Как найти площадь фигуры в пространстве

Содержание:

Площади поверхностей геометрических тел:

Под площадью поверхности многогранника мы понимаем сумму площадей всех его граней. Как же определить площадь поверхности тела, не являющегося многогранником? На практике это делают так. Разбивают поверхность на такие части, которые уже мало отличаются от плоских. Тогда находят площади этих частей, как будто они являются плоскими. Сумма полученных площадей является приближенной площадью поверхности. Например, площадь крыши здания определяется как сумма площадей кусков листового металла. Еще лучше это видно на примере Земли. Приблизительно она имеет форму шара. Но площади небольших ее участков измеряют так, как будто эти участки являются плоскими. Более того, под площадью поверхности тела будем понимать предел площадей полных поверхностей описанных около него многогранников. При этом должно выполняться условие, при котором все точки поверхности этих многогранников становятся сколь угодно близкими к поверхности данного тела. Для конкретных тел вращения понятие описанного многогранника будет уточнено.

Понятие площади поверхности

Рассмотрим периметры Площади поверхностей геометрических тел - определение и примеры с решением

Применим данные соотношения к обоснованию формулы для площади боковой поверхности цилиндра.

При вычислении объема цилиндра были использованы правильные вписанные в него призмы. Найдем при помощи в чем-то аналогичных рассуждений площадь боковой поверхности цилиндра.

Опишем около данного цилиндра радиуса R и высоты h правильную n-угольную призму (рис. 220).

Площади поверхностей геометрических тел - определение и примеры с решением

Площадь боковой поверхности призмы равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания призмы.

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований призмы стремятся к длине окружности основания цилиндра, то есть к Площади поверхностей геометрических тел - определение и примеры с решением

Учитывая, что сумма площадей двух оснований призмы стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Но сумма площадей двух оснований цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности цилиндра.

Итак, площадь боковой поверхности цилиндра вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус цилиндра, h — его высота.

Заметим, что эта формула аналогична соответствующей формуле площади боковой поверхности прямой призмы Площади поверхностей геометрических тел - определение и примеры с решением

За площадь полной поверхности цилиндра принимается сумма площадей боковой поверхности и двух оснований:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность цилиндра радиуса R и высоты h разрезать по образующей АВ и развернуть на плоскость, то в результате получим прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности цилиндра (рис. 221).

Очевидно, что сторона Площади поверхностей геометрических тел - определение и примеры с решением этого прямоугольника есть развертка окружности основания цилиндра, следовательно, Площади поверхностей геометрических тел - определение и примеры с решением. Сторона АВ равна образующей цилиндра, то есть АВ = h. Значит, площадь развертки боковой поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, площадь боковой поверхности цилиндра равна площади ее развертки.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Параллельно оси цилиндра на расстоянии d от нее проведена плоскость, отсекающая от основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Диагональ полученного сечения наклонена к плоскости основания под углом а. Определите площадь боковой поверхности цилиндра.

Решение:

Пусть дан цилиндр, в основаниях которого лежат равные круги с центрами Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением — ось цилиндра. Рассмотрим плоскость, параллельную Площади поверхностей геометрических тел - определение и примеры с решением. Сечение цилиндра данной плоскостью представляет собой прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением (рис. 222).

Пусть хорда АВ отсекает от окружности основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Тогда, по определению, Площади поверхностей геометрических тел - определение и примеры с решением. Так как образующие цилиндра перпендикулярны основаниям, Площади поверхностей геометрических тел - определение и примеры с решением. Значит, АВ — проекция Площади поверхностей геометрических тел - определение и примеры с решением на плоскость АОВ, тогда угол между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью АОВ равен углу Площади поверхностей геометрических тел - определение и примеры с решением. По условию Площади поверхностей геометрических тел - определение и примеры с решением.

В равнобедренном треугольнике Площади поверхностей геометрических тел - определение и примеры с решением проведем медиану ОК. Тогда OПлощади поверхностей геометрических тел - определение и примеры с решением Площади поверхностей геометрических тел - определение и примеры с решениемТак как Площади поверхностей геометрических тел - определение и примеры с решением то Площади поверхностей геометрических тел - определение и примеры с решением по признаку перпендикулярных плоскостей. Но тогда Площади поверхностей геометрических тел - определение и примеры с решением по свойству перпендикулярных плоскостей. Значит, ОК — расстояние между точкой О и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что Площади поверхностей геометрических тел - определение и примеры с решением, по определению расстояния между параллельными прямой и плоскостью получаем, что ОК равно расстоянию между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. По условию OK = d. Из прямоугольного треугольника АКО

Площади поверхностей геометрических тел - определение и примеры с решением имеем: Площади поверхностей геометрических тел - определение и примеры с решением

откуда Площади поверхностей геометрических тел - определение и примеры с решением Из прямоугольного треугольника Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Итак, Площади поверхностей геометрических тел - определение и примеры с решением

В случае, когда Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Аналогично предыдущему, и в этом случае получаем тот же результат для площади боковой поверхности.

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Площадь поверхности конуса и усеченного конуса

Связь между цилиндрами и призмами полностью аналогична связи между конусами и пирамидами. В частности, это касается формул для площадей их боковых поверхностей.

Опишем около данного конуса с радиусом основания R и образующей I правильную л-угольную пирамиду (рис. 223). Площадь ее боковой поверхности равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания пирамиды, Площади поверхностей геометрических тел - определение и примеры с решением — апофема.

Площади поверхностей геометрических тел - определение и примеры с решением

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований пирамиды стремятся к длине окружности основания конуса, а апофемы Площади поверхностей геометрических тел - определение и примеры с решением равны I.

Учитывая, что площадь основания пирамиды стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Но площадь основания конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности конуса. Итак, площадь боковой поверхности конуса вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус основания, I — образующая.

За площадь полной поверхности конуса принимается сумма площадей его основания и боковой поверхности:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность конуса разрезать по образующей РА и развернуть на плоскость, то в результате получим круговой сектор Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности конуса (рис. 224).

Площади поверхностей геометрических тел - определение и примеры с решением

Очевидно, что радиус сектора развертки равен образующей конуса I, а длина дуги Площади поверхностей геометрических тел - определение и примеры с решением — длине окружности основания конуса, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что площадь соответствующего круга равна Площади поверхностей геометрических тел - определение и примеры с решением, получаем: Площади поверхностей геометрических тел - определение и примеры с решением, значит, Площади поверхностей геометрических тел - определение и примеры с решением Таким образом, площадь боковой поверхности конуса равна площади ее развертки.

Учитывая формулу для площади боковой поверхности конуса, нетрудно найти площадь боковой поверхности усеченного конуса.

Рассмотрим усеченный конус, полученный при пересечении конуса с вершиной Р некоторой секущей плоскостью (рис. 225).

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — образующая усеченного конуса Площади поверхностей геометрических тел - определение и примеры с решением точки Площади поверхностей геометрических тел - определение и примеры с решением — центры большего и меньшего оснований с радиусами R и г соответственно. Тогда площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей двух конусов:

Площади поверхностей геометрических тел - определение и примеры с решением

Из подобия треугольников Площади поверхностей геометрических тел - определение и примеры с решением

следует, что Площади поверхностей геометрических тел - определение и примеры с решением

Тогда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением

Итак, мы получили формулу для вычисления площади боковой поверхности усеченного конуса: Площади поверхностей геометрических тел - определение и примеры с решением, где R и г — радиусы оснований усеченного конуса, I — его образующая.

Отсюда ясно, что площадь полной поверхности усеченного конуса равна Площади поверхностей геометрических тел - определение и примеры с решением

Такой же результат можно было бы получить, если найти площадь развертки боковой поверхности усеченного конуса или использовать правильные усеченные пирамиды, описанные около него. Попробуйте дать соответствующие определения и провести необходимые рассуждения самостоятельно.

Связь между площадями поверхностей и объемами

При рассмотрении объемов и площадей поверхностей цилиндра и конуса мы видели, что существует тесная взаимосвязь между этими фигурами и призмами и пирамидами соответственно. Оказывается, что и сфера (шар), вписанная в многогранник, связана с величиной его объема.

Определение:

Сфера (шар) называется вписанной в выпуклый многогранник, если она касается каждой его грани.

При этом многогранник называется описанным около данной сферы (рис. 226).

Рассмотрим, например, сферу, вписанную в тетраэдр (рис. 227).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Плоскости, содержащие грани тетраэдра, являются касательными к вписанной сфере, а точки касания лежат в гранях тетраэдра. Заметим, что по доказанному в п. 14.2 радиусы вписанной сферы, проведенные в точку касания с поверхностью многогранника, перпендикулярны плоскостям граней этого многогранника.

Для описанных многоугольников на плоскости было доказано, что их площадь равна произведению полупериметра на радиус вписанной окружности. Аналогичное свойство связывает объем описанного многогранника и площадь его поверхности.

Теорема (о связи площади поверхности и объема описанного многогранника)

Объем описанного многогранника вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площадь полной поверхности многогранника, г — радиус вписанной сферы.

Доказательство:

Соединим центр вписанной сферы О со всеми вершинами многогранника Площади поверхностей геометрических тел - определение и примеры с решением(рис. 228). Получим n пирамид, основаниями которых являются грани многогранника, вершины совпадают с точкой О, высоты равны г. Тогда объем многогранника, по аксиоме, равен сумме объемов этих пирамид. Используя формулу объема пирамиды, найдем объем данного многогранника:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением – площади граней многогранника.

Теорема доказана.

