель: 2 конец дроби арксинус левая круглая скобка дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби правая круглая скобка ,								  альфа _2= дробь: числитель: 1, знаменатель: 2 конец дроби арксинус левая круглая скобка дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби правая круглая скобка плюс дробь: числитель: Пи , знаменатель: 4 конец дроби .

Траектория движения, для которой  альфа = альфа _1 меньше 45 градусов называется настильной траекторией. Траектория движения, для которой  альфа = альфа _2 больше 45 градусов называется навесной траекторией.

3.2.17. Как пользоваться треугольником скоростей?

Как было сказано в 3.6.1 треугольник скоростей в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.

Тело бросили с вершины башни со скорость nu_0 так, что дальность полета максимальна. К моменту падения на землю скорость тела равна nu. Сколько длился полет?

Построим треугольник скоростей (см. рис.). Проведем в ней высоту, которая, очевидно, равна nu_0 косинус ⁡α. Тогда площадь треугольника скоростей равна:

S= дробь: числитель: 1, знаменатель: 2 конец дроби умножить на nu_0 косинус ⁡ альфа умножить на gt= дробь: числитель: 1, знаменатель: 2 конец дроби g левая круглая скобка nu_0 косинус ⁡ альфа t правая круглая скобка = дробь: числитель: 1, знаменатель: 2 конец дроби gL.

Здесь мы воспользовались формулой (3.121).

Найдем площадь этого же треугольника по другой формуле:

S= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус ⁡ бета .

Так как это площади одного и того же треугольника, то приравняем формулы S= дробь: числитель: 1, знаменатель: 2 конец дроби умножить на nu_0 косинус ⁡ альфа умножить на gt= дробь: числитель: 1, знаменатель: 2 конец дроби g левая круглая скобка nu_0 косинус ⁡ альфа t правая круглая скобка = дробь: числитель: 1, знаменатель: 2 конец дроби gL и S= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус ⁡ бета :

 дробь: числитель: 1, знаменатель: 2 конец дроби gL= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус бета .

Откуда получаем

L= дробь: числитель: nu_0 nu синус ⁡ бета , знаменатель: g конец дроби .

Как видно из формул для конечной скорости, полученных в предыдущих пунктах, конечная скорость не зависит от угла, под которым бросили тело, а зависит только значения начальной скорости и начальной высоты. Поэтому дальность полета по формуле L= дробь: числитель: nu_0 nu синус ⁡ бета , знаменатель: g конец дроби зависит только от угла между начальной и конечной скоростью β. Тогда дальность полета L будет максимальной, если  синус ⁡ бета примет максимально возможное значение, то есть

 синус бета =1 Rightarrow бета =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

Таким образом, если дальность полета максимальна, то треугольник скоростей будет прямоугольным, следовательно, выполняется теорема Пифагора:

 левая круглая скобка gt правая круглая скобка в квадрате =nu_0 в квадрате плюс nu в квадрате .

Откуда получаем

t= дробь: числитель: корень из: начало аргумента: nu_0 в квадрате плюс nu в квадрате конец аргумента , знаменатель: g конец дроби .

Свойством треугольника скоростей, который только что был доказан, можно пользоваться при решении других задач: треугольник скоростей является прямоугольным в задаче на максимальную дальность полета.

3.2.18. Как пользоваться треугольником перемещений?

Как было сказано в 3.6.2, треугольник перемещений в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.

Тело бросают под углом β к поверхности горы, имеющей угол наклона α. С какой скоростью нужно бросить тело, чтобы оно упало ровно на расстоянии L от точки бросания?

Построим треугольник перемещений — это треугольник ABC (см. рис. 19). Проведем в нем высоту BD. Очевидно, что угол DBC равен α.

Выразим сторону BD из треугольника BCD:

BD= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа .

Выразим сторону BD из треугольника ABD:

BD=nu_0 t синус ⁡ бета .

Приравняем BD= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа и BD=nu_0 t синус ⁡ бета :

 дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа = nu_0 t синус бета .

