Как найти площадь фигуры если известен периметр

Как найти площадь, зная периметр

Площадь и периметр фигуры являются основными ее геометрическими параметрами. Их нахождение и описание с учетом известных величин составляет значительную долю в обучающем процессе. В общем смысле периметр – это длина всех границ фигуры. Для прямоугольника он равен сумме длин его сторон. А площадь представляет собой всю внутреннюю часть фигуры, измеренной в определенных единицах. Согласно свойствам фигур, а также формулам площади и периметра, можно найти соотношения между этими параметрами фигуры и выразить одно значение из другого. Для определения площади прямоугольника с известным периметром необходимо дополнительно знать одну его сторону.

Как найти площадь, зная периметр

Инструкция

Запишите известные параметры прямоугольной фигуры. Помимо периметра, для нахождения площади должна быть известна еще одна величина – любая сторона прямоугольника.

Как найти площадь, зная <b>периметр</b>

Согласно формуле, периметр прямоугольника находится, как сумма всех его сторон. Так как в прямоугольнике противолежащие стороны равны, можно записать формулу периметра: Р = (d+c)*2, где d и c являются прилегающими сторонами фигуры.

Площадь прямоугольной фигуры определяется произведением двух ее прилегающих сторон: S = d*c. Таким образом, зная одну из сторон можно легко найти площадь фигуры.

Подставьте в формулу периметра известные величины: одну из сторон и периметр. Выразите из полученного уравнения вторую неизвестную сторону и вычислите ее. Подставьте полученное значение в формулу площади. Вычислите искомое значение S – площади фигуры.

Как найти площадь, зная <b>периметр</b>

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым

Площадь
и периметр
фигуры являются основными ее геометрическими параметрами. Их нахождение и описание с учетом известных величин составляет значительную долю в обучающем процессе. В общем смысле периметр
– это длина всех границ фигуры. Для прямоугольника он равен сумме длин его сторон. А площадь представляет собой всю внутреннюю часть фигуры, измеренной в определенных единицах. Согласно свойствам фигур, а также формулам площади и периметр
а, можно найти соотношения между этими параметрами фигуры и выразить одно значение из другого. Для определения площади прямоугольника с известным периметр
ом необходимо дополнительно знать одну его сторону.

Инструкция

Запишите известные параметры прямоугольной фигуры. Помимо периметр
а, для нахождения площади должна быть известна еще одна величина – любая сторона прямоугольника.

периметр” class=”lightbx” data-lightbox=”article-image”>

Согласно формуле, периметр
прямоугольника находится, как сумма всех его сторон. Так как в прямоугольнике противолежащие стороны равны, можно записать формулу периметр
а: Р = (d+c)*2, где d и c являются прилегающими сторонами фигуры.

Площадь
прямоугольной фигуры определяется произведением двух ее прилегающих сторон: S = d*c. Таким образом, зная одну из сторон можно легко найти площадь фигуры.

Подставьте в формулу периметр
а известные величины: одну из сторон и периметр
. Выразите из полученного уравнения вторую неизвестную сторону и вычислите ее. Подставьте полученное значение в формулу площади. Вычислите искомое значение S – площади фигуры.

Т.е. Р = a + b + c + d

Второе определение будет звучать так: периметр прямоугольника – это удвоенная сумма его длины и ширины.

Длиной является более длинная пара его сторон (обозначим их буквой a), а шириной – более короткая пара его сторон (обозначим буквой b). Противоположные стороны прямоугольника равны. Т.е. периметр можно вычислить так: Р = (a + b)* 2 или Р = а*2 + b*2

Периметром плоской фигуры называют сумму длин всех ее сторон. Но найти стороны фигуры, зная только периметр – не всегда выполнимая задача. Часто требуются дополнительные данные.