Оказывается, что в любой тетраэдр можно вписать сферу, и только одну. Но не каждый выпуклый многогранник обладает этим свойством.

Рассматривают также сферы, описанные около многогранника.

Определение:

Сфера называется описанной около многогранника, если все его вершины лежат на сфере.

При этом многогранник называется вписанным в сферу (рис. 229).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Также считается, что соответствующий шар описан около многогранника.

Около любого тетраэдра можно описать единственную сферу, но не каждый многогранник обладает соответствующим свойством.

Площадь сферы

Применим полученную связь для объемов и площадей поверхностей описанных многогранников к выводу формулы площади сферы.

Опишем около сферы радиуса R выпуклый многогранник (рис. 230).

Пусть S’ — площадь полной поверхности данного многогранника, а любые две точки одной грани удалены друг от друга меньше чем на е. Тогда объем многогранника равенПлощади поверхностей геометрических тел - определение и примеры с решением. Рассмотрим расстояние от центра сферы О до любой вершины многогранника, например А1 (рис. 231).

По неравенству треугольника Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением где О’ — точка касания. Отсюда следует, что все вершины данного многогранника лежат внутри шара с центром О и радиусом Площади поверхностей геометрических тел - определение и примеры с решением.

Итак, объем V данного многогранника больше объема шара радиуса R и меньше объема шара радиуса Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Если неограниченно уменьшать размеры граней многогранника, то есть при е, стремящемся к нулю, левая и правая части последнего неравенства будут стремиться к Площади поверхностей геометрических тел - определение и примеры с решением, а многогранник все плотнее примыкать к сфере. Поэтому полученную величину для предела S’ принимают за площадь сферы.

Итак, площадь сферы радиуса R вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Доказанная формула означает, что площадь сферы равна четырем площадям ее большого круга (рис. 232).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Исходя из аналогичных рассуждений, можно получить формулу для площади сферической части шарового сегмента с высотой Н:

Площади поверхностей геометрических тел - определение и примеры с решением

Оказывается, что эта формула справедлива и для площади сферической поверхности шарового слоя (пояса):

Площади поверхностей геометрических тел - определение и примеры с решением

где Н — высота слоя (пояса).

Справочный материал

Формулы объемов и площадей поверхностей геометрических тел

Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Историческая справка

Многие формулы для вычисления объемов многогранников были известны уже в Древнем Египте. В так называемом Московском папирусе, созданном около 4000 лет назад, вероятно, впервые в истории вычисляется объем усеченной пирамиды. Но четкие доказательства большинства формул для объемов появились позднее, в работах древнегреческих ученых.

Так, доказательства формул для объемов конуса и пирамиды связаны с именами Демокрита из Абдеры (ок. 460-370 гг. до н. э.) и Евдокса Книдского (ок. 408-355 гг. до н. э.). На основании их идей выдающийся математик и механик Архимед (287-212 гг. до н. э.) вычислил объем шара, нашел формулы для площадей поверхностей цилиндра, конуса, сферьГг

Дальнейшее развитие методы, предложенные Архимедом, получили благодаря трудам средневекового итальянского монаха и математика Бонавентуры Кавальери (1598-1647). В своей книге «Геометрия неделимых» он сформулировал принцип сравнения объемов, при котором используются площади сечений. Его рассуждения стали основой интегральных методов вычисления объемов, разработанных Исааком Ньютоном (1642 (1643)-1727) и Готфридом Вильгельмом фон Лейбницем (1646-1716). Во многих учебниках по геометрии объем пирамиды находится с помощью * чертовой лестницы» — варианта древнегреческого метода вычерпывания, предложенного французским математиком А. М. Лежандром (1752-1833).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

На II Международном конгрессе математиков, который состоялся в 1900 году в Париже, Давид Гильберт сформулировал, в частности, такую проблему: верно ли, что любые два равновеликих многогранника являются равносоставленными? Уже через год отрицательный ответ на этот вопрос был обоснован учеником Гильберта Максом Деном (1878-1952). Другое доказательство этого факта предложил в 1903 году известный геометр В. Ф. Каган, который в начале XX века вел плодотворную научную и просветительскую деятельность в Одессе. В частности, из работ Дена и Кагана следует, что доказательство формулы объема пирамиды невозможно без применения пределов.

Весомый вклад в развитие теории площадей поверхностей внесли немецкие математики XIX века. Так, в 1890 году Карл Герман Аман-дус Шварц (1843-1921) построил пример последовательности многогранных поверхностей, вписанных в боковую поверхность цилиндра («сапог Шварца»). Уменьшение их граней не приводит к приближению суммы площадей этих граней к площади боковой поверхности цилиндра. Это стало толчком к созданию выдающимся немецким математиком и физиком Германом Минков-ским (1864-1909) современной теории площадей поверхностей, в которой последние связаны с объемом слоя около данной поверхности.

Учитывая огромный вклад Архимеда в развитие математики, в частности теории объемов и площадей поверхностей, именно его изобразили на Филдсовской медали — самой почетной в мире награде для молодых математиков. В 1990 году ею был награжден Владимир Дрин-фельд (род. в 1954 г.), который учился и некоторое время работал в Харькове. Вот так юные таланты, успешно изучающие геометрию в школе, становятся в дальнейшем всемирно известными учеными.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Уравнения фигур в пространстве

Напомним, что уравнением фигуры F на плоскости называется уравнение, которому удовлетворяют координаты любой точки фигуры F и не удовлетворяют координаты ни одной точки, не принадлежащей фигуре F. Так же определяют и уравнение фигуры в пространстве; но, в отличие от плоскости, где уравнение фигуры содержит две переменные х и у, в пространстве уравнение фигуры является уравнением с тремя переменными х, у и z.

Выведем уравнение плоскости, прямой и сферы в пространстве. Для получения уравнения плоскости рассмотрим в прямоугольной системе координат плоскость а (рис. 233) и определим свойство, с помощью которого можно описать принадлежность произвольной точки данной плоскости. Пусть ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен а (то есть принадлежит прямой, перпендикулярной данной плоскости,— такой вектор называют вектором нормали или нормалью к плоскости а), а точка Площади поверхностей геометрических тел - определение и примеры с решением принадлежит данной плоскости.

Так как Площади поверхностей геометрических тел - определение и примеры с решением, то вектор га перпендикулярен любому вектору плоскости а. Поэтому если Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка плоскости а, то Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Более того, если векторы Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярны, то, поскольку плоскость, проходящая через точку М0 перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением, единственна, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением — критерий принадлежности точки М плоскости а. На основании этого векторного критерия выведем уравнение плоскости в пространстве.

Теорема (уравнение плоскости в пространстве)

В прямоугольной системе координат уравнение плоскости имеет вид Площади поверхностей геометрических тел - определение и примеры с решением, где А, В, С и D — некоторые числа, причем числа А, В и С одновременно не равны нулю.

Доказательство:

Запишем в координатной форме векторное равенство Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости, Площади поверхностей геометрических тел - определение и примеры с решением — фиксированная точка плоскости, M(x;y;z) — произвольная точка плоскости. Имеем Площади поверхностей геометрических тел - определение и примеры с решением

Следовательно, Площади поверхностей геометрических тел - определение и примеры с решением

После раскрытия скобок и приведения подобных членов это уравнение примет вид: Площади поверхностей геометрических тел - определение и примеры с решением

Обозначив числовое выражение в скобках через D, получим искомое уравнение, в котором числа А, В и С одновременно не равны нулю, так как Площади поверхностей геометрических тел - определение и примеры с решением.

Покажем теперь, что любое уравнение вида Ах + Ву +Cz+D = 0 задает в пространстве плоскость. Действительно, пусть Площади поверхностей геометрических тел - определение и примеры с решением — одно из решений данного уравнения. Тогда Площади поверхностей геометрических тел - определение и примеры с решением. Вычитая это равенство из данного, получим Площади поверхностей геометрических тел - определение и примеры с решением Так как это уравнение является координатной записью векторного равенства Площади поверхностей геометрических тел - определение и примеры с решением, то оно является уравнением плоскости, проходящей через точку Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением.

Обратим внимание на то, что в доказательстве теоремы приведен способ составления уравнения плоскости по данным координатам произвольной точки плоскости и вектора нормали.

Пример:

Напишите уравнение плоскости, которая перпендикулярна отрезку MN и проходит через его середину, если М{-1;2;3), N(5;-4;-1).

Решение:

Найдем координаты точки О — середины отрезка MN:

Площади поверхностей геометрических тел - определение и примеры с решением

Значит, О (2; -1; l). Так как данная плоскость перпендикулярна отрезку MN, то вектор Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости. Поэтому искомое уравнение имеет вид: Площади поверхностей геометрических тел - определение и примеры с решением.

И наконец, так как данная плоскость проходит через точку О(2;-l;l), то, подставив координаты этой точки в уравнение, получим: Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением искомое.

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что правильным ответом в данной задаче является также любое уравнение, полученное из приведенного умножением обеих частей на число, отличное от нуля.

