Как найти площадь если известны все стороны

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона


Треугольник с тремя сторонами


Формула Герона для нахождения площади треугольника:

– полупериметр треугольника; a,b,c – стороны треугольника.


Через основание и высоту


Треугольник с основанием и высотой


Формула нахождения площади треугольника с помощью половины его основания и высоту:

a – основание треугольника; h – высота треугольника.


Через две стороны и угол


Треугольник с двумя сторонами и углом


Формула нахождения площади треугольника через две стороны и угол между ними:

a,b – стороны треугольника; α – угол между сторонами.


Через сторону и два прилежащих угла


Треугольник со стороной и двумя углами


Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<

a– сторона треугольника; α и β – прилежащие углы.


Площадь прямоугольного треугольника


Площадь прямоугольного треугольника


Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

a, b – катеты треугольника.


Площадь равнобедренного треугольника через стороны


Площадь равнобедренного треугольника


Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

a, b – стороны треугольника.


Площадь равнобедренного треугольника через основание и угол


Площадь равнобедренного треугольника


Формула нахождения площади равнобедренного треугольника через основание и угол:

a – основание равнобедренного треугольника; α – угол между сторонами.


Площадь равностороннего треугольника через стороны


Площадь равностороннего треугольника


Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

a – сторона равностороннего треугольника.


Площадь равностороннего треугольника через высоту


Площадь равностороннего треугольника


Формула нахождения площади равностороннего треугольника через высоту:

h – высота равностороннего треугольника.


Площадь равностороннего треугольника через радиус вписанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

r – радиус вписанной окружности равностороннего треугольника.


Площадь равностороннего треугольника через радиус описанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

r – радиус описанной окружности равностороннего треугольника.


Площадь треугольника через радиус описанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.


Площадь треугольника через радиус вписанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.

Определение треугольника

Треугольник — это геометрическая фигура, которая образуется в результате пересечения трех отрезков, концы которых не лежат на одной прямой. У любого треугольника есть три стороны, три вершины и три угла.

Онлайн-калькулятор площади треугольника

Треугольники бывают различных видов. Например, существует равносторонний треугольник (тот, у которого все стороны равны), равнобедренный (в нем равны две стороны) и прямоугольный (в котором один из углов прямой, т. е. равен 90 градусам).

Площадь треугольника можно найти различными способами в зависимости от того, какие элементы фигуры известны по условию задачи, будь то углы, длины, либо же вообще радиусы окружностей, связанных с треугольником. Рассмотрим каждый способ отдельно с примерами.

Формула площади треугольника по основанию и высоте

S=12⋅a⋅hS= frac{1}{2}cdot acdot h,

aa — основание треугольника;
hh — высота треугольника, проведенная к данному основанию a.

Пример

площадь треугольника

Найти площадь треугольника, если известна длина его основания, равная 10 (см.) и высота, проведенная к этому основанию, равная 5 (см.).

Решение

a=10a=10
h=5h=5

Подставляем в формулу для площади и получаем:
S=12⋅10⋅5=25S=frac{1}{2}cdot10cdot 5=25 (см. кв.)

Ответ: 25 (см. кв.)

Формула площади треугольника по длинам всех сторон

S=p⋅(p−a)⋅(p−b)⋅(p−c)S= sqrt{pcdot(p-a)cdot (p-b)cdot (p-c)},

a,b,ca, b, c — длины сторон треугольника;
pp — половина суммы всех сторон треугольника (то есть, половина периметра треугольника):

p=12(a+b+c)p=frac{1}{2}(a+b+c)

Эта формула называется формулой Герона.

Пример

площадь треугольника

Найти площадь треугольника, если известны длины трех его сторон, равные 3 (см.), 4 (см.), 5 (см.).

Решение

a=3a=3
b=4b=4
c=5c=5

Найдем половину периметра pp:

p=12(3+4+5)=12⋅12=6p=frac{1}{2}(3+4+5)=frac{1}{2}cdot 12=6

Тогда, по формуле Герона, площадь треугольника:

S=6⋅(6−3)⋅(6−4)⋅(6−5)=36=6S=sqrt{6cdot(6-3)cdot(6-4)cdot(6-5)}=sqrt{36}=6 (см. кв.)