Спонсор размещения P&G
Статьи по теме “Как найти стороны, если известен периметр”
Как найти периметр прямоугольной трапеции
Как найти углы треугольника по сторонам
Как найти сторону квадрата
Как найти площадь поверхности пирамиды
Как найти сумму длин всех рёбер параллелепипеда

Инструкция

Для квадрата или ромба задача найти стороны из периметра решается очень просто. Известно, что у этих двух фигур по 4 стороны и все они равны между собой, поэтому периметр p квадрата и ромба равен 4a, где a – сторона квадрата или ромба. Тогда длина стороны равна одной четвертой периметра: a = p/4.

Легко разрешима эта задача и для равностороннего треугольника. У него три одинаковых по длине стороны, поэтому периметр p равностороннего треугольника равен 3a. Тогда сторона равностороннего треугольника a = p/3.

Для остальных фигур понадобятся дополнительные данные. Например, можно найти стороны прямоугольника, зная его периметр и площадь. Предположим, что длина двух противолежащих сторон прямоугольника равна a, а длина двух других сторон – b. Тогда периметр p прямоугольника равен 2(a+b), а площадь s равна ab. Получим систему уравнений с двумя неизвестными:
p = 2(a+b)
s = ab.

Выразим из первого уравнения а: а = p/2 – b. Подставим во второе уравнение и найдем b: s = pb/2 – b?. Дискриминант этого уравнения D = p?/4 – 4s. Тогда b = (p/2±D^1/2)/2. Отбросьте тот корень, который будет меньше ноля, и подставьте в выражение для стороны a.

Как просто

Другие новости по теме:

Площадь и периметр – основные числовые характеристики любых геометрических фигур. Нахождение этих величин упрощается благодаря общепринятым формулам, согласно которым можно также вычислить одно через другое с минимумом или полным отсутствием дополнительных начальных данных. Спонсор размещения P&G

Равносторонний треугольник наряду с квадратом является, пожалуй, самой простой и симметричной фигурой в планиметрии. Разумеется, все соотношения, справедливые для обычного треугольника, верны также и для равностороннего. Однако для правильного треугольника все формулы становятся намного проще. Вам

Часто при решении геометрических задач в условии даётся периметр фигуры, а длину сторон, диагоналей, диаметр и другие размеры фигур при этом требуется выразить самостоятельно. Периметр равен суммарной длине внешней границы геометрической фигуры. Единицей измерения периметра являются те же единицы,

По 4 стороны
и все они равны между собой, поэтому периметр p квадрата и ромба равен 4a, где a – сторона квадрата или ромба. Тогда длина стороны
равна одной четвертой периметра: a = p/4.

Легко разрешима эта задача и для равностороннего треугольника. У него три одинаковых по длине стороны
, поэтому периметр p равностороннего треугольника равен 3a. Тогда сторона равностороннего треугольника a = p/3.

Для остальных фигур понадобятся дополнительные данные. Например, можно найти стороны
прямоугольника , зная его периметр и площадь. Предположим, что длина двух противолежащих сторон прямоугольника равна a, а длина двух других сторон – b. Тогда периметр p прямоугольника равен 2(a+b), а площадь s равна ab. Получим систему уравнений с двумя неизвестными:
p = 2(a+b)
s = ab.Выразим из первого уравнения а: а = p/2 – b. Подставим во второе уравнение и найдем b: s = pb/2 – b². Дискриминант этого уравнения D = p²/4 – 4s. Тогда b = (p/2±D^1/2)/2. Отбросьте тот корень, который будет меньше ноля, и подставьте в выражение для стороны
a.

Если вы знаете значение дискриминант а, то вы можете сказать, что решили квадратное уравнение, потому как его корни будут найдены очень легко.

Вам понадобится

  • -формула дискриминанта квадратного уравнения;
  • -знание таблицы умножения

Инструкция

Видео по теме

Полезный совет

Дискриминант квадртаного уравнения может быть положительным, отрицательным, или равняться 0.