Значения коэффициентов А, В, С и D в уравнении плоскости определяют особенности расположения плоскости в системе координат. В частности:

  • если Площади поверхностей геометрических тел - определение и примеры с решением, уравнение плоскости примет вид Ax+By+Cz = 0; очевидно, что такая плоскость проходит через начало координат (рис. 234, а);
  • если один из коэффициентов А, В и С равен нулю, a Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных осей: например, при условии А = 0 вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен оси Ох, а плоскость By + Cz + D = Q параллельна оси Ох (рис. 234, б)
  • если два из коэффициентов А, В и С равны нулю, а Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных плоскостей: например, при условиях А = 0 и В-О вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен плоскости Оху, а плоскость Cz+D = 0 параллельна плоскости Оху (рис. 234, в);
  • если два из коэффициентов А, В и С равны нулю и D = 0, плоскость совпадает с одной из координатных плоскостей: например, при условиях Площади поверхностей геометрических тел - определение и примеры с решением и В = С = D = 0 уравнение плоскости имеет вид Ах = О, или х= 0, то есть является уравнением плоскости Оуz (рис. 234, г).

Предлагаем вам самостоятельно составить полную таблицу частных случаев расположения плоскости Ax + By+Cz+D = 0 в прямоугольной системе координат в зависимости от значений коэффициентов А, В, С и D.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример: (о расстоянии от точки до плоскости)

Расстояние от точки Площади поверхностей геометрических тел - определение и примеры с решением до плоскости а, заданной уравнением Ax + By + Cz+D = О, вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением Докажите.

Решение:

Если Площади поверхностей геометрических тел - определение и примеры с решением, то по уравнению плоскости Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением = 0.

Если Площади поверхностей геометрических тел - определение и примеры с решением, то проведем перпендикуляр КМ к плоскости a, Площади поверхностей геометрических тел - определение и примеры с решением.

Тогда Площади поверхностей геометрических тел - определение и примеры с решением, поэтому Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Так как Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Рассмотрим теперь возможность описания прямой в пространстве с помощью уравнений.

Пусть в пространстве дана прямая k (рис. 235). Выберем ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением, параллельный данной прямой или принадлежащий ей (такой вектор называют направляющим вектором прямой k), и зафиксируем точку Площади поверхностей геометрических тел - определение и примеры с решением, принадлежащую данной прямой. Тогда произвольная точка пространства М (х; у; z) будет принадлежать прямой k в том и только в том случае, когда векторы Площади поверхностей геометрических тел - определение и примеры с решением коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением

Представим это векторное равенство в координатной форме. Если ни одна из координат направляющего вектора не равна нулю, из данного равенства можно выразить t и приравнять полученные результаты:

Площади поверхностей геометрических тел - определение и примеры с решением

Эти равенства называют каноническими уравнениями прямой в пространстве.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Напишите уравнение прямой, проходящей через точки А(1;-3;2) и В(-l;0;l).

Решение:

Так как точки А и В принадлежат данной прямой, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой АВ. Таким образом, подставив вместо Площади поверхностей геометрических тел - определение и примеры с решением координаты точки А, получим уравнение прямой АВ:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что ответ в этой задаче может иметь и другой вид: так, в числителях дробей можно использовать координаты точки В, а как направляющий вектор рассматривать любой ненулевой вектор, коллинеарный Площади поверхностей геометрических тел - определение и примеры с решением (например, вектор Площади поверхностей геометрических тел - определение и примеры с решением).

Вообще, если прямая в пространстве задана двумя точками Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой, а в случае, если соответствующие координаты данных точек не совпадают, канонические уравнения прямой Площади поверхностей геометрических тел - определение и примеры с решением имеют вид Площади поверхностей геометрических тел - определение и примеры с решением

С помощью уравнений удобно исследовать взаимное расположение прямых и плоскостей в пространстве. Рассмотрим прямые Площади поверхностей геометрических тел - определение и примеры с решением направляющими векторами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Определение угла между данными прямыми связано с определением угла между их направляющими векторами. Действительно, пусть ф — угол между прямыми Площади поверхностей геометрических тел - определение и примеры с решением. Так как по определению Площади поверхностей геометрических тел - определение и примеры с решением, а угол между векторами может быть больше 90°, то Площади поверхностей геометрических тел - определение и примеры с решением либо равен углу ср (рис. 236, а), либо дополняет его до 180° (рис. 236, б).

Площади поверхностей геометрических тел - определение и примеры с решением

Так как cos(l80°-ф) = -coscp, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть

Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда, в частности, следует необходимое и достаточное условие перпендикулярности прямых Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

Кроме того, прямые Площади поверхностей геометрических тел - определение и примеры с решением параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением, или, при условии отсутствия у векторов р и q нулевых координат,

Площади поверхностей геометрических тел - определение и примеры с решением

Проанализируем теперь отдельные случаи взаимного расположения двух плоскостей в пространстве. Очевидно, что если Площади поверхностей геометрических тел - определение и примеры с решением —вектор нормали к плоскости а, то все ненулевые векторы, коллинеарные л, также являются векторами нормали к плоскости а. Из этого следует, что две плоскости, заданные уравнениями Площади поверхностей геометрических тел - определение и примеры с решением:

  • совпадают, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если числа Площади поверхностей геометрических тел - определение и примеры с решением ненулевые Площади поверхностей геометрических тел - определение и примеры с решением
  • параллельны, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если координаты Площади поверхностей геометрических тел - определение и примеры с решением ненулевые, Площади поверхностей геометрических тел - определение и примеры с решением (на практике это означает, что уравнения данных плоскостей можно привести к виду Ax+By+Cz+D1= 0 и Ax+By+Cz+D2=0, где Площади поверхностей геометрических тел - определение и примеры с решением).

В остальных случаях данные плоскости Площади поверхностей геометрических тел - определение и примеры с решением пересекаются, причем угол между ними связан с углом между векторами нормалей Площади поверхностей геометрических тел - определение и примеры с решением и Площади поверхностей геометрических тел - определение и примеры с решением. Предлагаем вам самостоятельно обосновать формулу для определения угла между плоскостями Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

В частности, необходимое и достаточное условие перпендикулярности плоскостей Площади поверхностей геометрических тел - определение и примеры с решением выражается равенством Площади поверхностей геометрических тел - определение и примеры с решением.

Заметим также, что прямая в пространстве может быть описана как линия пересечения двух плоскостей, то есть системой уравнений

Площади поверхностей геометрических тел - определение и примеры с решением

где векторы Площади поверхностей геометрических тел - определение и примеры с решением не коллинеарны.

Пример:

Напишите уравнение плоскости, которая проходит через точку М(4;2;3) и параллельна плоскости x-y + 2z-S = 0.

Решение:

Так как искомая плоскость параллельна данной, то вектор нормали к данной плоскости Площади поверхностей геометрических тел - определение и примеры с решением является также вектором нормали к искомой плоскости. Значит, искомое уравнение имеет вид Площади поверхностей геометрических тел - определение и примеры с решением. Так как точка М принадлежит искомой плоскости, ее координаты удовлетворяют уравнению плоскости, то есть 4-2 + 2-3 + 2) = 0, D = -8. Следовательно, уравнение x-y+2z-8=0 искомое.

Ответ: x-y+2z-8 = 0.

Аналогично уравнению окружности на плоскости, в пространственной декартовой системе координат можно вывести уравнение сферы с заданным центром и радиусом.

Теорема (уравнение сферы)

В прямоугольной системе координат уравнение сферы радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением имеет вид Площади поверхностей геометрических тел - определение и примеры с решением Доказательство

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка сферы радиуса R с центром Площади поверхностей геометрических тел - определение и примеры с решением (рис. 237). Расстояние между точками О и М вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Так как OM=R, то есть ОМ2 = R2, то координаты точки М удовлетворяют уравнению Площади поверхностей геометрических тел - определение и примеры с решением. Если же точка М не является точкой сферы, то Площади поверхностей геометрических тел - определение и примеры с решением, значит, координаты точки М не удовлетворяют данному уравнению.

Следствие

Сфера радиуса R с центром в начале координат задается уравнением вида

Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что фигуры в пространстве, как и на плоскости, могут задаваться не только уравнениями, но и неравенствами. Например, шар радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением задается неравенством Площади поверхностей геометрических тел - определение и примеры с решением (убедитесь в этом самостоятельно).

Пример:

Напишите уравнение сферы с центром А (2;-8; 16), которая проходит через начало координат.

Решение:

Так как данная сфера проходит через точку 0(0;0;0), то отрезок АО является ее радиусом. Значит,

Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, искомое уравнение имеет вид:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Доказательство формулы объема прямоугольного параллелепипеда

Теорема (формула объема прямоугольного параллелепипеда)

Объем прямоугольного параллелепипеда равен произведению трех его измерений:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением— измерения параллелепипеда.

Доказательство:

Докажем сначала, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — два прямоугольных параллелепипеда с равными основаниями и объемами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Совместим данные параллелепипеды. Для этого достаточно совместить их основания. Теперь рассмотрим объемы параллелепипедов Площади поверхностей геометрических тел - определение и примеры с решением (рис. 238). Для определенности будем считать, что Площади поверхностей геометрических тел - определение и примеры с решением. Разобьем ребро Площади поверхностей геометрических тел - определение и примеры с решением на n равных отрезков. Пусть на отрезке Площади поверхностей геометрических тел - определение и примеры с решением лежит m точек деления. Тогда:

Площади поверхностей геометрических тел - определение и примеры с решением

проведем через точки деления параллельные основанию ABCD (рис. 239). Они разобьют параллелепипед Площади поверхностей геометрических тел - определение и примеры с решением на n равных параллелепипедов. Каждый из них имеет объем Площади поверхностей геометрических тел - определение и примеры с решением. Очевидно, что параллелепиппед Площади поверхностей геометрических тел - определение и примеры с решением содержит в себе объединение m параллелепипедов и сам содержится в объединении Площади поверхностей геометрических тел - определение и примеры с решением параллелепипедов.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением откуда Площади поверхностей геометрических тел - определение и примеры с решением или Площади поверхностей геометрических тел - определение и примеры с решением

Сравнивая выражения (1) и (2), видим, что оба отношения Площади поверхностей геометрических тел - определение и примеры с решением находятся между Площади поверхностей геометрических тел - определение и примеры с решением, то есть отличаются не больше чем на Площади поверхностей геометрических тел - определение и примеры с решениемДокажем методом от противного, что эти отношения равны.