Ответ: 6 (см. кв.)

Формула площади треугольника по одной стороне и двум углам

S=a22⋅sin⁡βsin⁡γsin⁡(β+γ)S=frac{a^2}{2}cdot frac{sin{beta}sin{gamma}}{sin(beta+gamma)},

aa — длина стороны треугольника;
β,γbeta, gamma — углы, прилежащие к стороне aa.

Пример

площадь треугольника

Дано сторону треугольника, равную 10 (см.) и два прилежащих к ней угла по 30 градусов. Найти площадь треугольника.

Решение

a=10a=10
β=30∘beta=30^{circ}
γ=30∘gamma=30^{circ}

По формуле:

S=1022⋅sin⁡30∘sin⁡30∘sin⁡(30∘+30∘)=50⋅123≈14.4S=frac{10^2}{2}cdot frac{sin{30^{circ}}sin{30^{circ}}}{sin(30^{circ}+30^{circ})}=50cdotfrac{1}{2sqrt{3}}approx14.4 (см. кв.)

Ответ: 14.4 (см. кв.)

Формула площади треугольника по трем сторонам и радиусу описанной окружности

S=a⋅b⋅c4RS=frac{acdot bcdot c}{4R},

a,b,ca, b, c — стороны треугольника;
RR — радиус описанной окружности вокруг треугольника.

Пример

площадь треугольника

Числа возьмем из второй нашей задачи и добавим к ним радиус RR окружности. Пусть он будет равен 10 (см.).

Решение

a=3a=3
b=4b=4
c=5c=5
R=10R=10

S=3⋅4⋅54⋅10=6040=1.5S=frac{3cdot 4cdot 5}{4cdot 10}=frac{60}{40}=1.5 (см. кв.)

Ответ: 1.5 (см.кв.)

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

S=p⋅rS=pcdot r,

pp — половина периметра треугольника:

p=a+b+c2p=frac{a+b+c}{2},

a,b,ca, b, c — стороны треугольника;
rr — радиус вписанной в треугольник окружности.

Пример

площадь треугольника

Пусть радиус вписанной окружности равен 2 (см.). Длины сторон возьмем из предыдущей задачи.

Решение

a=3a=3
b=4b=4
c=5c=5
r=2r=2

p=3+4+52=6p=frac{3+4+5}{2}=6

S=6⋅2=12S=6cdot 2=12 (см. кв.)

Ответ: 12 (см. кв.)

Формула площади треугольника по двум сторонам и углу между ними

S=12⋅b⋅c⋅sin⁡(α)S=frac{1}{2}cdot bcdot ccdotsin(alpha),

b,cb, c — стороны треугольника;

αalpha — угол между сторонами bb и cc.

Пример

площадь треугольника

Стороны треугольника равны 5 (см.) и 6 (см.), угол между ними равен 30 градусов. Найти площадь треугольника.

Решение

b=5b=5
c=6c=6
α=30∘alpha=30^{circ}

S=12⋅5⋅6⋅sin⁡(30∘)=7.5S=frac{1}{2}cdot 5cdot 6cdotsin(30^{circ})=7.5 (см. кв.)

Ответ: 7.5 (см. кв.)

Контрольная по геометрии недорого на сервисе Студворк от профильных экспертов!

Тест на тему “Плошадь треугольника”

ТреугольникНайти площадь треугольника можно различными способами. Конечно же, в зависимости от данных переменных и подбирается необходимая формула. В основном, для нахождения площади треугольника применяется формула Герона.

Если известны все три стороны треугольника ABC, то формула площади треугольника по трем сторонам легко применится на практике:

S=sqrt{p*(p-a)*(p-b)*(p-c)}

где:

  • p – полупериметр треугольника,
  • a, b, c – длины сторон треугольника.