Источники:

  • Решение квадратных уравнений
  • дискриминант четный

Частный случай параллелограмма – прямоугольник – известен только в геометрии Евклида. У прямоугольника
равны все углы, и каждый из них по отдельности составляет 90 градусов. Исходя из частных свойств прямоугольника
, а также из свойств параллелограмма о параллельности противолежащих сторон можно найти стороны
фигуры по заданным диагоналям и углу от их пересечения. Вычисление сторон прямоугольника
основывается на дополнительных построениях и применении свойств получаемых фигур.

Инструкция

Буквой А отметьте точку пересечения диагоналей. Рассмотрите образованный построениями треугольник EFА. Согласно свойству прямоугольника
его диагонали равны и делятся пополам точкой пересечения А. Вычислите значения FА и EА. Так как треугольник EFА является равнобедренным и его стороны
EА и FА равны между собой и соответственно равны половине диагонали EG.

Далее вычислите первую сторону EF прямоугольника
. Данная сторона является третьей неизвестной стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле найдите сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА равна EА и косинус известного угла между ними α. Вычислите и запишите полученное значение EF.

Найдите вторую сторону прямоугольника
FG. Для этого рассмотрите другой треугольник EFG. Он является прямоугольным, где известны гипотенуза EG и катет EF. Согласно теореме Пифагора найдите второй катет FG по соответствующей формуле.


Совет 4: Как найти периметр равностороннего треугольника

Равносторонний треугольник наряду с квадратом является, пожалуй, самой простой и симметричной фигурой в планиметрии. Разумеется, все соотношения, справедливые для обычного треугольника, верны также и для равностороннего. Однако для правильного треугольника все формулы становятся намного проще.

Вам понадобится

  • калькулятор, линейка

Инструкция

Чтобы найти периметр равностороннего треугольника измерьте длину одной из его сторон и умножьте результат измерения на три. В виде формулы это правило можно записать следующим образом:

Прт = Дс * 3,

Прт – периметр равностороннего треугольника,
Дс – длина любой из его сторон.

Периметр треугольника получится в тех же

Как рассчитать площадь, зная периметр



Ученик

(160),
закрыт



10 лет назад

rafael ahmetov

Высший разум

(122431)


10 лет назад

Судя по формулировке вопроса, длины сторон непосредственно измерены Вами, т. е имеется либо чертеж четырехугольника, либо сам четырехугольник в натуральном виде. Тогда ничего не стоит измерить длины диагоналей, достаточно даже одной. Диагональ разбивает Ваш четырехугольник на два треугольника, длины сторон каждого из которых известны (измерены) . Тогда площадь каждого треугольника вычисляется по формуле Герона S=√(p*(p-a)*(p-b)*(p-c)), где p – полупериметр треугольника: p=(a+b+c)/2, a, b, c – длины сторон треугольника. Ну, и сложить площади двух треугольников.

Alexander Alenitsyn

Высший разум

(754345)


10 лет назад

Представьте себе, что фигура сделана из стержней, шарнирно
соединенных в вершинах. Форму такой фигуры можно изменять
в довольно широких пределах – при этом периметр не изменяется.
Вывод: по периметру площадь однозначно найти нельзя.

Как перевести длину периметра в площадь — математический — 2022

Периметр фигуры — это общее расстояние вокруг нее, а площадь — это количество поверхности, которую фигура использует или покрывает. Методы расчета периметра и площади отличаются для каждого вида фигуры. Например, хотя вы можете найти площадь прямоугольника, просто умножив его длину на ширину, круг требует более сложных вычислений. Научитесь преобразовывать периметры самых основных фигур в области, и в дальнейшем вы сможете переходить к составным фигурам.

Квадратные Периметры

Разделите периметр на четыре

Разделите периметр на четыре, чтобы получить длину каждой стороны, так как все четыре стороны квадрата равны. Например, квадрат с периметром 36 дюймов будет иметь стороны размером 9 дюймов каждая, потому что 36 ÷ 4 = 9.