Допустим, что это не так, то есть Площади поверхностей геометрических тел - определение и примеры с решением Тогда найдется такое натуральное число n, что Площади поверхностей геометрических тел - определение и примеры с решением Отсюда Площади поверхностей геометрических тел - определение и примеры с решением Из полученного противоречия следует, что Площади поверхностей геометрических тел - определение и примеры с решением то есть объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Рассмотрим теперь прямоугольные параллелепипеды с измерениями Площади поверхностей геометрических тел - определение и примеры с решением объемы которых равны V, Площади поверхностей геометрических тел - определение и примеры с решением соответственно (рис. 240).

Площади поверхностей геометрических тел - определение и примеры с решением

По аксиоме объема V3 =1. По доказанному Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением Перемножив эти отношения, получим: V = abc.

Теорема доказана.

* Выберем Площади поверхностей геометрических тел - определение и примеры с решением, например, Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — целая часть дроби Площади поверхностей геометрических тел - определение и примеры с решением.

  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Многоугольник
  • Площадь многоугольника
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Площади фигур в геометрии

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Вычисление объемов фигур


Задание
1

#3043

Уровень задания: Равен ЕГЭ

Радиус первого шара в (5) раз больше радиуса второго шара. Во сколько раз площадь поверхности второго шара меньше площади поверхности первого шара?

Площадь поверхности шара радиуса (R) ищется по формуле (S=4pi R^2). Следовательно, площадь поверхности первого шара относится к площади поверхности второго шара как [dfrac{S_1}{S_2}=dfrac{4pi , R_1^2}{4pi , R_2^2}] Так как радиус первого шара больше радиуса второго шара в 5 раз, то (R_1=5R_2). Следовательно, [dfrac{S_1}{S_2}=dfrac{(5R_2)^2}{R_2^2}=25.] Следовательно, площадь поверхности первого шара в 25 раз больше площади поверхности второго, значит, площадь поверхности второго в 25 раз меньше.

Ответ: 25


Задание
2

#3046

Уровень задания: Равен ЕГЭ

Даны два конуса. Радиус второго конуса в (3) раза больше радиуса первого конуса, а высота второго конуса в (6) раз меньше высоты первого конуса. Найдите объем первого конуса, если объем второго конуса равен (18).

Объем конуса с высотой (h) и радиусом основания (R) вычисляется по формуле (V=frac13pi R^2h). Следовательно, объем первого конуса относится к объему второго конуса как [dfrac{V_1}{18}=dfrac{V_1}{V_2}=
dfrac{frac13pi ,R_1^2,h_1}{frac13 pi
,R_2^2,h_2}=left(dfrac{R_1}{R_2}right)^2cdot
dfrac{h_1}{h_2}]
Так как радиус второго в 3 раза больше радиуса первого, то (R_2=3R_1). Так как высота второго в 6 раз меньше высоты первого, то (h_1=6h_2). Следовательно, [dfrac{V_1}{18}=left(dfrac{R_1}{3R_1}right)^2cdot dfrac{6h_2}{h_2}=
dfrac19cdot 6=dfrac23 quadRightarrowquad V_1=dfrac23cdot
18=12.]

Ответ: 12


Задание
3

#3048

Уровень задания: Равен ЕГЭ

Даны два конуса: (K_1) и (K_2). Площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как (4:1). Известно, что радиус (K_1) в 4 раза больше образующей (K_1) и в 2 раза больше радиуса (K_2). Найдите отношение образующей (K_2) к образующей (K_1).

Площадь полной поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi R (R+l)). Тогда площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как [dfrac41=dfrac{pi ,R_1cdot (R_1+l_1)}{pi , R_2cdot (R_2+l_2)}] Из условия следует, что (R_1=4l_1), (R_2=frac12R_1=2l_1), следовательно, [dfrac41=dfrac{4l_1cdot (4l_1+l_1)}{2l_1cdot (2l_1+l_2)}
quadRightarrowquad dfrac{l_2}{l_1}=dfrac12=0,5]

Ответ: 0,5


Задание
4

#3044

Уровень задания: Равен ЕГЭ

Во сколько раз радиус первого шара больше радиуса второго шара, если объем первого шара в (343) раза больше объема второго шара?

Объем шара радиуса (R) ищется по формуле (V=dfrac43 pi R^3). Следовательно, объем первого шара относится к объему второго как [dfrac{343}1=dfrac{V_1}{V_2}=dfrac{frac43 pi , R_1^3}{frac43 pi , R_2^3}=
left(dfrac{R_1}{R_2}right)^3 quadRightarrowquad
dfrac{R_1}{R_2}=sqrt[3]{343}=7.]
Следовательно, радиус первого шара в 7 раз больше радиуса второго шара.

Ответ: 7


Задание
5

#3051

Уровень задания: Равен ЕГЭ

Объем первого прямоугольного параллелепипеда равен 105. Найдите объем второго прямоугольного параллелепипеда, если известно, что высота первого параллелепипеда в 7 раз больше высоты второго, ширина второго в 2 раза больше ширины первого, а длина первого в 3 раза больше длины второго.

Пусть буквы (a), (b) и (c) обозначают высоту, ширину и длину соответственно. Объем прямоугольного параллелепипеда ищется по формуле (V=abc). Следовательно, объем первого параллелепипеда относится к объему второго как [dfrac{105}{V_2}=dfrac{V_1}{V_2}=dfrac{a_1b_1c_1}{a_2b_2c_2}] Из условия следует, что (a_1=7a_2), (b_2=2b_1), (c_1=3c_2). Тогда [dfrac{105}{V_2}=dfrac{7a_2cdot b_1cdot 3c_2}{a_2cdot 2b_1cdot c_2}=
dfrac{7cdot 3}2 quadRightarrowquad V_2=dfrac{105cdot
2}{21}=10.]

Ответ: 10


Задание
6

#3049

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого цилиндра равна (16). Найдите площадь боковой поверхности второго цилиндра, если его радиус в 4 раза больше радиуса первого, а высота в 5 раз меньше высоты первого цилиндра.

Площадь боковой поверхности цилиндра с высотой (H) и радиусом основания (R) ищется по формуле (S=2pi RH). Тогда площадь бок. поверхности первого цилиндра относится к площади бок. поверхности второго как [dfrac{16}{S_2}=dfrac{S_1}{S_2}=dfrac{2pi ,R_1,H_1}{2pi ,R_2,H_2}=
dfrac{R_1}{R_2}cdot dfrac{H_1}{H_2}]
Из условия следует, что (R_2=4R_1), (H_1=5H_2), значит, [dfrac{16}{S_2}=dfrac{R_1}{4R_1}cdot dfrac{5H_2}{H_2}=
dfrac14cdot 5=dfrac54]
Следовательно, [S_2=dfrac{16cdot 4}5=12,8.]

Ответ: 12,8


Задание
7

#3047

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого конуса относится к площади боковой поверхности второго конуса как (3:7). Найдите отношение образующей первого конуса к образующей второго конуса, если радиус первого конуса относится к радиусу второго как (15:7).

Площадь боковой поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi Rl). Тогда площадь бок. поверхности первого конуса относится к площади бок. поверхности второго как [dfrac 37=dfrac{S_1}{S_2}=dfrac{pi R_1,l_1}{pi R_2,l_2}] Так как радиус первого конуса относится к радиусу второго как (15:7), то есть (frac{R_1}{R_2}=frac{15}7), то [dfrac37=dfrac {15}7cdot dfrac{l_1}{l_2} quadRightarrowquad
dfrac{l_1}{l_2}=dfrac37cdot dfrac7{15}=dfrac15=0,2.]

Ответ: 0,2

Во время подготовки к сдаче ЕГЭ по математике повторение базовых формул из школьного курса геометрии в пространстве (стереометрии), в том числе и для вычисления объемов фигур, является одним из основных этапов. И хотя на изучение этого раздела отводится достаточно большое количество времени в рамках учебной программы, многим выпускникам требуется освежить в памяти основной материал.

Понимая, как осуществляется вычисление площадей объемных фигур, учащиеся значительно повышают свои шансы на получение достойных баллов по итогам сдачи ЕГЭ.

Базовая информация

Объем геометрической фигуры — это количественная характеристика пространства, которое занимает тело. Она определяется его формой и размерами.
Чтобы задачи на вычисление объемов геометрических фигур не вызывали затруднений, рекомендуем освежить в памяти основные формулы.

  • Объем куба равняется кубу длины его грани.
  • Для его расчета используется формула: V = a3, где V — объем куба,
    a — длина его грани.

  • Объем призмы равняется произведению площади основания фигуры на высоту.
    Чтобы его рассчитать, воспользуйтесь следующий формулой: V = So h, где V — объем призмы, So — площадь ее основания, h — ее высота.
  • Объем прямоугольного параллелепипеда равняется произведению его длины, ширины и высоты.
    Формула для его расчета: V = a · b · h, где a — длина,
    b — ширина, h — высота.
  • Объем пирамиды равняется трети от произведения площади ее основания на высоту.
  • Рассчитать его можно по формуле:

    V =
    1/3
    So· h ,

    где V — объем пирамиды, So — площадь основания пирамиды, h — длина высоты пирамиды.