Откуда находим время полета:

t= дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби .

Выразим AD из треугольника ABD:

AD=nu_0 t косинус ⁡ бета .

Выразим сторону DC из треугольника BCD:

DC= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби синус ⁡ альфа .

Но AD плюс DC=L. Получаем

nu_0 t косинус ⁡ бета плюс дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби синус ⁡ альфа =L.

Подставим в это уравнение, полученное выражение для времени полета t= дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби :

nu_0 дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби косинус бета плюс дробь: числитель: g, знаменатель: 2 конец дроби синус альфа левая круглая скобка дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби правая круглая скобка =L.

Окончательно получаем

nu_0= корень из: начало аргумента: дробь: числитель: gL, знаменатель: синус ⁡2 бета плюс тангенс альфа левая круглая скобка синус ⁡ бета правая круглая скобка в квадрате конец дроби конец аргумента .

3.2.19. Как решать задачи с помощью закона движения? (по горизонтали)

Как правило, в школе при решении задач на равнопеременное движение применяются формулы

nu=nu_0 плюс at;nu=nu_0 минус at;S=nu_0 t плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби ;S=nu_0 t минус дробь: числитель: at в квадрате , знаменатель: 2 конец дроби ;S= дробь: числитель: nu в квадрате минус nu_0 в квадрате , знаменатель: 2a конец дроби ;S= дробь: числитель: nu_0 в квадрате минус nu в квадрате , знаменатель: 2a конец дроби ;S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t.

Однако такой подход к решению трудно применить к решению многих задач. Рассмотрим конкретный пример.

Опоздавший пассажир подошёл к последнему вагону поезда в тот момент, когда поезд тронулся, начав движение с постоянным ускорением а = 0,3 м/с в квадрате . Единственная открытая дверь в одном из вагонов оказалась от пассажира на расстоянии L = 60м. Какую наименьшую постоянную скорость он должен развить, чтобы успеть сесть в поезд?

Введем ось Ox, направленную вдоль движения человека и поезда. За нулевое положение примем начальное положение человека («2»). Тогда начальная координата открытой двери («1») L:

x_01=L,x_02=0.

Дверь («1»), как и весь поезд, имеют начальную скорость равную нулю. Человек («2») начинает движение со скоростью nu_0:

nu_01=0;nu_02=nu_0.

Дверь («1»), как и весь поезд, движется с ускорением a. Человек («2») движется с постоянной скоростью:

a_1=a;a_2=0.

Закон движения и двери и человека имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Подставим условия x_01=L,x_02=0;nu_01=0;nu_02=nu_0 и a_1=a;a_2=0 в уравнение для каждого из движущихся тел:

x_1=L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби .									 x_2=nu_0 t.

Мы составили уравнение движения для каждого из тел. Теперь воспользуемся уже известным алгоритмом для нахождения места и времени встречи двух тел — нам нужно приравнять x_1=L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби и x_2=nu_0 t:

L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби =nu_0 t.

Откуда получаем квадратное уравнение для определения времени встречи:

t в квадрате минус дробь: числитель: 2nu_0, знаменатель: a конец дроби t плюс дробь: числитель: 2L, знаменатель: a конец дроби =0.

Это квадратное уравнение. Оба его решения имеют физический смысл — наименьший корень, это первая встреча человека и двери (человек с места может побежать быстро, а поезд не сразу наберет большую скорость, так что человек может обогнать дверь), второй корень — вторая встреча (когда уже поезд разогнался и догнал человека). Но наличие обоих корней означает — человек может бежать и медленнее. Скорость будет минимальна, когда уравнение t в квадрате минус дробь: числитель: 2nu_0, знаменатель: a конец дроби t плюс дробь: числитель: 2L, знаменатель: a конец дроби =0 будет иметь один единственный корень, то есть

 левая круглая скобка дробь: числитель: 2nu_0, знаменатель: a конец дроби правая круглая скобка в квадрате минус дробь: числитель: 2L, знаменатель: a конец дроби =0.