Периметр – это сумма длин всех сторон треугольника. Соответственно полупериметр – это сумма длин всех сторон разделенная на 2.
p={(a+b+c)/2}

Иконка карандаша 24x24Рассмотрим пример расчета площади треугольника по трем сторонам:
Дан треугольник. Стороны a = 3 см., b = 4 см., c = 5 см. Для начала найдем полупериметр
p={(3+4+5)/2}=6 см.
Далее рассчитаем площадь
S=sqrt{6*(6-3)*(6-4)*(6-5)}=sqrt{6*3*2*1}=sqrt{36}=6
Площадь треугольника равна 6 кв. см

Также можно найти площадь треугольника и по другим формулам – через синус и косинус.

Калькулятор площади треугольника по трем сторонам

Сторона a= Сторона b= Сторона c=
Ответ: Площадь треугольника = 6.000

Площадь треугольника через основание и высоту

{S = dfrac{1}{2} cdot a cdot h}

Задача нахождения площади треугольника довольно распространена не только в науке, но и в быту. Для вас мы разработали калькулятор для нахождения площади любого треугольника – равнобедренного, равностороннего, прямоугольного или обыкновенного (разностороннего) по 22 формулам.

  1. Калькулятор площади треугольника
  2. Площадь треугольника
    1. через основание и высоту
    2. через две стороны и угол между ними
    3. через сторону и два прилежащих угла
    4. через радиус описанной окружности и 3 стороны
    5. через радиус вписанной окружности и 3 стороны
    6. по формуле Герона
  3. Площадь прямоугольного треугольника
    1. через катеты
    2. через гипотенузу и прилежащий угол
    3. через катет и прилежащий угол
    4. через радиус вписанной окружности и гипотенузу
    5. через вписанную окружность
    6. по формуле Герона
    7. через катет и гипотенузу
  4. Площадь равнобедренного треугольника
    1. через основание и сторону
    2. через основание, боковую сторону и угол
    3. через основание и высоту
    4. через боковые стороны и угол между ними
    5. через основание и угол между боковыми сторонами
  5. Площадь равностороннего треугольника
    1. через сторону
    2. через высоту
    3. через радиус описанной окружности
    4. через радиус вписанной окружности
  6. Примеры задач

Площадь треугольника

Треугольник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

Площадь треугольника через основание и высоту

Площадь треугольника через основание и высоту

{S = dfrac{1}{2} cdot a cdot h}

a – длина основания

h – высота, проведенная к основанию

Площадь треугольника через две стороны и угол между ними

Площадь треугольника через две стороны и угол между ними

{S = dfrac{1}{2} cdot a cdot b cdot sin(alpha)}

a и b – стороны треугольника

α – угол между сторонами a и b

Площадь треугольника через сторону и два прилежащих угла

Площадь треугольника через сторону и два прилежащих угла

{S = dfrac{a^2}{2} cdot dfrac{sin{(alpha)} cdot sin{(beta)}}{sin{(gamma)}}}
{gamma = 180 – (alpha + beta)}

a – сторона треугольника

α и β – прилежащие к стороне a углы

Площадь треугольника через радиус описанной окружности и 3 стороны

Площадь треугольника через радиус описанной окружности и 3 стороны

{S = dfrac{a cdot b cdot c}{4 cdot R}}

a, b и c – стороны треугольника

R – радиус описанной окружности

Площадь треугольника через радиус вписанной окружности и 3 стороны

Площадь треугольника через радиус вписанной окружности и 3 стороны

{S = r cdot dfrac{a + b + c}{2}}

a, b и c – стороны треугольника

r – радиус вписанной окружности

Площадь треугольника по формуле Герона

Площадь треугольника по формуле Герона

{S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}}
{p= dfrac{a+b+c}{2}}

a, b и c – стороны треугольника

p – полупериметр треугольника

Площадь прямоугольного треугольника

Прямоугольный треугольник — это треугольник, в котором один угол прямой (равен 90 градусов).