Квадрат длина стороны

Квадрат длины одной стороны. Для квадрата с 9-дюймовыми сторонами, получится 9 х 9 = 81.

Добавить единицу измерения

Добавьте правильную единицу измерения к области. Квадрат с периметром 36 дюймов имеет площадь 81 квадратный дюйм.

Периметры прямоугольника

Отработка длины основания и высоты

Определите длину как основания, так и высоты. Это стороны, которые не параллельны друг другу. Например, скажем, у вас есть прямоугольник с основанием 6 см и высотой 7 см.

Умножить базу на высоту

Умножьте базу на высоту. Тренируйся 6 х 7 = 42.

Добавить единицу измерения

Добавьте правильную единицу измерения. В этом примере площадь прямоугольника составляет 42 см квадратных сантиметров.

Периметры треугольника

Отработать длину базы

Определите длину основания треугольника. Например, скажем, у вас есть треугольник с основанием 3 фута.

Высота тренировки

Рассчитайте высоту треугольника. Скажем, у вас есть треугольник с высотой 12 футов.

Умножить базу на высоту

Умножьте длину основания на длину высоты. Тренируй 3 х 12 = 36.

Разделить на два

Разделите на два. Отработать 36 ÷ 2 = 18.

Добавить единицу измерения

Добавьте правильную единицу измерения. Площадь треугольника составляет 18 квадратных футов.

Окружность окружности

Разделить периметр на пи

Разделите периметр круга, также известный как окружность, на pi (3.14159265), чтобы получить диаметр круга. Например, скажем, у вас есть круг с окружностью 40 дюймов. Отработка 40 ÷ 3.14159265 = 12.732.

Разделите диаметр на два

Разделите диаметр на два, чтобы получить длину радиуса. Отработать 12, 732 ÷ 2 = 6, 366.

Умножить радиус

Умножьте радиус на себя. В этом примере получится 6, 366 х 6, 366 = 40, 526.

Умножить на пи

Умножьте на pi (3.14159265). Отработка 40, 526 х 3, 14159265 = 127, 316.

Добавить единицу измерения

Добавьте правильную единицу измерения. Площадь круга составляет 127, 316 квадратных дюймов.

Как рассчитать площадь от периметра

Как рассчитать площадь от периметра

Недвижимость разбита на лоты. Эти участки чаще всего имеют прямоугольную форму. Из распространенных форм только площадь прямоугольника рассчитывается путем измерения только периметра партии. Определение площади участка также называется определением площади участка. Люди используют площадь .

Как перевести площадь круга в квадратные футы

Хотя может показаться странным сказать, круги измеряются в квадратных единицах. Область круга требует возведения в квадрат своего радиуса, который является прямой линией от ее начала или координат центра до ее края или окружности. Умножение единицы измерения на себя приводит к тому, что эта единица становится квадратной; при умножении .

Как перевести площадь в квадратные футы

Как перевести площадь в квадратные футы

Международная система единиц — иначе известная как метрическая система — определяет квадратный метр как единицу площади. В противоположность этому в США обычно используются такие единицы, как квадратные футы или квадратные ярды. С помощью простых математических уравнений вы можете преобразовать измерения площади в квадратные футы.

Через периметр и одну из сторон

Формула расчёта площади прямоугольника и квадрата через периметр и одну из сторон Вам необходимо указать сторону прямоугольника или квадрата (a или b) и периметр, который рассчитывается по формуле P=2*a+2*b. Расчёт происходит по формуле Площадь прямоугольника через периметр и одну из сторон.

Калькулятор расчёта площади прямоугольника и квадрата через периметр и одну из сторон, онлайн

Площадь прямоугольника через периметр и одну из сторонДругой способ

Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!

Калькулятор вычисления периметра и площади геометрических фигур

Определение периметра и площади геометрических фигур — важная задача, которая возникает при решении многих практических или бытовых задач. Если вам требуется поклеить обои, установить забор, рассчитать расход краски или кафеля, то вам обязательно придется иметь дело с геометрическими расчетами.