  • Объем цилиндра равняется произведению площади его основания на высоту.
    Формулы для его расчета:
  • V =

    π R2 h

    V =

    So h

Где V — объем цилиндра, So — площадь основания цилиндра, R — радиус цилиндра, h — высота цилиндра, π = 3.141592.

Как сделать процесс подготовки к аттестационному испытанию более легким и эффективным?

Наш образовательный портал предлагает выстроить занятия по-новому. Переходя от простого к сложному, выпускники смогут определить непонятные для себя темы и улучшить собственные знания.

Весь базовый материал по теме «Вычисление площадей и объемов фигур» собран в разделе «Теоретическая справка». Освежив в памяти эту информацию, учащиеся смогут попрактиковаться в решении задач. Большая подборка упражнений как простого, так и экспертного уровня представлена в разделе «Каталог». База заданий регулярно дополняется.

Решать задачи на вычисление объемов фигур или на построение сечения геометрических фигур школьники могут в режиме онлайн. Функционал образовательного сайта «Школково» позволяет сохранять упражнения в разделе «Избранное». Благодаря этому учащиеся смогут вернуться к задаче необходимое количество раз и обсудить ход ее решения со школьным учителем или репетитором.

УСТАЛ? Просто отдохни

Площадь
S, от фр. superficie
Размерность
Единицы измерения
СИ м²
СГС см²
Примечания
скаляр

Общая площадь всех трёх фигур составляет около 15-16 квадратиков

Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с помощью наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры[2] (на рисунке справа). В широком смысле понятие площади обобщается[1] на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».

Исторически вычисление площади называлось квадратурой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Общий метод вычисления площади геометрических фигур предоставило интегральное исчисление. Обобщением понятия площади стала теория меры множества, пригодная для более широкого класса геометрических объектов.

Для приближённого вычисления площади на практике используют палетку или специальный измерительный прибор — планиметр.

Определение понятия площади[править | править код]

Свойства[править | править код]

Множество измеримо по Жордану, если внутренняя мера Жордана равна внешней мере Жордана

Площадь — функция, которая обладает следующими свойствами[3][1]:

  • Положительность, то есть площадь неотрицательная (скалярная) величина;
  • Аддитивность, то есть площадь фигуры равна сумме площадей составляющих её фигур без общих внутренних точек;
  • Инвариантность, то есть площади конгруэнтных фигур равны;
  • Нормированность, то есть площадь единичного квадрата равна 1.

Из данного определения площади следует её монотонность, то есть площадь части фигуры меньше площади всей фигуры[3].

Квадрируемые фигуры[править | править код]

Первоначально определение площади было сформулировано для многоугольников, затем оно было расширено на квадрируемые фигуры. Квадрируемой называется такая фигура, которую можно вписать в многоугольник и в которую можно вписать многоугольник, причём площади обоих многоугольников отличаются на произвольно малую величину. Такие фигуры называются также измеримыми по Жордану[1]. Для фигур на плоскости, не состоящих из целого количества единичных квадратов, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими[4]. Существуют неквадрируемые плоские фигуры[1]. Предложенное выше аксиоматическое определение площади в случае плоских фигур обычно дополняют конструктивным, при котором с помощью палетки осуществляется собственно вычисление площади. При этом для более точных вычислений на последующих шагах используют палетки, у которых длина стороны квадрата в десять раз меньше длины у предыдущей палетки[5].

Площадь квадрируемой плоской фигуры существует и единственна. Понятие площади, распространённое на более общие множества, привело к определению множеств, измеримых по Лебегу, которыми занимается теория меры. В дальнейшем возникают более общие классы, для которых свойства площади не гарантируют её единственность[1].

Общий метод определения площади[править | править код]

Площадь плоской фигуры[править | править код]

На практике чаще всего требуется определить площадь ограниченной фигуры с кусочно-гладкой границей. Математический анализ предлагает универсальный метод решения подобных задач.

Декартовы координаты[править | править код]

Определённый интеграл как площадь фигуры

Площадь между графиками двух функций равна разности интегралов от этих функций в одинаковых пределах интегрирования

Площадь, заключённая между графиком непрерывной функции на интервале [a,b] и горизонтальной осью, может быть вычислена как определённый интеграл от этой функции:

S=int limits _{a}^{b}f(x),dx

Площадь, заключённая между графиками двух непрерывных функций f(x),,g(x) на интервале [a,b] находится как разность определённых интегралов от этих функций:

S=int limits _{a}^{b}left|f(x)-g(x)right|,dx

Полярные координаты[править | править код]

В полярных координатах: площадь, ограниченная графиком функции r=r(theta ) и лучами theta =theta _{1},theta =theta _{2},theta _{1}<theta _{2} вычисляется по формуле:

S={1 over 2}int limits _{{theta _{1}}}^{{theta _{2}}}r^{2}(theta ),dtheta .

Площадь поверхности[править | править код]

Для определения площади кусочно гладкой поверхности в трёхмерном пространстве используют ортогональные проекции к касательным плоскостям в каждой точке, после чего выполняют предельный переход. В результате, площадь искривлённой поверхности A, заданной вектор-функцией {mathbf  {r}}={mathbf  {r}}(u,v),, даётся двойным интегралом[1]:

S=iint limits _{A}left|{frac  {partial {mathbf  {r}}}{partial u}}times {frac  {partial {mathbf  {r}}}{partial v}}right|,du,dv.

То же в координатах:

S=iint limits _{A}{sqrt  {left({frac  {D(x,y)}{D(u,v)}}right)^{2}+left({frac  {D(y,z)}{D(u,v)}}right)^{2}+left({frac  {D(z,x)}{D(u,v)}}right)^{2}}};{mathrm  {d}},u,{mathrm  {d}},v

Здесь {frac  {D(y,z)}{D(u,v)}}={begin{vmatrix}y'_{u}&y'_{v}\z'_{u}&z'_{v}end{vmatrix}},quad {frac  {D(z,x)}{D(u,v)}}={begin{vmatrix}z'_{u}&z'_{v}\x'_{u}&x'_{v}end{vmatrix}},quad {frac  {D(x,y)}{D(u,v)}}={begin{vmatrix}x'_{u}&x'_{v}\y'_{u}&y'_{v}end{vmatrix}}.

Теория площадей[править | править код]

Теория площадей занимается изучением обобщений, связанных с распространением определения k-мерной площади с кусочно-гладкого погружения на более общие пространства. Для кусочно-гладкого погружения f площадь определяют способом, аналогичным указанному выше, при этом у площади сохраняются такие свойства как положительность, аддитивность, нормированность, а также ряд новых.

Единицы измерения площади[править | править код]

В одном квадратном сантиметре сто квадратных миллиметров

Метрические единицы[править | править код]

  • Квадратный метр, производная единица Международной системы единиц (СИ); 1 м² = 1 са (сантиар);
  • Квадратный километр, 1 км² = 1 000 000 м²;
  • Гектар, 1 га = 10 000 м²;
  • Ар (сотка), 1 а = 100 м²:
  • Квадратный дециметр, 100 дм² = 1 м²;
  • Квадратный сантиметр, 10 000 см² = 1 м²;
  • Квадратный миллиметр, 1 000 000 мм² = 1 м²;
  • Барн, 1 б = 10−28 м².

Русские устаревшие[править | править код]

  • Квадратная верста = 1,13806 км²
  • Десятина = 10925,4 м²
  • Копна = 0,1 десятины — сенные покосы мерили копнами
  • Квадратная сажень = 4,55224 м²

Мерами земли при налоговых расчётах были выть, соха, обжа, размеры которых зависели от качества земли и социального положения владельца. Существовали и различные местные меры земли: коробья, верёвка, жеребья и др.

Античные[править | править код]

  • Актус
  • Арура
  • Центурия
  • Югер

Другие[править | править код]

  • Акр
  • Рай = 1600 м² (40 м × 40 м).
  • Квадратный парсек
  • Планковская площадь (S_{P},{ell }_{{P}}^{{2}}) ≈ 2,612099 · 10−70 м2

Формулы вычисления площадей простейших фигур[править | править код]

Многоугольники[править | править код]

