Как найти площадь четырехугольника abmn

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.

Задача решается очень просто, если использовать теорему об отношении площадей подобных фигур. В данной задаче подобными являются треугольники АВС и CNM, так как средняя линия NM параллельна основанию АВ. Коэффициент подобия к=АВ/NM = 2. По теореме об отношении площадей подобных фигур площади треугольников АВС и CNM относятся как к^2, то есть Sabc/Snmc = k^2 = 4. Значит площадь треугольника АВС Sabc = 4*Snmc = 4*57 = 228. Ответ: 228.

система выбрала этот ответ лучшим

Евген­ий трохо­в
[56.3K]

3 года назад 

S1 треугольника CNM=57=

=CN*NM*sin CNM*1/2

S2 треугольника АВС=АВ*АС *(1/2)*sin CAB

Sin CAB=sin CMN

S2/S1=AB*AC/CN*NM=2*­2=4

4S1=S2

S2=57*4=228

S ANMB=S2-S1=228-57=171

Ответ: площадь искомого четырехугольника равна 171.

Знаете ответ?

Задания

Версия для печати и копирования в MS Word

Тип 17 № 352922

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 12. Найдите площадь четырёхугольника ABMN.

Спрятать решение

Решение.

MN − средняя линия треугольника ABC. Треугольники ABC и NMC подобны по двум углам. Коэффициент подобия k = 2. Значит, S_ABC=k в квадрате S_NMC=4 умножить на 12=48, а S_ABMN=S_ABC минус S_NMC=48 минус 12=36.

Ответ: 36.

Аналоги к заданию № 323774: 341524 339694 341357 … Все

Спрятать решение

·

Прототип задания

·

Помощь

Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

Площадь четырехугольника по диагоналям и углу между ними

Площадь четырехугольника через стороны и углы между этими сторонами

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади четырехугольника

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 диагональ и угол между ними
2 стороны и углы между этими сторонами
3 стороны
(по Формуле Брахмагупты)
4 стороны и радиус вписанной окружности
5 стороны и углы между ними

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника – это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Как найти площадь четырехугольника abmn

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.

Это задание ещё не решено, приводим решение прототипа.

В треугольнике A B C отмечены середины M и N сторон B C и A C соответственно. Площадь треугольника C N M равна 12. Найдите площадь четырёхугольника A B M N .

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

[spoiler title=”источники:”]

http://oge.sdamgia.ru/problem?id=339511

http://www.mozgan.ru/Geometry/ArearQuadrangle

[/spoiler]

griprororeh483

griprororeh483

Вопрос по геометрии:

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 12. Найдите площадь четырёхугольника ABMN.

Изображение к вопросу

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!

Ответы и объяснения 1

unthosai59

unthosai59

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 12. Найдите площадь четырёхугольника ABMN .
————————————-
NM | | AB ; NM =AB/2  ( Свойство средней линии треугольника ).
S(ACB)/S(NCB) =(AB/NM)²   * * * ΔACB ∞  ΔNCB * * *
S(ACB)/12 =4 ;
S(ACB) =  48.
S(ABMN) = S(ACB) – S(NCB) =48 -12 = 36.

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.


Задача №365 из 1087
Условие задачи:

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.

Решение задачи:

Вариант №1
MN –
средняя линия треугольника ABC, по теореме о средней линии NM=AB/2 => 2NM=AB.
Проведем
высоту из вершины С.
SCNM=1/2*CE*NM=57 (по условию).
CE*NM=114
Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE –
средняя линия для треугольника ACD, значит CE=ED.
ABMN – трапеция (по
определению), тогда
SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*114=171
Ответ: SABMN=171


Вариант №2 (Прислал пользователь Артем)
MN –
средняя линия треугольника ABC, по теореме о средней линии MN=AF=FB.
Проведем два отрезка от середины AB к точкам N и M, как показано на рисунке.
FN и FM – тоже являются
средними линиями, следовательно:
FN=CM=BM и FM=AN=CN
Заметим, что треугольники ANF, CNM, MBF и NMF равны друг другу по
третьему признаку равенства треугольников.
SABNM=SANF+SNMF+SMBF=SCNM+SCNM+SCNM=3*SCNM=3*57=171
SABNM=171

Вы можете поблагодарить автора, написать свои претензии или предложения на
странице ‘Про нас’


Другие задачи из этого раздела



Задача №0DD35B

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №81E850


На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 7 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?



Задача №005D56

Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.



Задача №B96811

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=33, CM=15. Найдите ON.

Добавить комментарий