Как найти площадь четырехугольника зная его диагонали

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

Калькулятор расчета площади четырехугольника

В публикации представлены онлайн-калькуляторы и формулы для расчета площади выпуклого четырехугольника по разным исходным данным: через диагонали и угол между ними, по всем сторонам (если вокруг можно описать окружность), по полупериметру и радиусу вписанной окружности.

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

1. Через диагонали и угол между ними

Формула расчета

2. По всем сторонам (формула Брахмагупты)

Примечание: Если вокруг четырехугольника можно описать окружность.

Формула расчета

p – полупериметр четырехугольника, равняется:

Площади четырехугольников

В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:

которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.

Формулы для площадей четырехугольников

a и b – смежные стороны

d – диагональ,
φ – любой из четырёх углов между диагоналями

Получается из верхней формулы подстановкой d=2R

R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

a – сторона,
ha – высота, опущенная на эту сторону

a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

a – сторона квадрата

Получается из верхней формулы подстановкой d = 2R

a – сторона,
ha – высота, опущенная на эту сторону

a – сторона,
φ – любой из четырёх углов ромба

r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

a и b – основания,
h – высота

φ – любой из четырёх углов между ними

a и b – основания,
c и d – боковые стороны

a и b – неравные стороны,
φ – угол между ними

a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

a и b – неравные стороны,
r – радиус вписанной окружности

φ – любой из четырёх углов между ними

,

a, b, c, d – длины сторон четырёхугольника,
p – полупериметр,

Формулу называют «Формула Брахмагупты»

Четырехугольник Рисунок Формула площади Обозначения
Прямоугольник S = ab
Параллелограмм
Квадрат S = a 2
S = 4r 2
Ромб
Трапеция
S = m h
Дельтоид S = ab sin φ
Произвольный выпуклый четырёхугольник
Вписанный четырёхугольник

где
a и b – смежные стороны

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

Получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

где
a и b – основания,
h – высота

φ – любой из четырёх углов между ними

где
a и b – основания,
c и d – боковые стороны

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
r – радиус вписанной окружности

φ – любой из четырёх углов между ними

,

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Прямоугольник
Параллелограмм
Квадрат
S = a 2

где
a – сторона квадрата

S = 4r 2
Ромб
Трапеция
Дельтоид

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

Произвольный выпуклый четырёхугольник
Вписанный четырёхугольник
Прямоугольник

где
a и b – смежные стороны

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

Параллелограмм

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

Квадрат

где
a – сторона квадрата

Получается из верхней формулы подстановкой d = 2R

Ромб

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

Трапеция

где
a и b – основания,
h – высота

φ – любой из четырёх углов между ними

где
a и b – основания,
c и d – боковые стороны ,

Дельтоид

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

где
a и b – неравные стороны,
r – радиус вписанной окружности

Произвольный выпуклый четырёхугольник

φ – любой из четырёх углов между ними

Вписанный четырёхугольник

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Вывод формул для площадей четырехугольников

Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

Доказательство . В соответствии с рисунком 1 справедливо равенство:

что и требовалось доказать.

Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

что и требовалось доказать.

Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

то, в силу утверждения 2, справедлива формула

что и требовалось доказать.

Утверждение 4 . Площадь ромба ромба можно найти по формуле

,

где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).

что и требовалось доказать.

Утверждение 5 . Площадь трапеции можно найти по формуле

,

где a и b – основания трапеции, а h – высота высота высота (рис.5).

Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

что и требовалось доказать.

Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

где a и b – основания, а c и d – боковые стороны трапеции ,

(рис.6).

Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

,

что и требовалось доказать.

Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

Если r – радиус вписанной в дельтоид окружности, то

[spoiler title=”источники:”]

http://www.resolventa.ru/spr/planimetry/sqf.htm

[/spoiler]

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними


Площадь четырехугольника через диагонали


Формула для нахождения площади четырехугольников через диагонали и угол между ними:

d1, d2 – диагонали; α – угол между диагоналями.


Через стороны и противолежащие углы


Площадь четырехугольника через стороны и противолежащие углы


Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника; α, β – противолежащие углы.


Площадь вписанного четырехугольника в окружность


Площадь вписанного четырехугольника в окружность


Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника.


Площадь описанного четырехугольника около окружности через радиус


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через радиус:

p – полупериметр четырехугольника; r – радиус вписанной окружности; a, b, c, d – стороны четырехугольника.


Площадь описанного четырехугольника около окружности через стороны и противолежащие углы


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через стороны и противолежащие углы:

p – полупериметр четырехугольника; a, b, c, d – стороны четырехугольника; α, β – противолежащие углы.

Находить площадь фигуры можно не только по формулам, но чаще всего мы используем именно их. Первые формулы площади нам дают в 3 – 4 классах и это четырёхугольники – прямоугольник и квадрат. К сожалению, некоторые и эти формулы к экзамену не знают. Ну а мы рассмотрим задачу для решения которой будем использовать ещё более сложную формулу. Формулу площади произвольного (т.е. любого) четырёхугольника. Начнём?

Условие

Рис. 1. С.А. Шестаков, «Сборник задач. 9 класс»
Рис. 1. С.А. Шестаков, «Сборник задач. 9 класс»

Рассуждение

  • В условии ни слова не сказано про диагонали;
  • Точки M, F и K – середины сторон AB, AD и DC, а значит если их соединить, тополучатся отрезки соединяющие середины сторон (масло масляное);
  • Отрезки FM и KF – известны, угол между ними ∠MFK – тоже, и это похоже на теорему косинусов, но MK – кажется бесполезным в решении отрезком.