Откуда находим минимальную скорость:

nu_0= корень из: начало аргумента: 2aL конец аргумента .

В таких задачах важно разобрать в условиях задачи: чему равны начальная координата, начальная скорость и ускорение. После этого составляем уравнение движения и думаем как дальше решать задачу. 

3.2.20. Как решать задачи с помощью закона движения? (по вертикали)

Рассмотрим пример.

Свободно падающее тело прошло последние 10 м за 0,5 с. Найти время падения и высоту, с которой упало тело. Сопротивлением воздуха пренебречь.

Для свободного падения тела справедлив закон движения:

y=y_0 плюс nu_0y t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

В нашем случае:

начальная координата: y_0=H;

начальная скорость: nu_0y=0.

Подставим условия в закон движения:

y=H минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Подставляя в уравнение движения y=H минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби нужные значения времени, будем получать координаты тела в эти моменты.

В момент падения t_0 координата тела y=0:

0=H минус дробь: числитель: gt_0 в квадрате , знаменатель: 2 конец дроби .

За Delta t=0,5 с до момента падения, то есть при t=t_0 минус Delta t, координата тела y=h:

h=H минус дробь: числитель: g левая круглая скобка t_0 минус Delta t правая круглая скобка в квадрате , знаменатель: 2 конец дроби .

Уравнения 0=H минус дробь: числитель: gt_0 в квадрате , знаменатель: 2 конец дроби и h=H минус дробь: числитель: g левая круглая скобка t_0 минус Delta t правая круглая скобка в квадрате , знаменатель: 2 конец дроби составляют систему уравнений, в которой неизвестны H и t_0. Решая эту систему, получим:

t_0= дробь: числитель: h, знаменатель: gDelta t конец дроби плюс дробь: числитель: Delta t, знаменатель: 2 конец дроби .									 H= дробь: числитель: g, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: h, знаменатель: gDelta t конец дроби плюс дробь: числитель: Delta t, знаменатель: 2 конец дроби правая круглая скобка в квадрате .

Итак, зная вид закона движения (3.30), и используя условия задачи для нахождения y_0 и nu_0y, получаем закон движения для данной конкретной задачи. После чего, подставляя нужные значения времени, получаем соответствующие значения координаты. И решаем задачу!

Как найти площадь, если известна высота, плотность и ускорение свободного падения?

В данном случае задача такая : определить давление на дно цилиндрической ёмкости, если высота равна 200 метрам, а налили чистую воду (её плотность 1000 кг на м²).

Ускорение свободного падения = 9.

8 метров на секунду в квадрате.

Помогите пожалуйста!

На этой странице сайта вы найдете ответы на вопрос Как найти площадь, если известна высота, плотность и ускорение свободного падения?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 5 – 9 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Формула перемещения

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

  • Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
  • Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

v = v0 ± at

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v0 = 0), эта формула принимает вид:

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают (а↑↑v). Если векторы имеют противоположное направление (а↑↓v), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

t1 = t – t2

Когда тело тормозит, через некоторое время t1 оно останавливается. Поэтому скорость в момент времени t1 равна 0:

0 = v01 – at1

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

t2 = t – t1

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

v = at2

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

s = |s1 – s2|

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

l = s1 + s2

Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с2. Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

v02 = v01 + a1t1 = a1t1 (так как v01 = 0)

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с2. Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения сонаправлены (v↑↑a), принимает следующий вид:

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно (v↓↑a), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

  • Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
  • Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

  • 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
  • 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Задание EF18553

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 5t 3t2(все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать исходные данные и перевести их единицы измерения величин в СИ.

2.Записать уравнение движения тела при прямолинейном равноускоренном движении в общем виде.

3.Сравнить формулу из условия задачи с этим уравнением движения и выделить кинематические характеристики движения.

4.Определить перемещение тела и его кинетическую энергию.

5.Выбрать для физических величин соответствующую позицию из второго столбца таблицы и записать ответ.

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

x(t)=x0+v0t+at22

Теперь мы можем выделить кинематические характеристики движения тела:

 a/2 = –3 (м/с2), следовательно, a = –6 (м/с2).