Фигура Формула Переменные
Правильный треугольник {displaystyle a^{2}{frac {sqrt {3}}{4}}} a — длина стороны треугольника
Прямоугольный треугольник {frac  {ab}{2}} a и b — катеты треугольника
Произвольный треугольник {frac  {1}{2}}ah a — сторона треугольника, h — высота, проведённая к этой стороне
{frac  {1}{2}}absin alpha a и b — любые две стороны, alpha  — угол между ними
{sqrt  {p(p-a)(p-b)(p-c)}}
(формула Герона)
a, b и c — стороны треугольника, p — полупериметр left(p={frac  {a+b+c}{2}}right)
{frac  {1}{2}}{begin{vmatrix}x_{0}&y_{0}&1\x_{1}&y_{1}&1\x_{2}&y_{2}&1end{vmatrix}} (x_{0};y_{0}), (x_{1};y_{1}), (x_{2};y_{2}) — координаты вершин треугольника (в случае обхода вершин по часовой стрелке получим положительный результат, иначе отрицательный)
Квадрат a^2 a — длина стороны квадрата
Прямоугольник ab a и b — длины сторон прямоугольника (его длина и ширина)
Ромб {frac  {1}{2}}cd c и d — длины диагоналей ромба
Параллелограмм ah a и h — длины стороны и опущенной на неё высоты соответственно
absin alpha a и b — соседние стороны параллелограмма, alpha  — угол между ними
Трапеция {frac  {1}{2}}(a+b)h a и b — основания трапеции, h — высота трапеции
Произвольный четырёхугольник {sqrt  {(p-a)(p-b)(p-c)(p-d)-abcdcos alpha }}
(формула Брахмагупты)
a, b, c, d — стороны четырёхугольника, p — его полупериметр, alpha  — полусумма противолежащих углов четырёхугольника
Правильный шестиугольник {displaystyle a^{2}{frac {3{sqrt {3}}}{2}}} a — длина стороны шестиугольника
Правильный восьмиугольник {displaystyle 2a^{2}(1+{sqrt {2}})} a — длина стороны восьмиугольника
Правильный многоугольник {frac  {P^{2}/n}{4operatorname {tg}(pi /n)}} P — периметр, n — количество сторон
Произвольный многоугольник (выпуклый и невыпуклый) {frac  {1}{2}}left|sum _{{i=1}}^{{n}}(x_{{i+1}}-x_{i})(y_{{i+1}}+y_{i})right|
(метод трапеций)
(x_{i};y_{i}) — координаты вершин многоугольника в порядке их обхода, замыкая последнюю с первой: (x_{{n+1}};y_{{n+1}})=(x_{1};y_{1}); при наличии отверстий направление их обхода противоположно обходу внешней границы многоугольника
Произвольный многоугольник (выпуклый и невыпуклый) Вычисление площадей многоугольников по способу Саррона[6]. Есть аналитическая формула. Даны длины сторон многоугольника и азимутальные углы сторон

Площади круга, его частей, описанных и вписанных в круг фигур[править | править код]

Фигура Формула Переменные
Круг pi r^{2} или {frac  {pi d^{2}}{4}} r — радиус, d — диаметр круга
Сектор круга {frac  {alpha r^{2}}{2}} r — радиус круга, alpha  — центральный угол сектора (в радианах)
Сегмент круга {frac  {r^{2}}{2}}(alpha -sin alpha ) r — радиус круга, alpha  — центральный угол сегмента (в радианах)
Эллипс pi ab a, b — большая и малая полуоси эллипса
Треугольник, вписанный в окружность {frac  {abc}{4R}} a, b и c — стороны треугольника, R — радиус описанной окружности
Четырёхугольник, вписанный в окружность {sqrt  {(p-a)(p-b)(p-c)(p-d)}}
(формула Брахмагупты)
a, b, c, d — стороны четырёхугольника, p — его полупериметр
Многоугольник, описанный около окружности {frac  {1}{2}}Pr r — радиус окружности, вписанной в многоугольник, P — периметр многоугольника
Прямоугольная трапеция, описанная около окружности ab a, b — основания трапеции

Площади поверхностей тел в пространстве[править | править код]

Тело Формула Переменные
Полная поверхность прямого кругового цилиндра 2pi r(r+h) r и h — радиус и высота соответственно
Боковая поверхность прямого кругового цилиндра 2pi rh
Полная поверхность прямого кругового конуса {displaystyle pi r(l+r)} r и l — радиус и образующая боковой поверхности соответственно
Боковая поверхность прямого кругового конуса pi rl
Поверхность сферы (шара) 4pi r^{2} или pi d^{2} r и d — радиус и диаметр соответственно
Боковая поверхность прямой призмы {displaystyle Ph} P — периметр основания, h — высота
Полная поверхность произвольной призмы {displaystyle 2A_{1}+A_{2}} A_{1} — площадь основания A_{2} — площадь боковой поверхности

Исторический очерк[править | править код]

Площадь плоских фигур[править | править код]

Многие годы площадь считалась первичным понятием, не требующим определения. Основной задачей математиков являлось вычисление площади, при этом были известны основные свойства площади[3]. В Древнем Египте использовались точные правила вычисления площади прямоугольников, прямоугольных треугольников и трапеций, площадь произвольного четырёхугольника определялась приближённо как произведение полусумм пар противоположных сторон. Применение такой приближённой формулы связано с тем, что участки, площадь которых надо было померить, были в основном близки к прямоугольным и погрешность в таком случае оставалась небольшой. Историк математики А. П. Юшкевич предполагает, что египтяне могли и не знать, что пользуются приближённой формулой. В задаче 50 папируса Ринда содержится формула вычисления площади круга, которая считалась равной площади квадрата со стороной 8/9 диаметра круга[7]. Такими же формулами пользовались и в Вавилоне, однако для площади круга приближение было менее точным. Кроме того, вавилоняне могли приближённо посчитать площади правильных пяти-, шести- и семиугольника со стороной равной единице. В шестидесятиричной системе им соответствовали 1,40, 2,37,20 и 3,41, соответственно[8].

Основным приёмом вычисления площади при этом являлось построение квадрата, площадь которого равна площади заданной многоугольной фигуры, в частности в книге I «Начал» Евклида, которая посвящена планиметрии прямолинейных фигур, доказывается, что треугольник равновелик половине прямоугольника, имеющего с ним равные основания и высоту[9]. Метод разложения, основанный на том, что две равносоставленные фигуры равновелики, позволял также вычислить площади параллелограммов и любых многоугольников[5].

Следующим шагом было вычисление площадей круга, кругового сектора, лунок и других фигур. Основу вычислений при этом составлял метод исчерпывания многоугольниками[1][5], с которого берёт начало теория пределов. Метод заключается в построении последовательности площадей, которые при постепенном нарастании «исчерпывают» требуемую площадь. Метод исчерпывания, получивший своё название только в XVII веке, основан на аксиоме непрерывности Евдокса — Архимеда и приписывается Евдоксу Книдскому, который с его помощью показал, что площади кругов относятся друг к другу как квадраты их диаметров. Метод описан в «Началах» Евклида: аксиома Евдокса сформулирована в книге V, а сам метод исчерпывания и основанные на нём отношения — в книге XII[9]. Особого совершенства в применении метода достиг Архимед, который с его помощью посчитал площадь сегмента параболы и другие[10][11]. Труд Архимеда «О спиралях» включает много утверждений, касающихся площадей различных витков спирали и их отношений[12]. Архимеду принадлежит идея использования площадей или объёмов как вписанных, так и описанных фигур для определения требуемой площади или объёма[13].

Индийцы поначалу пользовались той же формулой для вычисления четырёхугольников, что египтяне и греки. Брахмагупта пользовался формулой для площади четырёхугольников, выраженной через его полупериметр., которая верна для вписанного в окружность четырёхугольника. Формулы вычисления площади обычно не доказывались, но демонстрировались с наглядными рисунками[14]. Формула Брахмагупты представляет собой аналог формулы Герона для площади треугольника, которую тот привёл в своей «Метрике»[15].

Развитие и обобщение метода исчерпывания произошло только в XVII веке. В 1604 году в работе «Три книги о центре тяжести тел» Валерио широко использует теорему, по которой разность между площадями вписанной и описанной фигур, составленных из параллелограммов можно сделать меньше любой данной площади[16]. Настоящий прорыв был сделан Кеплером, которому для астрономических расчётов нужно было уметь вычислять площадь эллипса. Кеплер рассматривал площадь как «сумму линий» и, разлиновывая эллипс с шагом в один градус, показал[17], что int limits _{0}^{varphi }sin xdx=1-cos varphi . Кавальери, обосновывая подобный метод, названный «методом неделимых», сравнивал площади плоских фигур, используя сечение фигур параллельными прямыми[18]. Применение первообразной для нахождения площади плоской фигуры является наиболее универсальным методом. С помощью первообразной доказывается принцип Кавальери, по которому две плоские фигуры имеют равную площадь, если при пересечении каждой из них прямой, параллельной фиксированной, получаются отрезки одинаковой длины. Принцип был известен задолго до формирования интегрального исчисления[1][5].

Площадь поверхности[править | править код]

Вычислением площадей кривых поверхностей занимался Архимед, определив, в частности, площадь поверхности шара[13]. В общем случае для определения площади поверхности нельзя пользоваться ни развёрткой (не подходит для сферы), ни приближением многогранными поверхностями, то есть аналогом метода исчерпывания. Последнее показал Шварц, построив для боковой последовательности цилиндра последовательности, которые приводят к разным результатам (так называемый сапог Шварца)[1][19].

Общий приём вычисления площади поверхности на рубеже XIX—XX веков предложил Минковский, который для каждой поверхности строил «окутывающий слой» малой постоянной толщины, тогда площадь поверхности будет приближённо равна объёму этого слоя, делённому на его толщину. Предельный переход при толщине, стремящейся к нулю даёт точное значение площади. Однако, для площади по Минковскому не всегда выполняется свойство аддитивности. Обобщение данного определения приводит к понятию линии по Минковскому и другим[20].