Решение

Нарисуем произвольный четырёхугольник, то есть так, чтоб он не был похож ни на параллелограммы, ни на трапеции. И отметим середины сторон, известные отрезки и угол:

Рис. 2. ABCD - четырёхугольник; точки M, F и K - середины сторон AB, AD и DC
Рис. 2. ABCD – четырёхугольник; точки M, F и K – середины сторон AB, AD и DC

Отрезки MF и FK – соединяют середины сторон, что очень напоминает средние линии. Рассмотреть их помогут диагонали.

Рис. 3. BD и AC - диагонали четырёхугольника; точка E - точка пересечения диагоналей
Рис. 3. BD и AC – диагонали четырёхугольника; точка E – точка пересечения диагоналей

Теперь видно, что MF – средняя линия в ∆ABD, а FK – в ∆ACD.

Рассмотрим ∆ABD:

Рис. 4. MF - средняя линия в треугольнике ∆ABD
Рис. 4. MF – средняя линия в треугольнике ∆ABD

По свойству средне линии треугольника (равна половине параллельной ей стороны), можно найти диагональ BD, будет в 2 раза больше MF:

BD = 12√3 см.

Аналогично найдём диагональ AC через ∆ACD:

AC = 20 см.

Теперь нам известны обе диагонали найдём угол между ними. Для этого рассмотрим четырёхугольник NEHF:

Рис. 5. NEHF - параллелограмм
Рис. 5. NEHF – параллелограмм

Опять по свойству средней линий треугольника (только теперь параллельность стороне), определим тип четырёхугольника:

NEHF – параллелограмм ( противолежащие стороны параллельны).

Осталось найти площадь по формуле:

Рис. 6. Формула площади произвольного четырёхугольника через диагонали
Рис. 6. Формула площади произвольного четырёхугольника через диагонали

Подставим в формулу найденные диагонали и синус 120° (равен синусу 60°) и получим ответ.

Ответ: 180

Заключение

В этом решении мы применяли:

  • Свойства средней линии треугольника.
  • Формула площади произвольного четырёхугольника через диагонали и угол между ними.

Применение

Понять, что Вам нужна именно эта формула площади обычно проще, чем в рассмотренной задаче. Вам будут давать длины диагоналей или угол между ними, а найти нужно будет площадь. Могут наоборот дать площадь и попросить узнать диагональ или угол между ними. Формула встречается в первой части ОГЭ: ссылка на задания из открытого банка заданий ОГЭ.

Попробуйте решить и похожую на ту, что мы разобрали:

Рис. 7. С.А. Шестаков, «Сборник задач. 9 класс»
Рис. 7. С.А. Шестаков, «Сборник задач. 9 класс»

Пробуйте, решайте, изучайте, делитесь решениями в комментариях. Удачи!

В публикации представлены онлайн-калькуляторы и формулы для расчета площади выпуклого четырехугольника по разным исходным данным: через диагонали и угол между ними, по всем сторонам (если вокруг можно описать окружность), по полупериметру и радиусу вписанной окружности.

  • Расчет площади

    • 1. Через диагонали и угол между ними

    • 2. По всем сторонам (формула Брахмагупты)

    • 3. Через полупериметр и радиус вписанной окружности

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

1. Через диагонали и угол между ними

Формула расчета

Формула расчета площади выпуклого четырехугольника по диагоналям и углу между ними

2. По всем сторонам (формула Брахмагупты)

Примечание: Если вокруг четырехугольника можно описать окружность.

Формула расчета

Формула расчета площади четырехугольника по всем сторонам

p – полупериметр четырехугольника, равняется:

Формула расчета полупериметра выпуклого четырехугольника

3. Через полупериметр и радиус вписанной окружности

Формула расчета

S = p ⋅ r

С помощью данного калькулятора вы можете легко и быстро рассчитать площадь неправильного четырехугольника в условных единицах. Инструмент позволяет определить площадь выпуклой фигуры тремя разными способами: по сторонам, сторонам и углам, диагоналям и углам (первые два вычисления выполняются с ограничениями). Теоретическое обоснование расчета и формулы представлены ниже. Чтобы получить результат — выберите наиболее подходящий метод расчета, заполните поля калькулятора и нажмите кнопку «Рассчитать».

Как найти площадь неправильного четырехугольника?

Площадь неправильного четырехугольника

Первый способ расчета основан на формуле Брахмагупты (рис. 1), которая выражает площадь вписанного в окружность четырёхугольника как функцию длин его сторон. Эта формула является обобщением формулы Герона для площади треугольника.

Формула Брахмагупты

где P — полупериметр, a, b, c, d — длины сторон четырехугольника.

Вторая формула также основывается на формуле Брахмагупты, но на ее расширенной версии (рис. 2), когда необходимо найти площадь произвольного четырехугольника.

Расширенная формула Брахмагупты

где P — полупериметр, a, b, c, d — длины сторон, θ — полусумма противоположных углов четырёхугольника.

В формулах Брахмагупты есть одно ограничение — любая из сторон не может превышать полупериметр. В противном случае стороны четырехугольника не замкнутся. Математически, в формуле появится отрицательное значение. 

Последняя формула позволяет найти площадь не самопересекающейся фигуры по проведенным диагоналям и синусу угла между ними (рис. 3). По сути, формула основывается на сумме площадей треугольников, которые образуются диагоналями четырехугольника.

Площадь неправильного четырехугольника через диагонали и угол

где d1, d2 — диагонали четырехугольника, α — острый угол между диагоналями.

Добавить комментарий