Как найти площадь фигур ограниченных линиями онлайн

Вычислить площадь фигуры, ограниченной линиями

Данный калькулятор поможет найти площадь фигуры, ограниченной линиями.
Для того чтобы вычислить площадь фигуры, ограниченной линиями, применяется одно из свойств интеграла. Это свойство аддитивности площадей, интегрируемых на одном и том же отрезке функции.

Аддитивность означает, что площадь замкнутой области, составленных из нескольких фигур, не имеющих общих внутренних точек, равна сумме площадей этих фигур. Интеграл равен площади криволинейной трапеции, ограниченной графиками функций. Вычисление интеграла производится по закону Ньютона-Лейбница, согласно которому результат равен разности первообразной функции от граничных значений интервала.
Калькулятор поможет вычислить площадь фигуры ограниченной линиями онлайн.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Площадь фигуры ограниченной линиями

Что умеет?

  • Находит точки пересечения указанных кривых линий
  • Умный робот определяет области, где лежат фигуры, чтобы вычислить их площади. Она делает это, находя точки, где графики пересекаются.
  • Помогает находить площади под графиками, вычисляя интегралы.

Примеры кривых

  • С осями ординат x и y
  • y = x^2 + 1
    y = 0
    x = -1
    x = 2
  • Графики, заданные неявным образом
  • y = 3
    xy = 2
    y^2 - x^2 = 3
  • Две окружности
  • x^2 + y^2 = 4
    x^2 + y^2 = 9
  • В полярных координатах
  • r = 2(1 - cos(p))
    r = 2
  • Парабола и прямая линия
  • y = (x + 2)^2
    y = 4
  • y = (x + 2)^2
    y = 1 - x
  • y = x^2
    x + y = 2
  • Корень квадратный
  • y = x^2
    y = sqrt(x)
  • С экспонентой и численным решением
  • y = (2x+3)*e^(-x)
    x^2 = y
  • Параметрически-заданная функция
  • x = 2(t - sint)
    y = 3(1 - cost)

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

22:16

Как найти площадь фигуры ограниченной линиями онлайн

Предлагаем Вашему вниманию калькулятор для нахождения площади фигуры ограниченной кривыми линиями. Калькулятор в автоматическом режиме составляет интеграл, находит границы интегрирования, а также рисует саму фигуру на координатной плоскости. Как частный случай, калькулятор находит площадь криволинейной трапеции.
I. Как найти площадь криволинейной трапеции.

Площадь криволинейной трапеции, ограниченной кривой y=f(x) [f(x)≥0], прямыми x=a, x=b и отрезком [a,b] оси Ox находим по формуле

$$S=int_{a}^{b}fleft ( x right )dx$$

Пример. Найти площадь криволинейной трапеции ограниченной кривой y=2x^2+1 и прямыми x=1,x=2.

Решение. Вставляем в калькулятор функции в виде y=2x^2+1,x=1,x=2, нажимаем “Ok”, получаем ответ.

II. Как найти площадь фигуры ограниченной линиями
Площадь фигуры, ограниченной кривыми y=f1(x) и y=f2(x)  [f1(x) ≤  f2(x)] и прямыми x=a, x=b вычисляется по формуле  y=f1(x) и y=f2(x)  [f1(x) ≤  f2(x)] и прямыми x=a, x=b вычисляется по формуле

$$S=int_{a}^{b}left [f_2left ( x right )-f_1left ( x right ) right ]dx$$

Пример. Найти площадь фигуры ограниченной линиями y=4x-x^2, y=4-x

Решение. Вставляем функции y=4x-x^2, y=4-x в калькулятор, нажимаем “Ok”, получаем ответ.

Готовые примеры: Найдите площадь области, ограниченной кривыми.

Следующая тема:  Объем тела вращения.

  • 1
  • 2
  • 3
  • 4
  • 5

Категория: Площадь фигуры ограниченной кривыми | Просмотров: 544263 | | Теги: площадь фигуры ограниченной линиями, приложение интегралов | Рейтинг: 3.3/67

Всего комментариев: 7 1 2 »

Порядок вывода комментариев:

1-3 4-6
bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • площадь:x,:x^{2},:0,:2

  • площадь:sin(x),:-sin(x),:[0,:2pi]

  • площадь:x^{2},:1

  • площадь:-1,:1,:-1,:1

  • Показать больше

Описание

Шаг за шагом найти область между функциями

area-between-curves-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Practice Makes Perfect

    Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Вычисление площадей плоских фигур является одним из приложений определенного интеграла.

    площадь фигуры, органиченной двумя кривыми линиями

    Для того, чтобы получить площадь фигуры изображенной на рисунке, необходимо
    вычислить определенный интеграл
    вида:

    Функции

    и

    как правило, известны из условия задачи, а вот абсциссы их точек пересечения

    и

    придется дополнительно найти. Для этого необходимо решить уравнение:

    Описанным выше способом, можно также найти площадь криволинейной трапеции в случае, если графики функций

    и

    не пересекаются, но точки

    и

    заданы по условию задачи:

    площадь фигуры ограниченной кривыми и прямыми x=a и x=b

    В этом случае криволинейная трапеция (фигура площадь которой мы вычисляем) образована графиками функций
    ,

    и прямыми
    ,
    .

    Онлайн калькулятор, построенный на основе системы Wolfram Alpha, автоматически вычислит площадь фигуры, образованной пересечением двух графиков функций.

    Добавить комментарий