Как найти площадь если известна длина формула

Как найти площадь прямоугольника?

Анонимный вопрос

18 августа 2019  · 203,8 K

Редактор, автор и переводчик книг по математике  · 18 авг 2019  ·

Чтобы найти площадь прямоугольника, надо его длину умножить на ширину

Обрати внимание, что длина и ширина должны быть выражены в одних единицах. Если длина и ширина в сантиметрах, то площадь получится в сантиметрах квадратных; если длина и ширина в километрах, то площадь получится в квадратных километрах. Если длина и ширина выражены в разных единицах, сначала приведи к одинаковым, а потом уж умножай.

Очень полезно познакомиться с площадями прямоугольников на практике. Давай я попробую угадать: площадь твоего стола меньше одного квадратного метра. Площадь твоей кровати больше одного квадратного метра, но меньше двух. Площадь твоей комнаты больше 10 квадратных метров и меньше 20 квадратных метров. Мне не видно, и я могла ошибиться. Так что измерь, посчитай и проверь, правильно ли я угадала.

120,8 K

площадь- это длина умноженая на ширину

Комментировать ответ…Комментировать…

7,1 K

Комментировать ответ…Комментировать…

Существует несколько способов найти площадь прямоугольника. Самый простой способ, если известны стороны прямоугольника, то достаточно их перемножить. Если стороны не известны, а имеется величины диагоналей прямоугольника и угла между ними, то нужно воспользоваться формулой, приведенной ниже:
1) через две стороны
S=a*b
2) через диагонали и угол
S=1/2*d(в квадрате)*sin(α)…
Читать далее

7,6 K

Комментировать ответ…Комментировать…

Надо длину умножить на ширину
Пример : 3*2 = 6 квадратных сантиметров ( квадратные сантиметры пишутся так : см и мелкая 2 на верху) так же есть и другие квадратные

5,6 K

Комментировать ответ…Комментировать…

Пример:

У прямоугольника есть 4 стороны. Первые 2 стороны равны друг другу, как и вторые 2 стороны.

Значит, прямоугольник делится на a и b. Представим, что сторона a – 3 сантиметра, а b – 2 сантиметра. Площадь будет буквой S. Чтобы вычислить площадь прямоугольника, нужно сторону a умножить на b. S=a*b. S=3*2. 3*2 это шесть. Площадь обозначается квадратными сантиметрами. S=6 см2

5,1 K

-Как найти площадь Ленина?

-Надо длину Ленина, умножить на ширину Ленина!

Комментировать ответ…Комментировать…

Геймер, програмер, учу английский, чуть-чуть ютубер  · 4 мая 2021

У прямоугольника есть длина и ширина.
Длину и ширину надо перемножить.
Ответ надо записывать в квадратной величине (результат и маленькая двойка сверху)
Пример:
Ширина = 3 см
Длина = 7 см
7*3 = 21(см2)
Ответ: 21 см2.
Читать далее

2,5 K

Возьмите 2 игральных кубика. Бросьте оба. Первый показывает вам ширину прямоугольника, второй – длину. А площадь -… Читать дальше

Комментировать ответ…Комментировать…

Чтобы найти площадь прямоугольника, нужно умножить две его неравные стороны друг на друга. Также это выражается формулой S = a * b, где S – площадь, a и b – две неравные стороны прямоугольника.
В общей сложности, площадь прямоугольника, можно найти с помощью пяти разных формул.
1. Через две смежные стороны
2. Через любую сторону и периметр
3. Через любую сторону и…
Читать далее

9,4 K

Комментировать ответ…Комментировать…

Что бы найти площадь треугольника, нужно воспольщоваться формулой:
S= a•b
Например:
Длина прямоугольника равна 8 см
Ширина прямоугольника равна 4см
Площадь прямоугольника равна 8•4=32
Читать далее

1,5 K

Комментировать ответ…Комментировать…

Чтобы найти площадь прямоугольника надо умножить длину на ширину пример:
a-9 см
b-3 см
s-? см
s=a*b
9*3=27(см)
Ответ:27 сантиметров площадь прямоугольника.
Читать далее

2,5 K

Комментировать ответ…Комментировать…

Я работаю сама на себя – плету из бисера украшения и продаю.  · 25 окт 2022

Для того чтобы найти площадь прямоугольника надо одну сторону прямоугольника (ширину) умножить на вторую сторону  (длина).

Ширина – а

Длина – б

площадь – S

S = а умножить на б

358

Комментировать ответ…Комментировать…

Содержание

  • Как найти площадь прямоугольника если известна высота?
  • Как найти площадь прямоугольника если известны стороны?
  • Как найти площадь прямоугольника если известна площадь?
  • Что нужно сделать чтобы найти площадь?
  • Что такое площадь для 3 класса?
  • Что такое площадь в математике 4 класс?
  • Что значит найти площадь фигуры?

Как найти площадь прямоугольника если известна высота?

Значит для того, чтобы найти площадь прямоугольника нужно его ширину умножить на длину. В виде формулы это можно представить как S = h*b, где S-площадь, h-высота, b-ширина. Или так: площадь прямоугольника = ширина х длину.