Площадь прямоугольного треугольника через катеты

Площадь прямоугольного треугольника через катеты

{S = dfrac{1}{2} cdot a cdot b}

a и b – стороны треугольника

Площадь прямоугольного треугольника через гипотенузу и прилежащий угол

Площадь прямоугольного треугольника через гипотенузу и прилежащий угол

{S = dfrac{1}{4} cdot c^2 cdot sin{(2 alpha)}}

c – гипотенуза прямоугольного треугольника

α – прилежащий к гипотенузе c угол

Площадь прямоугольного треугольника через катет и прилежащий угол

Площадь прямоугольного треугольника через катет и прилежащий угол

{S = dfrac{1}{2} cdot a^2 cdot tg{(alpha)}}

a – катет прямоугольного треугольника

α – прилежащий к катету a угол

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

{S = r cdot (r+c)}

r – радиус вписанной окружности

c – гипотенуза прямоугольного треугольника

Площадь прямоугольного треугольника через вписанную окружность

Площадь прямоугольного треугольника через вписанную окружность

{S = c_1 cdot c_2}

с1 и с2 – отрезки, полученные делением гипотенузы точкой касания окружности

Площадь прямоугольного треугольника по формуле Герона

Площадь прямоугольного треугольника по формуле Герона

{S = (p-a) cdot (p-b)}
{p= dfrac{a+b+c}{2}}

a, b и c – стороны треугольника

p – полупериметр треугольника

Площадь прямоугольного треугольника через катет и гипотенузу

Площадь прямоугольного треугольника через катет и гипотенузу

{S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2}}

a – катет прямоугольного треугольника

c – гипотенуза прямоугольного треугольника

Площадь равнобедренного треугольника

Равнобедренный треугольник — треугольник, в котором две стороны равны между собой по длине.

Площадь равнобедренного треугольника через основание и сторону

Площадь равнобедренного треугольника через основание и сторону

{S = dfrac{b}{4} sqrt{4a^2 – b^2}}

a – боковая сторона равнобедренного треугольника

b – основание равнобедренного треугольника

Площадь равнобедренного треугольника через основание, сторону и угол

Площадь равнобедренного треугольника через основание, сторону и угол

{S = dfrac{1}{2} cdot a cdot b cdot sin{(alpha)}}

a – боковая сторона равнобедренного треугольника

b – основание равнобедренного треугольника

α – угол между основанием и боковой стороной

Площадь равнобедренного треугольника через основание и высоту

Площадь равнобедренного треугольника через основание и высоту

{S = dfrac{1}{2} cdot b cdot h}

b – основание равнобедренного треугольника

h – высота, проведенная к основанию равнобедренного треугольника

Площадь равнобедренного треугольника через боковые стороны и угол между ними

Площадь равнобедренного треугольника через боковые стороны и угол между ними

{S = dfrac{1}{2} cdot a^2 cdot sin(alpha)}

a – боковые стороны равнобедренного треугольника

α – угол между боковыми сторонами

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

{S = dfrac{b^2}{4 cdot tg {( dfrac{alpha}{2} )}}}

b – основание равнобедренного треугольника

α – угол между боковыми сторонами

Площадь равностороннего треугольника

Равносторонний треугольник – треугольник, у которого все стороны равны.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через сторону

{S = dfrac{sqrt{3} cdot a^2}{4}}

a – сторона равностороннего треугольника

Площадь равностороннего треугольника через высоту

Площадь равностороннего треугольника через высоту

{S = dfrac{h^2}{sqrt{3}}}

h – высота равностороннего треугольника

Площадь равностороннего треугольника через радиус описанной окружности

Площадь равностороннего треугольника через радиус описанной окружности

{S = dfrac{3 sqrt{3} cdot R^2}{4}}

R – радиус описанной окружности

Площадь равностороннего треугольника через радиус вписанной окружности

Площадь равностороннего треугольника через радиус вписанной окружности

{S = 3 sqrt{3} cdot r^2}

r – радиус описанной окружности

Примеры задач на нахождение площади треугольника

Задача 1

Найдите площадь треугольника со сторонами 13 14 15.

Решение

Для решения задачи воспользуемся формулой Герона.