Для решения перечисленных бытовых вопросов вам потребуется работать с самыми разными геометрическими фигурами. Мы представляем вам каталог онлайн-калькуляторов, которые позволяют вычислить параметры наиболее популярных плоских фигур. Рассмотрим их.

Окружность — это множество точек на плоскости, которые равноудалены от центра на некоторое расстояние, называемое радиусом. Многие считают круг и окружность синонимами, однако это не так. Круг — это часть плоскости, ограниченная окружностью. Вы можете отыскать периметр и площадь круга, но у окружности найти можно только длину, так как она представляет собой кривую, не имеющую площади. Длина окружности или периметр круга находятся по простой формуле:

где R – радиус фигуры.

Площадь круга рассчитывается согласно следующему выражению:

Круги часто встречаются в реальной жизни. В основном это основания цилиндрических и конических деталей, а также просто круглые поверхности, например, круглые столики, диски, грампластинки или катушки. Вид окружности имеют колеса, обручи или кольца. В трехмерной реальности окружность превращается в сферу, а круг — в шар. Форму этих геометрических тел имеют многие реальные и природные объекты. Благодаря своей эффективности круг охватывает максимальную площадь при минимальном периметре. Именно поэтому форму шара имеют капли, снежные комья, метеориты или планеты.

Треугольник

Треугольник — первая гармоничная фигура на плоскости, ограниченная тремя отрезками. Свойства треугольника известны людям с античных времен: изучение фигуры стартовало в Древнем Египте и не завершено до сих пор. Огромный вклад в изучение свойств фигуры внесли Евклид, Эйлер и Лобачевский, но даже сегодня продолжается работа над поиском замечательных точек треугольника, которых на данный момент найдено более 6 тысяч. Для определения периметра фигуры достаточно сложить длины всех сторон треугольника по формуле:

где a, b, c – стороны.

Для вычисления площади треугольника используется 5 различных формул плюс нахождение площади через определенный интеграл. Самое простое выражение для вычисления площади:

где a — сторона треугольника, h — его высота.

Наш калькулятор позволяет отыскать площадь или периметр треугольника, зная разные комбинации нескольких параметров, таких как углы, стороны или радиусы связанных окружностей.

Треугольники не слишком распространены в реальной повседневности. В природе они практически не встречаются, за исключением кристаллических решеток некоторых молекул или формы ушей у рыси. А вот в технике, геометрии и прикладных науках треугольник — царь и бог. Наибольшее применение находит следующий тип фигуры.

Прямоугольный треугольник

Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой. Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора. Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.

Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.

Трапеция

Трапеция, как и слово трапеза, по-гречески означают «стол». Это плоская фигура, ограниченная четырьмя прямыми, две из которых параллельны, а две — нет. По сути, это выпуклый четырехугольник, поэтому параллелограмм и прямоугольник считаются частными случаями трапеции. В общем случае все стороны трапеции имеют разную длину, и для вычисления периметра используется формула:

a, b, c и d – стороны четырехугольника.

Площадь фигуры определяется как:

где a и b – параллельные стороны трапеции, h – высота.

Трапеция очень часто встречается в рукотворном мире. Грани многих предметов имеют вид этого четырехугольника, а буквально трапецеидальную форму имеют такие объекты как автомобильные окна, паруса, скаты крыш или юбки.

Параллелограмм

Параллелограмм — это элегантный четырехугольник, пары сторон которого параллельны друг другу. Любой четырехугольник становится параллелограммом, если его противолежащие стороны параллельны, диагонали в точке пересечения разделяются пополам, а противоположные углы равны. Для вычисления периметра параллелограмма используется простая формула, которая иллюстрирует сумму попарно равных сторон:

Площадь параллелограмма не зависит от величины его углов, и находится по следующей формуле:

Параллелограммы часто встречаются в реальной жизни: это грани многих призматических объектов, очертания полей, спортивных площадок или клумб. Форму параллелограммов имеют практически все отделочные материалы: плитка, кафель, гипсокартон, паркет. Такое разнообразие обусловлено тем, что частными случаями параллелограмма являются прямоугольник, ромб и квадрат, формулы для определения периметров и площадей которых аналогичны или выводятся из теоремы Пифагора.