Примечания[править | править код]

  1. 1 2 3 4 5 6 7 8 9 10 Площадь // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 4.
  2. Чиркова, Наталья Ивановна, and Валентина Николаевна Зиновьева. Формирование у младших школьников представлений о площади предметов и её измерении Архивная копия от 28 апреля 2019 на Wayback Machine // Вестник Калужского университета 1 (2017): 92-97.
  3. 1 2 3 Геометрия, 1966, с. 7—13.
  4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — Изд. 6-е. — М.: ФИЗМАТЛИТ, 1966. — Т. 2. — С. 186—224. — 800 с.
  5. 1 2 3 4 Болтянский В. О понятиях площади и объёма. Архивная копия от 5 мая 2017 на Wayback Machine Квант, № 5, 1977, c.2—9
  6. Хренов Л. С. Вычисление площадей многоугольников по способу Саррона// Матем. просвещение. 1936. Выпуск 6. С. 12-15
  7. История математики, т. I, 1970, с. 30—32.
  8. История математики, т. I, 1970, с. 47—53.
  9. 1 2 История математики, т. I, 1970, с. 111—114.
  10. Исчерпывания метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 2.
  11. История математики, т. I, 1970, с. 101—105.
  12. Boyer & Merzbach, 2010, p. 127—128.
  13. 1 2 История математики, т. I, 1970, с. 117—124.
  14. История математики, т. I, 1970, с. 197—198.
  15. Boyer & Merzbach, 2010, p. 172, 219.
  16. История математики, т. II, 1970, с. 131—135.
  17. История математики, т. II, 1970, с. 166—171.
  18. История математики, т. II, 1970, с. 174—181.
  19. В. Н. Дубровский, В поисках определения площади поверхности Архивная копия от 27 июня 2017 на Wayback Machine. Квант. 1978. № 5. С.31—34.
  20. В. Н. Дубровский, Площадь поверхности по Минковскому Архивная копия от 15 февраля 2017 на Wayback Machine. Квант. 1979. № 4. С.33—35.

Литература[править | править код]

  • Энциклопедия элементарной математики. Книга пятая. Геометрия / под редакцией П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. — М.: Наука, 1966. — 624 с.
  • Рашевский П. К. Риманова геометрия и тензорный анализ. Изд. 3-е, М.: Наука, 1967.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — М.: ФИЗМАТЛИТ, 1960. — Т. 2. — 680 с. — ISBN 5-9221-0155-2.
  • История математики: в 3 т / под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. I: С древнейших времён до начала Нового времени.
  • История математики: в 3 т / под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. II: Математика XVII столетия.
  • Boyer C. B., Merzbach U. C. A History of Mathematics. — John Wiley & Sons, 2010. — 640 p. Архивная копия от 9 июля 2019 на Wayback Machine (англ.)

Вычисление площадей многоугольников и объемов многогранников, заданных координатами своих вершин в прямоугольной системе координат, основывается на использовании скалярного, векторного и смешанного произведений векторов.

Если параллелограмм задан в пространстве координатами своих вершин, то для вычисления его площади нужно найти координаты двух векторов, соответствующих смежным сторонам параллелограмма, а затем модуль их векторного произведения. Аналогично вычисляется площадь треугольника, равная половине модуля векторного произведения векторов, на которых он построен как на смежных сторонах.

Пример 4.2. Пусть три вершины треугольника заданы своими координатами: A(4;4;4), B(1; 2; 3), C(3; —1;2).

Для определения площади ΔABC с помощью (4.10) найдем координаты векторов AB и AC: AB = {1 — 4; 2 — 4; 3 — 4} = { — 3; —2; —1}, —1 = {3 — 4; —1 — 4; 2 — 4} = { — 1; —5; —2}.

Затем по (3.2) вычислим их векторное произведение:

Формула векторное произведение

Модуль этого векторного произведения равен |AB×AC| = √((—1)2 + (—5)2 + 132) = √195, и следовательно, S ΔABC = |AB×AC|/2 = √195/2 #

Для вычисления объема параллелепипеда, заданного координатами своих вершин, нужно найти координаты трех векторов, соответствующих смежным ребрам, а затем вычислить модуль смешанного произведения этих векторов. Через смешанное произведение вычисляется и объем произвольной треугольной пирамиды SABC (см. пример 3.2), поскольку он равен 1/6 объема параллелепипеда, построенного на ребрах AB, AC и AS. Таким образом, объем этой пирамиды равен VSABC = |ABACAS|/6.

Пример 4.3. Найдем объем V пирамиды SABC, заданной координатами своих вершин: A(2; —1;1), B(5; 5; 4), C(3; 2; —1), S(4;1;3).

Используя (4.10), вычисляем координаты векторов, направленных по ребрам пирамиды: AB = {5 — 2; 5 — (—1);4 — 1} = {3; 6; 3}, AC = {3 — 2; 2 — (—1); —1 — 1} = {1;3; —2},= AS {4 — 2;1 — (—1); 3 — 1} = {2;2;2}, и определяем объем с помощью смешанного произведения найденных векторов:

Формула


Загрузить PDF


Загрузить PDF

Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру. Площадь поверхности является числовой характеристикой поверхности.[1]
Вычислить площадь поверхности объемной (трехмерной) фигуры довольно просто, если знать соответствующую формулу. Существует определенная формула для каждой фигуры, поэтому сначала нужно определить, какая фигура дана. Чтобы быстро вычислять площадь поверхности, запомните соответствующие формулы для разных фигур. В данной статье рассматриваются наиболее распространенные фигуры.

  1. Изображение с названием Find Surface Area Step 1

    1

    Запишите формулу для вычисления площади поверхности куба. У куба шесть равных квадратных граней. Так как стороны квадрата равны, площадь квадрата равна a2, где а – сторона. Так как у куба шесть равных квадратных граней, чтобы найти площадь поверхности, умножьте площадь одной грани (квадрата) на 6. Формула для вычисления площади поверхности (SA) куба: SA = 6а2, где а – ребро куба (сторона квадрата).[2]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 2

    2

    Измерьте ребро куба. Ребра куба равны, поэтому можно измерить только одно (любое) ребро. Ребро измерьте с помощью линейки (или рулетки). Обратите внимание на используемые единицы измерения.

    • Запишите значение, обозначив его через а.
    • Например: а = 2 см
  3. Изображение с названием Find Surface Area Step 3

    3

    Значение а возведите в квадрат. То есть возведите в квадрат длину ребра куба. Для этого умножьте значение на себя. Если вы только приступили к изучению формул с квадратами, запишите формулу так: SA = 6*а*а.

    • Сейчас вы вычислили значение площади одной из граней куба.
    • Например: а = 2 см
    • a2 = 2 х 2 = 4 см2
  4. Изображение с названием Find Surface Area Step 4

    4

    Вычисленное значение умножьте на шесть. Помните, что у куба шесть равных граней. Вычислив площадь одной из граней, умножьте полученное значение на 6, чтобы включить все грани куба.

    • Это последний шаг в процессе вычисления площади поверхности куба.
    • Например: а 2 = 4 см2
    • SA = 6 х а2 = 6 х 4 = 24 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 5

    1

    Запишите формулу для вычисления площади поверхности прямоугольной призмы. У прямоугольной призмы шесть граней, причем равными являются только противоположные грани.[3]
    Поэтому формула для вычисления площади поверхности прямоугольной призмы включает значения трех разных ребер: SA = 2ab + 2bc + 2ac.

    • Здесь а – ширина, b – высота, с – длина призмы.
    • Если проанализировать формулу, можно понять, что она суммирует площади всех граней.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 6

    2

    Найдите значения высоты, ширины и длины призмы. Три ребра не являются равными, поэтому нужно выполнить три измерения. Измерьте соответствующие ребра с помощью линейки (или рулетки). Ребра измеряйте в одной единице измерения.

    • Измерьте длину грани, которая лежит в основании призмы; длину обозначьте через с.
    • Например: с = 5 см
    • Измерьте ширину грани, которая лежит в основании призмы; ширину обозначьте через а.
    • Например: а = 2 см
    • Измерьте высоту призмы; высоту обозначьте через b.
    • Например: b = 3 см
  3. Изображение с названием Find Surface Area Step 7

    3

    Вычислите площадь одной грани призмы, а затем полученное значение умножьте на два. Помните, что у прямоугольной призмы шесть граней, причем равными являются только противоположные грани. Умножьте длину на высоту (с на а), чтобы найти площадь одной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[4]

    • Например: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 см2
  4. Изображение с названием Find Surface Area Step 8

    4

    Вычислите площадь другой грани призмы, а затем полученное значение умножьте на два. Умножьте ширину на высоту (а на b), чтобы найти площадь другой грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[5]

    • Например: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 см2
  5. Изображение с названием Find Surface Area Step 9

    5

    Вычислите площадь фронтальной грани, а затем полученное значение умножьте на два. Умножьте длину на ширину (с на b), чтобы найти площадь фронтальной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[6]

    • Например: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 см2
  6. Изображение с названием Find Surface Area Step 10

    6

    Сложите три значения. Так как площадь поверхности – это суммарная площадь всех граней фигуры, сложите найденные значения площадей отдельных граней. Вы получите площадь поверхности прямоугольной призмы.[7]

    • Например: SA = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 11

    1

    Запишите формулу для вычисления площади поверхности треугольной призмы. Треугольная призма имеет две равные треугольные грани и три прямоугольные грани. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти площади всех граней и сложить их. Формула для вычисления площади поверхности треугольной призмы: SA = 2S + РH, где S – площадь треугольной грани, Р – периметр треугольной грани, H – высота призмы.[8]

    • Здесь S – это площадь треугольника (треугольной грани), которая вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание).
    • Р – периметр треугольника (треугольной грани), который равен сумме всех сторон треугольника.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 12

    2

    Вычислите площадь треугольной грани и умножьте ее на два. Площадь треугольника вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание). Так как треугольная призма имеет две равные треугольные грани, эту формулу можно умножить на два. Поэтому, чтобы вычислить площади двух треугольных граней, просто перемножьте основание и высоту треугольника (b*h).[9]

    • Основание треугольника b – это его нижняя сторона.
    • Например: b = 4 см
    • Высота треугольника h – это перпендикуляр, опущенный на основание из противоположной вершины.
    • Например: h = 3 см
    • Площадь двух треугольных граней равна: 2(1/2)b*h = b*h = 4*3 =12 см.
  3. Изображение с названием Find Surface Area Step 13

    3

    Измерьте каждую сторону треугольника и высоту призмы. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти значение каждой стороны треугольника и высоты призмы. Высота призмы – это расстояние между треугольными гранями.