S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}

Для начала нам необходимо найти полупериметр p:

p= dfrac{a+b+c}{2}p= dfrac{13+14+15}{2}= dfrac{42}{2} = 21

Теперь можем подставить его в формулу Герона и найти ответ:

S = sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)} = sqrt{21 cdot (21-13) cdot (21-14) cdot (21-15)} = sqrt{21 cdot (8) cdot (7) cdot (6)} = sqrt{21 cdot 336} = sqrt{7056} = 84 : см^2

Ответ: 84 см²

Убедимся в правильности решения с помощью калькулятора .

Задача 2

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 100.

Решение

Воспользуемся формулой.

S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2} = dfrac{1}{2} cdot 28 cdot sqrt{100^2 – 28^2} = dfrac{1}{2} cdot 28 cdot sqrt{10000 – 784} = dfrac{1}{2} cdot 28 cdot sqrt{9216} = dfrac{1}{2} cdot 28 cdot 96 = 14 cdot 96 = 1344 : см^2

Ответ: 1344 см²

Проверим ответ на калькуляторе .

Задача 3

Найдите площадь прямоугольного треугольника если его катет и гипотенуза равны соответственно 15 и 17.

Решение

Задача аналогична предыдущей, поэтому решение очень похоже.

S = dfrac{1}{2} cdot a cdot sqrt{c^2 – a^2} = dfrac{1}{2} cdot 15 cdot sqrt{17^2 – 15^2} = dfrac{1}{2} cdot 15 cdot sqrt{289 – 225} = dfrac{1}{2} cdot 15 cdot sqrt{64} = dfrac{1}{2} cdot 15 cdot 8 = 15 cdot 4 = 60 : см^2

Ответ: 60 см²

Проверка .

Задача 4

Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см а острый угол равен 60°.

Решение

Для решения задачи воспользуемся формулой.

S = dfrac{1}{4} cdot c^2 cdot sin{(2 alpha)} = dfrac{1}{4} cdot 40^2 cdot sin{(2 cdot 60°)} = dfrac{1}{4} cdot 1600 cdot sin{(120°)} = 400 cdot dfrac{sqrt{3}}{2} = 200 sqrt{3} : см^2 approx 346.41016 : см^2

Ответ: 200 sqrt{3} : см^2 approx 346.41016 : см^2

Проверка .

Задача 5

Найдите площадь равнобедренного треугольника, если боковая сторона равна 7 см а основание 4 см.

Решение

В этой задаче используем формулу для нахождения площади равнобедренного треугольника через основание и боковую сторону.

S = dfrac{b}{4} sqrt{4a^2 – b^2} = dfrac{4}{4} sqrt{4 cdot 7^2 – 4^2} = sqrt{4 cdot 49 – 16} = sqrt{196 – 16} = sqrt{180} = sqrt{36 cdot 5} = 6sqrt{5} : см^2 approx 13.41641 : см^2

Ответ: 6sqrt{5} : см^2 approx 13.41641

Проверка .

Задача 6

Найдите площадь равнобедренного треугольника, если его основание равно 30, боковая сторона равна 17.

Решение

Решим эту задачу по анологии с предыдущей.

S = dfrac{b}{4} sqrt{4a^2 – b^2} = dfrac{30}{4} sqrt{4 cdot 17^2 – 30^2} = dfrac{30}{4} sqrt{4 cdot 289 – 900} = dfrac{30}{4} sqrt{1156 – 900} = dfrac{30}{4} sqrt{256} = dfrac{30}{4} cdot 16= 30 cdot 4 = 120 : см^2

Ответ: 120 см²

Проверка .

Задача 7

Найдите площадь равностороннего треугольника со стороной 12 см.

Решение

Используем для решения задачи формулу.

S = dfrac{sqrt{3} cdot a^2}{4} = dfrac{sqrt{3} cdot 12^2}{4} = dfrac{sqrt{3} cdot 144}{4} = 36 sqrt{3} : см^2 approx 62.35383 : см^2

Ответ: 36 sqrt{3} : см^2 approx 62.35383 : см^2

Проверка .

Добавить комментарий