Как найти площадь прямоугольника если известны стороны?

Площадь прямоугольника равна произведению его длины на ширину.

Как найти площадь прямоугольника если известна площадь?

Когда известно значение длины и ширины фигуры

Для вычисления необходимо умножить их друг на друга. S = a × b, где S — площадь; a, b — длина и ширина. Проверить полученный результат поможет онлайн-калькулятор площади прямоугольника.

Что нужно сделать чтобы найти площадь?

Для вычисления площади прямоугольника нужно умножить его длину на ширину. Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Что такое площадь для 3 класса?

Площадь – внутренняя часть любой плоской геометрической фигуры. Квадрат – это прямоугольник, у которого все стороны равны. … Квадратный сантиметр – квадрат со стороной 1 сантиметр.

Что такое площадь в математике 4 класс?

Площадь-это свойство фигур занимать место на плоскости. … Квадратный миллиметр- единица измерения площади, равная площади квадрата со стороной 1мм. Основная и дополнительная литература по теме урока: Математика: 4 класс: учебник в 2 ч.

Что значит найти площадь фигуры?

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. … В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Интересные материалы:

Сколько кирпича в1м2?
Сколько кирпичей на поддоне?
Сколько кирпичей в кладке в один кирпич?
Сколько кирпичей в одной упаковке?
Сколько кирпичей в поддоне облицовочного?
Сколько комбикорма съедает курица в день?
Сколько кондиционеров нужно в однокомнатную квартиру?
Сколько корма нужно давать кролику в день?
Сколько корма нужно в день для гусей?
Сколько корма съедает биг 6?

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым

Формулы площади геометрических фигур

Площадь геометрической фигуры – численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Треугольник

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p – a)(p – b)(p – c)

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S – площадь треугольника,
    a, b, c – длины сторон треугольника,
    h – высота треугольника,
    γ – угол между сторонами a и b,
    r – радиус вписанной окружности,
    R – радиус описанной окружности,

    p = a + b + c – полупериметр треугольника.
    2

Формулы площади квадрата

Квадрат

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S – площадь квадрата,
    a – длина стороны квадрата,
    d – длина диагонали квадрата.

Формула площади прямоугольника

Прямоугольник

Площадь прямоугольника равна произведению длин двух его смежных сторон

S = a · b

где S – Площадь прямоугольника,
a, b – длины сторон прямоугольника.

Формулы площади параллелограмма

параллелограмм

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S – Площадь параллелограмма,
    a, b – длины сторон параллелограмма,
    h – длина высоты параллелограмма,
    d1, d2 – длины диагоналей параллелограмма,
    α – угол между сторонами параллелограмма,
    γ – угол между диагоналями параллелограмма.

Формулы площади ромба

ромб

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S – Площадь ромба,
    a – длина стороны ромба,
    h – длина высоты ромба,
    α – угол между сторонами ромба,
    d1, d2 – длины диагоналей.

Формулы площади трапеции

трапеция

  1. Формула Герона для трапеции

    S = a + b (p-a)(p-b)(p-a-c)(p-a-d)
    |ab|
  2. Формула площади трапеции по длине основ и высоте

    Площадь трапеции равна произведению полусуммы ее оснований на высоту

    где S – площадь трапеции,
    a, b – длины основ трапеции,
    c, d – длины боковых сторон трапеции,

    p = a + b + c + d – полупериметр трапеции.
    2

Формулы площади выпуклого четырехугольника

выпуклый четырехугольник

  1. Формула площади четырехугольника по длине диагоналей и углу между ними

    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S – площадь четырехугольника,
    d1, d2 – длины диагоналей четырехугольника,
    α – угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)

    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. выпуклый четырехугольник

    Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p – a)(p – b)(p – c)(p – d) – abcd cos2θ

    где S – площадь четырехугольника,

    a, b, c, d – длины сторон четырехугольника,

    p = a + b + c + d2 – полупериметр четырехугольника,

    θ = α + β2 – полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p – a)(p – b)(p – c)(p – d)

Формулы площади круга

круг

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S – Площадь круга,
    r – длина радиуса круга,
    d – длина диаметра круга.

Формулы площади эллипса

эллипс

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

где S – Площадь эллипса,

a – длина большей полуоси эллипса,

b – длина меньшей полуоси эллипса.


Загрузить PDF


Загрузить PDF

Иногда вычисление площади сводится к простому перемножению двух чисел, но зачастую это вычисление более сложное. Прочтите эту статью для краткого обзора по вычислению площади (или площади поверхности) следующих фигур: четырехугольник, квадрат, параллелограмм, трапеция, треугольник, многоугольник, круг, пирамида, цилиндр, кривая линия.

  1. Изображение с названием Find Area Step 1

    1

    Найдите длину двух смежных сторон прямоугольника. Поскольку противоположные стороны прямоугольника равны, нужно найти длины смежных сторон. Обозначьте одну сторону как (b), а другую — как (h).[1]

  2. Изображение с названием Find Area Step 2

    2

    Перемножьте значения двух смежных сторон, чтобы найти площадь. Обозначим площадь прямоугольника как (k). Тогда: k = b*h.