    • Например: Н = 5 см
    • Стороны треугольника – это три ребра одной (любой) из треугольных граней.
    • Например: а = 2 см, b = 4 см, с = 6 см
  4. Изображение с названием Find Surface Area Step 14

    4

    Вычислите периметр треугольника. Для этого сложите все стороны треугольника: Р = а + b + с.

    • Например: P = а + b + с = 2 + 4 + 6 = 12 см
  5. Изображение с названием Find Surface Area Step 15

    5

    Перемножьте периметр треугольной грани и высоту призмы. Помните, что высота призмы – это расстояние между треугольными гранями. Таким образом, Р умножьте на Н.

    • Например: Р х Н = 12 х 5 = 60 см2
  6. Изображение с названием Find Surface Area Step 16

    6

    Сложите полученные значения. Чтобы найти площадь поверхности треугольной призмы, сложите два значения, вычисленные ранее.[10]

    • Например: 2S + PH = 12 + 60 = 72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 17

    1

    Запишите формулу для вычисления площади поверхности шара. Шар имеет изогнутую поверхность, поэтому формула включает математическую константу π (число Пи). Чтобы вычислить площадь поверхности шара, воспользуйтесь формулой SA = 4π*r2.[11]

    • Здесь r – радиус шара, π ≈ 3,14.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 18

    2

    Измерьте радиус шара. Радиус шара равен половине его диаметра, то есть половине отрезка, который проходит через центр шара и соединяет две точки, лежащие на его поверхности.[12]

    • Например: r = 3 см
  3. Изображение с названием Find Surface Area Step 19

    3

    Радиус шара возведите в квадрат. Для этого умножьте значение радиуса (r) на себя. Помните, что формулу можно записать так: SA = 4π*r*r.[13]

    • Например: r2 = r x r = 3 x 3 = 9 см2
  4. Изображение с названием Find Surface Area Step 20

    4

    Перемножьте квадрат радиуса и приблизительное значение числа Пи. Число Пи является математической константой, которая равна отношению длины окружности к ее диаметру.[14]
    Это иррациональное число со множеством цифр после десятичной запятой. Зачастую число Пи округляется до 3,14. Квадрат радиуса умножьте на π (на 3,14), чтобы вычислить площадь круглого сечения шара. [15]

    • Например: π*r2 = 3,14 x 9 = 28,26 см2
  5. Изображение с названием Find Surface Area Step 21

    5

    Полученное значение умножьте на четыре. Чтобы найти значение площади поверхности сферы, площадь круглого сечения умножьте на 4.[16]

    • Например: 4π*r2 = 4 x 28,26 = 113,04 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 22

    1

    Запишите формулу для вычисления площади поверхности цилиндра. Цилиндрическая поверхность этой фигуры ограничена двумя круглыми параллельными плоскостями, которые называются основаниями. Формула для вычисления площади поверхности цилиндра: SA = 2π*r2 + 2π*rh, где r – радиус основания, h – высота цилиндра, π ≈ 3,14.[17]

    • 2π*г2 – это площадь двух оснований, а 2πrh – это площадь цилиндрической поверхности.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 23

    2

    Измерьте радиус основания и высоту цилиндра. Радиус окружности равен половине ее диаметра, то есть половине отрезка, который проходит через центр окружности и соединяет две точки, лежащие на ней.[18]
    Высота цилиндра – это расстояние между его основаниями. Измерьте и запишите радиус основания и высоту цилиндра.

    • Например: r = 3 см
    • Например: h = 5 см
  3. Изображение с названием Find Surface Area Step 24

    3

    Вычислите площадь основания и умножьте ее на два. Чтобы найти площадь основания, воспользуйтесь формулой для вычисления площади круга: S = π*г2. Сначала радиус возведите в квадрат, а затем полученное значение умножьте на число Пи. Результат умножьте на два, чтобы учесть второе равное основание.[19]

    • Например: площадь основания = π*r2 = 3,14 х 3 х 3 = 28,26 см2
    • Например: 2π*r2 = 2 x 28,26 = 56,52 см2
  4. Изображение с названием Find Surface Area Step 25

    4

    Вычислите площадь цилиндрической поверхности. Для этого воспользуйтесь формулой S = 2π*rh, по которой можно найти площадь поверхности трубы. Здесь труба – это поверхность между двумя основаниями цилиндра. Перемножьте двойку, число Пи, радиус и высоту.[20]

    • Например: 2π*rh = 2 x 3,14 x 3 x 5 = 94,2 см2
  5. Изображение с названием Find Surface Area Step 26

    5

    Сложите полученные значения. Сложите площади двух оснований и площадь цилиндрической поверхности (между двумя основаниями), чтобы вычислить общую площадь поверхности цилиндра. Обратите внимание, что при сложении этих величин получится исходная формула: SA = 2π*r2 + 2π*rh.[21]

    • Например: 2π*r2 + 2π*rh = 56,52 + 94,2 = 150,72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 27

    1

    Запишите формулу для вычисления площади поверхности квадратной пирамиды. Квадратная пирамида имеет одно квадратное основание и четыре треугольные грани. Помните, что площадь квадрата равна квадрату его стороны. Площадь треугольника равна 1/2sl (половина основания треугольника, умноженная на его высоту). Так как пирамида имеет четыре треугольные грани, нужно площадь треугольника умножить на 4. Таким образом, площадь поверхности квадратной пирамиды вычисляется по формуле: SA = s2 + 2sl.[22]

    • В этой формуле s – ребро квадратной грани (сторона квадрата), l – апофема пирамиды.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 28

    2

    Найдите значения апофемы и ребра квадратной грани. Апофема (l) – это высота треугольной грани, то есть расстояние между основанием треугольника и его вершиной. Ребро квадратной грани (s) – это сторона квадрата. Помните, что у квадрата все стороны равны, поэтому измерьте любое ребро квадратной грани, а также измерьте апофему пирамиды.[23]

    • Например: l = 3 см
    • Например: s = 1 см
  3. Изображение с названием Find Surface Area Step 29

    3

    Найдите площадь квадратной грани. Для этого возведите в квадрат ребро этой грани (сторону квадрата), то есть умножьте значение s на себя.[24]

    • Например: s2 = s х s = 1 х 1 = 1 см2
  4. Изображение с названием Find Surface Area Step 30

    4

    Вычислите общую площадь четырех треугольных граней. Вторая часть формулы включает суммарную площадь четырех треугольных граней. Согласно формуле 2ls, перемножьте 2, s и l. Так вы найдете суммарную площадь 4-х треугольных граней.[25]

    • Например: 2 х s х l = 2 х 1 х 3 = 6 см2
  5. Изображение с названием Find Surface Area Step 31

    5

    Сложите полученные значения. Сложите площадь квадратной грани и общую площадь четырех треугольных граней, чтобы вычислить площадь поверхности пирамиды.[26]

    • Например: s2 + 2sl = 1 + 6 = 7 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 32

    1

    Запишите формулу для вычисления площади поверхности конуса. Конус имеет круглое основание и закругленную боковую поверхность, которая сужается в вершине этой фигуры. Чтобы найти площадь поверхности конуса, нужно вычислить значения площади круглого основания и площади боковой поверхности, а затем сложить эти значения. Формула для вычисления площади поверхности конуса: SA = π*r2 + π*rl, где r – радиус круглого основания, l – образующая (расстояние между вершиной конуса и точкой, которая лежит на окружности круга), π ≈ 3,14.[27]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 33

    2

    Измерьте радиус основания и высоту конуса. Радиус – это отрезок, соединяющий центр круга и точку, которая лежит на его окружности. Высота – это расстояние между центром круга и высотой конуса.[28]

    • Например: r = 2 см
    • Например: h = 4 см
  3. Изображение с названием Find Surface Area Step 34

    3

    Найдите значение образующей конуса (l). Образующая конуса является гипотенузой треугольника, поэтому воспользуйтесь теоремой Пифагора, чтобы вычислить образующую: l = √(r2 + h2), где r – радиус круглого основания, h – высота конуса.[29]

    • Например: l = √(r2 + h2) = √(2 х 2 + 4 х 4) = √(4 + 16) = √(20) = 4,47 см
  4. Изображение с названием Find Surface Area Step 35

    4

    Вычислите площадь круглого основания. Площадь круга вычисляется по формуле S = π*r2. Измерив радиус, возведите его в квадрат (умножьте r на себя), а затем квадрат радиуса умножьте на число Пи.[30]

    • Например: π*r2 = 3,14 x 2 x 2 = 12,56 см2
  5. Изображение с названием Find Surface Area Step 36

    5

    Вычислите площадь боковой поверхности конуса. Сделайте это по формуле S = π*rl, где r – радиус круга, l – образующая, которая найдена ранее.[31]

    • Например: π*rl = 3,14 x 2 x 4,47 = 28,07 см
  6. Изображение с названием Find Surface Area Step 37

    6

    Сложите полученные значения, чтобы найти площадь поверхности конуса. Площадь поверхности конуса равна сумме площади круглого основания и площади боковой поверхности конуса.[32]

    • Например: π*r2 + π*rl = 12,56 + 28,07 = 40,63 см2

    Реклама

Что вам понадобится

  • Линейка
  • Ручка или карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 69 399 раз.

Была ли эта статья полезной?

Добавить комментарий