Перемещение тела определяется формулой:

s=v0t+at22

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

x(t)=v0t+at22=5t3t2

Кинетическая энергия тела определяется формулой:

Ek=mv22

Скорость при прямолинейном равноускоренном движении равна:

v=v0+at=56t

Поэтому кинетическая энергия тела равна:

Ek=m(56t)22=0,22(56t)2=0,1(56t)2

Следовательно, правильная последовательность цифр в ответе будет: 34.

Ответ: 34

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18831

На рисунке представлен график зависимости модуля скорости υ автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от t1=20 с до t2=50 с.


Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.

Исходные данные:

  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s = s1 + s2

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1 и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1 и s2, а затем сложим их:

s1 + s2 = 100 + 100 = 200 (м)

Ответ: 200

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 25.4k

По графику скорости от времени v(t) можно найти перемещение тела. Для этого нужно уметь рассчитывать площади плоских фигур.

По-английски «Square» – значит «площадь». Первая буква этого слова – буква «S». Перемещение обозначают буквой S потому, что S – это площадь фигуры, заключенной между линией скорости и горизонтальной осью времени.

Как вычислить площади плоских фигур

Площади прямоугольника, прямоугольной трапеции и прямоугольного треугольника помогут вычислить перемещение тела по графику скорости v(t)

Рис.1. Чтобы рассчитать перемещение по графику v(t) нужно уметь вычислять площади трех плоских фигур

Площадь прямоугольника

Площадь прямоугольника (рис. 1а) можно найти, перемножив две его перпендикулярные стороны:

[ large boxed{ S_{text{прямоуг}}  = a cdot b }]

Площадь трапеции

 Примечание: Трапеция – это четырехугольник, две его стороны параллельные, а две другие – не параллельные. Параллельные стороны называются основаниями трапеции.

Умножив полусумму оснований трапеции на ее высоту, получим площадь (рис. 1б) трапеции:

[ large boxed{ S_{text{трапец}}  = frac{1}{2} (a + b) cdot h }]

Площадь прямоугольного треугольника

Для прямоугольного треугольника (рис. 1в) площадь можно вычислить, перемножив два его катета и взяв половину от получившегося произведения:

[ large boxed{ S_{text{треуг}}  = frac{1}{2} cdot a cdot b }]

Скорость не меняется

Пусть тело движется по прямой и при этом его скорость не изменяется (остается одной и той же). На языке математики «скорость не изменяется» можно записать так:

[v=const]

На графике для скорости v(t) такая скорость обозначается горизонтальной линией. На рисунке 2 эта линия обозначена синим цветом.

На графике v(t) при неизменной скорости площадь прямоугольника будет численно равна пути, пройденному телом

Рис.2. Площадь прямоугольника на графике v(t), если скорость тела не изменяется, будет численно равна перемещению тела

Примечание: Движение с постоянной (т. е. с одной и той же) скоростью называют равномерным движением.

Если скорость направлена по оси движения – линия лежит выше оси t времени (рис. 2а).

А когда скорость направлена против оси движения – линия скорости располагается ниже оси t времени (рис. 2б). Математики в таком случае говорят: «Скорость имеет отрицательную проекцию на ось».

Какую бы проекцию не имела скорость – положительную, или отрицательную, длина вектора скорости остается положительной. Поэтому, когда мы вычисляем площадь фигуры, то не учитываем знак «минус» для скорости (рис. 2б).

В обоих случаях перемещение тела можно вычислить по формуле:

[ large S  = v_{0} cdot (t_{2} — t_{1}) ]

Примечание: Перемещение тела – это всегда либо нулевая, либо положительная величина S. Математики словосочетание «либо нулевая, либо положительная» заменят одним словом «не отрицательная».

Скорость увеличивается

Когда скорость тела увеличивается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени удаляться от оси времени. Чем больше времени пройдет, тем дальше от горизонтали располагаются точки, лежащие на линии скорости (рис. 3).