    • Для более детальных инструкций прочтите статью «Как найти площадь четырехугольника».

    Реклама

  1. Изображение с названием Find Area Step 3

    1

    Найдите длину стороны квадрата. Поскольку квадраты имеют четыре равные стороны, нужно найти длину всего одной стороны.[2]

  2. Изображение с названием Find Area Step 4

    2

    Возведите в квадрат длину стороны. Это и есть площадь квадрата.

    • Это верно, потому что квадрат — это прямоугольник, у которого все стороны равны. Так как для прямоугольника k = b*h, а в квадрате b=h, для вычисления площади квадрата просто умножаем его сторону на саму себя.

    Реклама

  1. Изображение с названием Find Area Step 5

    1

    Выберите одну сторону, на которую будет опущен перпендикуляр. Найдите длину этой стороны.

  2. Изображение с названием Find Area Step 6

    2

    Опустите перпендикуляр (высоту) на выбранную ранее сторону и найдите его длину.[3]

    • Если нужно, продлите сторону, на которую опускается перпендикуляр, до ее пересечения с перпендикуляром.
  3. Изображение с названием Find Area Step 7

    3

    Реклама

  1. Изображение с названием Find Area Step 8

    1

    Найдите длины двух параллельных сторон. Обозначьте их как (а) и (b).

  2. Изображение с названием Find Area Step 9

    2

    Найдите высоту. Опустите перпендикуляр (высоту (h)) к основанию трапеции.[5]

  3. Изображение с названием Find Area Step 10

    3

    Реклама

  1. Изображение с названием Find Area Step 11

    1

    Найдите длину одной стороны треугольника (b), на которую будет опущен перпендикуляр (высота) и длину высоты (h).

  2. Изображение с названием Find Area Step 12

    2

    Чтобы найти площадь треугольника, подставьте длину соответствующей стороны и длину высоты в формулу: A=0.5b*h

    • Для более детальных инструкций прочтите статью «Как найти площадь треугольника».

    Реклама

  1. Изображение с названием Find Area Step 13

    1

    Найдите длину стороны и длину апофемы (а) (отрезок, соединяющий центр многоугольника и середину любой из его сторон).

  2. Изображение с названием Find Area Step 14

    2

    Умножьте длину стороны на количество сторон, чтобы найти периметр многоугольника (р).

  3. Изображение с названием Find Area Step 15

    3

    Реклама

  1. Изображение с названием Find Area Step 16

    1

    Найдите радиус окружности (r). Это отрезок, соединяющий центр окружности и любую точку на окружности.

  2. Изображение с названием Find Area Step 17

    2

    Реклама

  1. Изображение с названием Find Area Step 18

    1

    Найдите площадь прямоугольного основания пирамиды с помощью приведенной выше формулы для нахождения площади прямоугольника: k=b*h.

  2. Изображение с названием Find Area Step 19

    2

    Найдите площадь каждой треугольной грани пирамиды с помощью приведенной выше формулы для нахождения площади треугольника: A=0.5b*h.

  3. Изображение с названием Find Area Step 20

    3

    Сложите все полученные площади для вычисления площади поверхности пирамиды.

    Реклама

  1. Изображение с названием Find Area Step 21

    1

    Найдите радиус круга в основании цилиндра.

  2. Изображение с названием Find Area Step 22

    2

    Найдите высоту цилиндра.

  3. Изображение с названием Find Area Step 23

    3

    Найдите площадь круга в основании, используя формулу для вычисления площади круга: А=πr^2.

  4. Изображение с названием Find Area Step 24

    4

    Найдите площадь боковой поверхности, умножив высоту цилиндра на периметр основания. Периметр основания равен длине окружности: P = 2πr, поэтому площадь боковой поверхности А= 2πhr.

  5. Изображение с названием Find Area Step 25

    5

    Сложите все полученные площади: две площади круговых оснований и площадь боковой поверхности. Таким образом, площадь поверхности цилиндра: SA = 2πr^2 + 2πhr.

    • Для более детальных инструкций прочтите статью «Как найти площадь поверхности цилиндра».

    Реклама

Допустим, вы хотите найти площадь фигуры, ограниченной кривой линией (описывается функцией f(x)), осью x и значениями функции при x=а и при x=b (то есть область определения [a,b]). Этот метод потребует знаний интегрального исчисления. Если вы не знаете его, этот метод не имеет для вас никакого смысла.

  1. Изображение с названием Find Area Step 26

    1

    Определите f(x) через x.

  2. Изображение с названием Find Area Step 27

    2

    Возьмите интеграл функции f(x) в интервале [а,b]. По формуле Ньютона-Лейбница: F(x)=∫f(x), ∫abf(x) = F(b) – F(a).

  3. Изображение с названием Find Area Step 28

    3

    Подставьте значения а и b в интегральное выражение. Искомая площадь определяется как ∫abf(x). Поэтому, A=F(b)) – F(a).

    Реклама

Об этой статье

Эту страницу просматривали 25 272 раза.

Была ли эта статья полезной?

Добавить комментарий