Частные случаи

Ромб — четырехугольник с одинаковыми сторонами. Параллелограмм становится ромбом в случаях, если его диагонали пересекаются под углом 90 градусов и являются биссектрисами своих углов.

Прямоугольник — это параллелограмм с прямыми углами. Кроме того, параллелограмм считается прямоугольником, если его стороны и диагонали отвечают условиям теоремы Пифагора.

Квадрат — это параллелограмм, у которого все стороны равны и все углы равны. Диагонали квадрата полностью повторяют свойства диагоналей прямоугольника и ромба, что делает квадрат уникальной фигурой, которая характеризуется максимальной симметрией.

Многоугольник

Правильный полигон — это выпуклая фигура на плоскости, которая имеет равные стороны и равные углы. В зависимости от количества сторон многоугольники имеют собственные названия:

    — пентагон; — гексагон;

  • восемь — октагон;
  • двенадцать — додекагон.

И так далее. Геометры шутят, что круг — это многоугольник с бесконечным количеством углов. Наш калькулятор запрограммирован на определение периметров и площадей только правильных многоугольников. Он использует общие формулы для всех правильных полигонов. Для вычисления периметра используется формула:

где n – количество сторон многоугольника, a – длина стороны.

Для определения площади используется выражение:

S = n/4 × a 2 × ctg(pi/n).

Подставляя соответствующее n, мы можем подобрать формулу для любого правильного многоугольника, к которым также относятся равносторонний треугольник и квадрат.

Многоугольники имеют большое распространение в реальной жизни. Так форму пятиугольника имеет здание министерства обороны США — Пентагон, гексагона — пчелиные соты или кристаллы снежинки, октагона — дорожные знаки. Кроме того, многие простейшие, например радиолярии, имеют форму правильных полигонов.

Примеры из реальной жизни

Давайте рассмотрим пару примеров использования нашего калькулятора в реальных расчетах.

Покраска забора

Покраска поверхностей и расчет краски — это одни из самых очевидных бытовых задач, в которых требуются минимальные математические расчеты. Если нам нужно покрасить забор, высота которого составляет 1,5 метра, а длина 20 метров, то сколько потребуется банок краски? Для этого нужно узнать суммарную площадь забора и расход лакокрасочных материалов на 1 квадратный метр. Мы знаем, что расход эмали составляет 130 грамм на метр. Теперь определим площадь забора, используя калькулятор для вычисления площади прямоугольника. Она составит S = 30 квадратных метров. Естественно, что забор мы будем красить с обеих сторон, поэтому площадь для покраски увеличится до 60 квадратов. Тогда нам понадобится 60 × 0,13 = 7,8 килограмм краски или три стандартных банки по 2,8 килограмма.

Отделка бахромой

Пошив одежды — еще одна отрасль, в которой необходимы обширные геометрические познания. Пусть нам надо отделать бахромой платок, который представляет собой равнобедренную трапецию со сторонами 150, 100, 75 и 75 см. Для вычисления расхода бахромы нам потребуется узнать периметр трапеции. В этом нам и пригодится онлайн-калькулятор. Введем эти данные ячейки и получим ответ:

Таким образом, нам понадобится 4 м бахромы для отделки платка.

Заключение

Плоские фигуры составляют реальный мир вокруг. Мы часто задавались в школе вопросом, пригодится ли нам геометрия в будущем? Выше приведенные примеры показывают, что математика постоянно используется в повседневной жизни. И если площадь прямоугольника для нас привычна, то вычислить площадь додекагона может оказаться трудной задачей. Используйте наш каталог калькуляторов для решения школьных заданий или бытовых вопросов.

Добавить комментарий