Если скорость тела увеличивается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени удаляться от оси времени

Рис.3. Так выглядит зависимость скорости от времени v(t), когда тело увеличивает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)

Примечание: Движение с возрастающей скоростью называют равноускоренным движением.

Когда тело движется по направлению оси, линия скорости расположена выше горизонтальной оси времени (рис 3а).

А если тело движется против оси, линия скорости располагается ниже горизонтальной оси времени (рис. 3б).

Вычислим перемещение тела, движущегося в положительном направлении оси Ox. Для тела, движущегося противоположно оси, перемещение рассчитывается аналогично.

Выбор интервала времени влияет на то, будем ли мы вычислять площадь трапеции (рис. 4а), или прямоугольного треугольника (рис. 4б).

Когда тело увеличивает свою скорость, будем вычислять путь, пройденный телом, с помощью площади трапеции, или прямоугольного треугольника. Выбор интервала времени влияет на вид плоской фигуры

Рис.4. График v(t) — тело движется в положительном направлении оси и увеличивает свою скорость. От того, какой интервал времени мы выберем, зависит, будем ли мы вычислять путь, пройденный телом, с помощью площади трапеции – рис. а), или прямоугольного треугольника — рис. б)

На графике скорости v(t) для рисунка 4а перемещение с помощью трапеции вычисляется так:

[ large S  = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]

А для рисунка 4б перемещение тела найдем с помощью площади треугольника:

[ large S  = frac{1}{2} cdot v_{2} cdot (t_{2} — 0) ]

Скорость уменьшается

Когда тело замедляется и его скорость уменьшается, с ростом времени линия скорости приближается к горизонтальной оси t

  • сверху – если тело движется по оси (рис. 5а),
  • или снизу – когда тело движется против оси (рис. 5б).

Если скорость тела уменьшается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени приближаться к оси t

Рис.5. Так выглядит зависимость скорости от времени v(t), когда тело уменьшает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)

Примечание: Движение с уменьшающейся по модулю скоростью называют равнозамедленным движением.

Будем вычислять перемещение тела, движущегося в положительном направлении оси Ox. Аналогичным способом рассчитывается перемещение тела, движущегося противоположно оси.

От того, какой интервал времени нас интересует, зависит, будем ли мы вычислять площадь трапеции (рис. 6а), или треугольника (рис. 6б).

Когда тело уменьшает свою скорость, будем вычислять путь, пройденный телом, с помощью площади трапеции, или прямоугольного треугольника. Выбор интервала времени влияет на вид фигуры

Рис.6. График v(t) — тело движется в положительном направлении оси и уменьшает свою скорость. Выбор интервала времени определяет, будем ли мы вычислять путь, пройденный телом, с помощью трапеции – рис. а), или треугольника — рис. б)

Найдем на графике v(t) перемещение с помощью площади трапеции для рисунка 6а:

[ large S  = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]

А для рисунка 6б перемещение тела найдем с помощью площади треугольника:

[ large S  = frac{1}{2} cdot v_{1} cdot (t_{2} — t_{1}) ]

Выводы

На графике v(t) перемещение – это:

  1. площадь прямоугольника, когда скорость не изменяется;
  2. площадь треугольника, или трапеции, когда скорость изменяется — падает, или растет.

Как найти площадь, если известна высота, плотность и ускорение свободного падения? В…

1 Ответ






ответил

11 Апр, 18


от
аноним


Площадь находить НЕ НАДО, при расчетах она СОКРАТИТСЯ:

Дано

h = 20 м    (но не 200 же!!!)

ρ = 1000 кг/м³

g = 9,8 м/с²

p – ?

Сила тяжести

F = m*g = ρ*V*g = ρ*S*h*g

Давление:

р = F / S = (ρ*S*h*g) / S = ρ*g*h  (получили известную формулу 🙂

р = 1000 * 9,8*20 = 196 000 Па 

Ответ: давление на дно равно 196 000 Па






оставил комментарий

11 Апр, 18


от
Pro100Doge_zn
Начинающий

(134 баллов)



Добавить комментарий